Practical Assessment,
Research & Evaluation

A peer-reviewed electronic journal.

Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation.
Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited.
PARE has the right to authorize third party reproduction of this article in print, electronic and database forms.

Volume 20, Number 7, March 2015

ISSN 1531-7714

Item Response Theory Using
Hierarchical Generalized Linear Models

Hamdollah Ravand, 1Vali-e-Asr University of Rafsanjan

Multilevel models (MLMs) are flexible in that they can be employed to obtain item and person
parameters, test for differential item functioning (DIF) and capture both local item and person
dependence. Papers on the MLLM analysis of item response data have focused mostly on theoretical
issues where applications have been add-ons to simulation studies with a methodological focus.
Although the methodological direction was necessary as a first step to show how MLMs can be
utilized and extended to model item response data, the emphasis needs to be shifted towards
providing evidence on how applications of MLLMs in educational testing can provide the benefits
that have been promised. The present study uses foreign language reading comprehension data to
illustrate application of hierarchical generalized models to estimate person and item parameters,
differential item functioning (DIF), and local person dependence in a three-level model.

Data in social sciences in general and educational
measurement in particular have a hierarchical structure.
In other words, students are nested in classes which are
in turn nested in schools. Nested data are locally
dependent. As a result, the average correlation between
variables measured on students from the same
school/class will be higher than the average correlation
between variables measured on students from different
schools/classes. The within-class correlations would
be, for example, due to a common teacher, the same
syllabus, or the same textbook, and within-school
correlations, among other things, may be the result of a
common set of administrative policies or the selection
processes (for example, some schools may select highly
talented students or some may attract students form
either high or low social economic status levels). Due
to these clustering effects, a fundamental assumption
underlying a majority of parametric statistical tests is
violated (Goldstein, 1995; Raudenbush & Bryk, 2002).
Local independence assumption holds that there should be
no relationship among individuals in the sample for the
dependent variable once the effect of the independent
variable has been taken into account.

Non-independence assumption is usually taken for
granted in conventional statistical tests such as
regression and ANOVA. Violation of this assumption
leads to underestimation of standard errors (SE). Since
statistical significance of a predictor variable is judged
by the ratio of its size to its SE (a significant coefficient
should be at least twice as big as its SE),
underestimated SE would result in obtaining a
significant effect when it does not really exist (Hox,
2010; Raudenbush &Bryk, 2002). Multilevel models
(MLM)  have  been  designed to  handle
interdependencies among the data points. In what
follows first MLMs in general and hierarchical
generalized linear models (HGLM) in particular are
described. Then the ways they have been and could be
used in educational testing is reviewed. Finally, the
application of the Rasch HGLM with the HLM
software is demonstrated and the outputs are
interpreted.
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Multilevel Models

MLMs have been differently termed as linear
mixed models (Littell, Milliken, Stroup, &Wolfinger,
1996), hierarchical linear models (Raudenbush & Bryk
1986), and random coefficient models (Longford
1993). MLMs are extensions of standard multiple
regression. They specifically account for dependency in
the data with simultaneous multiple regressions at
different levels. To analyze relationships between a
dependent and independent variables in a hierarchical
data set where, for example, students are nested in
classes which are in turn nested in schools, a three-level
regression model is formulated. The first and the
lowest level is the student level, the second level is class
level, and the third level is school level. It goes without
saying that this 3-level model can be extended to
include a fourth level (e.g., neighborhood level). In all
the MLMs there is a single outcome or response
variable which is measured at the lowest level and there
could be explanatory variables at all the levels. For
example, imagine we want to explore the effect of
factors (i.e., knowledge of vocabulary and knowledge
of grammar) that might affect foreign language reading
comprehension. Suppose further, the data have been

collected from | universities (/=1...]) with n; students

in each university. The first level (i.e., student-level)
regression equation can be set up as in Equation 1:

reading = /3, + 3, vocabulary, + B, grammar, +¢, (1)
where reading is the outcome, [, is the intercept (i.c., the
mean reading comprehension of university j), [

and [, are the sigpes (i.e., the mean effects of the

person-explanatory variables of vocabulary and
grammar, respectively, on reading comprehension in

university j)and € represents the deviation of reading

comprehension of student ifrom the intercept (the
mean reading comprehension of his/her respective
university). Equation 1 is different from a standard
multiple regression in that, unlike in standard multiple
regression where we assume regression coefficients
(ie., intercepts and slopes) are constant' (i.e., fixed)
across all the students regardless of the university they
belong to, in a MLLM each cluster (here university) can

1 Of the different ways fixed and random effects have been
conceptualized, I have adopted the distinction by Kreft and De
Lecuw (1998, p. 12).
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be assumed to have a different intercept coefficient
By; (here mean reading comprehension) and different

slope coefficients B, and f,; (here mean impact of

vocabulary and grammar, respectively, on reading
comprehension). Put another way, the intercept and
the slopes are assumed to be random (i.e., vary) across
universities. The group-specific coefficients are
indicated by subscript | attached to each coefficient.

With MLMs researchers can test whether the
coefficients ie, mean reading comprehension
(intercept) and mean impact of vocabulary and
grammar, respectively, on reading comprehension (the
slopes) vary significantly across universities.

The next step in MLM procedure is to explain
randomness (i.e., variation) in the intercept and slopes
across the higher level units (in this case universities).
The level-1 coefficients which are assumed to vary
across higher units are set up as outcome variables in
the level-2 equations. In the present case, since the
intercept (the mean reading comprehension) and the
slopes (the mean impact of vocabulary and grammar)
were assumed to vary across universities, university-
level explanatory variables (i.e., covariates) can be
added to account for the wvariations of these
coefficients at the second level. For example,
universities in Iran, depending on whether they select
students through screening tests, are divided into two
broad categories: state universities and non-state
universities. The subscripts in Equation 1 show that
the intercept (the mean reading comprehension in each
university) and the slopes (the mean impact of
vocabulary and grammar in each university) are
random across universities. Therefore at second level
we need to have three regression equations one for the
intercept as the outcome variable and two for the
slopes as outcome variables as follows:

Boi = Voo T Vi + Uy 2

ﬁlj = Vo Yl Uy
)
ﬁzj = Voot Val; Uy,

Where Jyis the average reading comprehension

across all the universities (grand mean), J, and },,are

the mean effect of vocabulary and grammar,
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tespectively, across all the universities, Uy; represents

deviation of the mean of the university ; from the
grand mean, Uj;and U,; represent the deviations of

the mean impact of vocabulary and grammar,
respectively, on reading in university ; from the
respective means across all the universities. Equation 2
predicts average reading comprehension in each
university (the intercept ;) by university type (Z) (i.e.,

state vs. non-state). As university type is a binary
explanatory variable, in this case coded as zero for non-
state universities and one for state universities, a

positive )V, indicates that the average reading

comprehension is  higher in state universities.
Equations in 3 state that the relationship between
grammar and reading comprehension and vocabulary
and reading comprehension depend on the university
type. Negative values for J;;and ),, indicate that the
effect of vocabulary and grammar, respectively, on
reading comprehension are stronger for non-state
universities. Conversely, positive values for ), and ),
indicate that the effect of vocabulary and grammar,
respectively, on reading comprehension are stronger
for state universities. If the variances of the #-terms Uy,

,Ujj, and Uy, are significant, mote university-level

covariates should be added to capture the variations.

Alternatively, the slopes can be assumed fixed, that
is the effect of vocabulary and grammar can be
assumed as being the same across universities. In that

case fB;and f,; should be included into the level-1

model without the subscripts /. Accordingly, we would
not need B, and fB,; equations at Level 2.

Hierarchical Generalized
Linear Models

MLMs assume a continuous dependent variable
with a normal distribution. However, if the dependent
variable is a dichotomous variable, both the continuous
dependent variable and the normality assumptions are
violated (Hox, 2010). For situations where the
dependent variable is non-normal non-continuous and
the relationship between the predictor variable and the
dependent variable is not linear, a variant of MLMs
called hierarchical  generalized linear model (HGLM) is
appropriate.
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Standard Rasch model has been shown to be a
special case of HGLM (e.g., McClellan & Donoghue,
2001; Kamata, 2001, 2002; Miyazaki, 2005;
Raudenbush, Johnson, & Sampson, 2003; Williams &
Beretvas, 20006). In the Rasch model formulation of the
HGLM (Rasch HGLM) item response data are treated
as repeated observations where each test taker
responds to multiple items. Multiple responses from
the same subject cannot be regarded as independent
from each other. As a case, take the reading
comprehension example above. Each person possesses
a different level of reading comprehension which is
going to affect all the responses from the same person
thus rendering these different responses inter-
dependent rather than independent. In the Rasch
HGLM item response data are treated as hierarchical
data, where items are nested within persons. Unlike
MIMs where persons are level one, in the Rasch
HGLM items are level one and persons are level two.
In what follows it is shown how the standard Rasch
model can be derived from HGLM.

Hierarchical generealized
Rasch model

Kamata (2001) showed how Rasch model can be
formulated within the framework of a hierarchical
model. In his formulation the first level is an item level
model and the level-2 model is a person level model.

The level-1 model, the item level model, for item /
(1=1,..., & and person;(j=,...,7)1is

|09( ) ﬁo, ﬂljxlij+"'ﬂ(k—l)jx(k—l)ij
4)

=B * Zﬁq- Xqi
q=1

where X”- is the / item indicator which is a

dummy variable for person j, with values 1 when the
observation is the /* item and 0 otherwise.

Iog( L) is the logit /nk fuention wheteby the

i
log odds of getting item 7 correct for the person ; is
predicted. p; is the probability that person ; succeeds

onitem /7 and 1-p; is the probability of failure on the
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item. In HGLMs the link function linearizes the
relationship between the predictor variables and the
dependent variable and restricts the range of the
predicted values to match the distribution of the
dependent variable.

To identify the item-level model, some constraints
need to be imposed. Kamata (2001) suggested that
identification be carried out by using one of the items
as the reference item thereby dropping the dummy
variable for that item form the model and including an
intercept term which is the effect of the reference item.

In Equation 4, fB,;is an intercept term which is the

expected effect of the reference item for person j, and
By to By, are coefficients associated with the effect

of Item 1 to Item -1 (one less than the number of
items since the dummy variable for the reference item
is dropped).

In the Rasch HGLM at Level 2, the intercept f;;

is assummed to be varying (random) across persons
(the random intercept is introduced to take inter-
dependencies among items answered by the same
person ) and the other items’ effects are assummed to
be constant (fixed) across persons as in Equation 5:

ﬁo,‘ = Voo T 1o;
ﬁlj = Vo

U

O

O

ﬁ(k—l)j = Yik-10

®)

As a result, level-1 and level-2 models can be
combined so that the probability that pereson ; answers
item 7 correctly is expressed as:

Pi- ! ©
I+exp[—{ro; (Vo Voo )}

Equation 7 is algebrically equall to the Rasch
model:

1
1+exp[~(6, - 3]’ @
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where @,, person ability in Equation 7, is

equivalent to Iy, the random effect of the intercept
and O, item difficulty in Equation 7 is equivalent to

Vio-Voo (the effect of each item subtracted from that of

the reference item).

Kamata’s formulation can be extended to three-
and four-level HGLMs.

HGLM vs. Conventional Item
Response Theory Models

Educational measurement data can be used to
fulfill two broad purposes (De Boeck & Wilson, 2004):
(a) to describe performance of individual test takers on
a test and (b) to explain item responses in terms of
other explanatory variables. Accordingly, the two
purposes lead to two approaches: descriptive measurement
approach and explanatory approach. The explanatory
approach is broader and can be seen as complementary
to the descriptive approach. Conventional IRT models
are suitable for the fulfillment of the descriptive
purpose. Although they can be used to serve the
explanatory purpose, this can only be carried out in a
two-step procedure (De Boeck & Wilson, 2004), with
measurement as the first step and correlating the
derived test scores with external variables as the next
step. Unlike conventional IRT models which estimate
person abilities first and then investigate the effect of
person-varying explanatory variables on  ability
estimates, HGLMs take a one-step approach to
investigating the effect of person variables on ability
estimates (Kamata, 1998). Therefore, estimates of item
and person parameters are expected to be more precise
(Mislevey, 1987).

Most existing IRT models are special cases of
HGLMs. A HGLM perspective on item response data
broadens the domain of IRT models and facilitates
their explanatory wuses beyond their standard
descriptive uses (De Boeck & Wilson, 2004). The
HGLM perspective has additional advantages over the
standard IRT approach (De Boeck & Wilson, 2004,
p.7): (a) The approach is a general one and therefore
also flexible, and (b) The approach connects
psychometrics strongly to the field of statistics, so that
a broader knowledge basis and literature become
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available and (c) The availability of generalized
statistical software makes the implementation of new
models developed for specific situations much more
straightforward than it has been in the past, where
specific-purpose programs could be used only under
less general circumstances. More specifically, HGLMs
are flexible in that they can be conveniently used to
estimate item and person parameters, differential item
functioning (DIF), and the effect of person-level
predictors on ability measures and item-level predictors
on item difficulty, simultaneously. They can also be
used to investigate local item dependence (i.e., testlet
effect), local person dependence and differential testlet
functioning.

Rasch HGLM extensions
and Previous Applications

Papers on the Rasch HGLM have focused mostly
on theoretical issues where applications have been add-
ons to studies with a methodological focus. Kamata
(2001) showed that HGLM is equivalent to the Rasch
model. He also showed how the two-level HGLM can
be extended to a three-level latent regression model
which allows investigation of students across groups.
Jiao, Wang, and Kamata (2005) extended Kamata’s
two-level model to capture item local dependence.
Their three-level model can be used to estimate item
difficulties, person abilities, DIF, and testlet effect. Jiao,
Kamata, Wang, and Jin (2012) extended Jiao et al.’s
(2005) model to a four-level model which permits
simultaneous modeling of both item and local
dependence. Beretvas and Walker (2012) developed a
cross-classified multilevel model to handle testlet-based
dependencies. Their model allowed simultaneous
investigation of DIF and differential testlet
functioning. Ravand (in press) employed Beretvas and
Walkers” model to estimate LLID, DIF, and differential
testlet functioning in a high stakes reading
comprehension test. Beretvas, Cawthon, Lockhart, and
Kaye (2012) in a pedagogical paper explained
similarities and difference of the two-level cross-
classified model and the conventional two-level model.
They applied the two models to investigate DIF and
differential facet functioning (Meulders & Xie, 2004) in
accommodated item scores. Van den Noortgate, De
Boeck, and Meulders (2003) demonstrated how several
common IRT models can be derived from the
multilevel logistic model. Weirich, Hecht, and Bohme
(2014) showed how item position effects can be
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modeled using the linear logistic test model within the
framework of HGLMs. Debeer and Janssen (2013)
proposed a general framework for detecting and
modeling item position bias effects using explanatory
IRT models in the framework of HGLM. Randall,
Cheong, and Engelhard (2011) described how HGLMs
can be used to investigate measurement invariance,
specifically DIF, within the context of assessing
students with disabilities. Albano (2013) also
demonstrated how HGLMs can be employed to model
item position effect. He argued that the HGLM
approach is advantageous over the previously used
models for this purpose in that it can estimate position
effects simultaneously with item and person
parameters.

Although the methodological direction was
necessary as a first step to show how MLMs can be
utilized and extended to model item response data, the
emphasis needs to be shifted towards providing
evidence on how applications of MLMs in educational
testing can provide the benefits that have been
promised.

Data Analysis

To illustrate the analysis procedures involved in
the Rasch HGLM, university entrance examiantion
(UEE) data of the applicants into the Masters” English
programs at the Iranian state univerisites in 2012 are
used. There were 21640 (71.3 % female and 26.8 %
male) participants who took the test in this year. The
participants received their Bachlors’ degrees mostly
from four univerisity types in Iran: (a) state universities
which do not charge any tuition fees, (b) Azad
universities which charge tuition fees (c) Non-profit
Non-government universities which charge tuition
fees, half as much as those of Azad universities, and (d)
Payam-e-Noor universities which charge tuition fees as
much as those of Non-profit Non-government
universities but do not offer regualar classes. UEE is
composed of two main sections namely general
English (GE) section and content knowledge section.
For the purpose of the present study the data for the
reading section of the GE part of the UEE is analyzed.
From among the 21640 participants 1298 persons were
excluded from the analysis since they attended a
university at Bachelor level which had less than 10
participants taking the test. The remaining 20342
students were from 227 universities.
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Data analysis illustration is carried out using HLM
7.01 (Raudenbush, Bryk, Cheong, Fai, Congdon, & du
Toit, 2013). HLM is a commercial software, two free
versions of which are also available: (a) the student
edition which is restricted in the size of the model one
wants to analyze, (b) The 15-day tiral version which has
got all the capabilities of the full version and can be
requrested from the publishing company at
http://www.ssicentral.com/hlm/downloads.html.

Data file preparation

Researchers usually input their data into SPSS in
‘wide’ format for conventional analysis purposes. For
the purpose of Rasch HGLM analysis, the ‘wide’ data
format should be restructured into the ‘long’ format.
Moreover, for each item a dummy indicator should be

created so that Xgis the ¢’ dummy variable for
person 7, with values 1 when ¢ = 7, and 0 whenq #1,

for item 7z To convert the data into ‘long’ format, go to
Data tab in the SPSS file which includes the data and
then to Restructure as shown in Figure 1.

3 totalimputed_2.av [DataSets] - IBM SPSS Statistics Data Editor
|Fle Edt View Dala Transform Analze  DirectMarketing Graphs Ut
=] E [(Q_J .| Define Variable Properties. . @I H
2 24 SetMeasurement Level for Unknown..
| = Copy Data Proparties.. -
id — e | uni | &
! o e G i r
1 11 1 1
2 v f§ Define Dates_ i :
3 11| Bl Dafine Muttiple Response Sets 1 ]
I 2 11{  Validation L IETE
N s 553 £ Identify Duplicals Cases 1 1
.6 553 3 identify Unusual Cases 1 1
7 933| 1, compare Datasets.. 1 1
1 - 3 1
g e [ SortCases. .
9 1090 Aot 1 1
S B ariables...
10 10904 - 1 1
EE] 1481| 8 Transpose.. TR
12 1481 Merge Filas L 1 1
il 13 1635| P Restructure... 1K
| 14 16354 Rake Weighls... 1 1
| 15 2z Propensity Score Matching... 1 2
16 12| gase Control Malching... 1 2

Figure 1. Restructuring 1.

Since the intent is to convert the long’ form into
‘wide’ (i.e., convert variables into cases), in the next
dialog box go with the SPSS’s default (i.e. “Restructure
selected variables into cases”), as shown in Figure 2
and then click Next.

43 Restructure Bt Wizad 0 w W
Welcome to the Restructure Data Wizard! ['.

This wizard helps you io restructure your data from mulliple variables (columns) in a single case lo
proups of refated casas (rows) or vice versa, or you can choose fo transpose your dala

’i. The wizard replaces the current data sel with e restructured data. Nede that data
2 restruchuring cannol be undone

What da you wantio do?
@ Resuciure selectad vaniabies into tasesi
Use this when each case in your current data has some
wvaniables Mat you would like fo rearrange info groups of
ralated cazes In fhe new data set

D) Restructure selectad cases inlo varnables

Ui his whin you hive groups of relaled cases thal you
wantto rearange so that data from each group are
represented 35 3 single case inthe new data set

© Transpose all dats

Al cases will become variables and selecled vanaties
will become cases in the new data set {Choosing this
option will end the wizard, and the Transpose aialog will
appear )

Figure 2. Restructuring 2.

Since the intention is to create just one new
variable (i.e., item) from a set of columns in the old
data file (i.e., Item1 through Item60), in the next dialog
box leave the SPSS’s default unchanged because it
serves our purpose right and click Next as shown in
Figure 3.

#3 Restructure Data Wizaed - Step 2017

e — SS9 " =
Variables to Cases: Number of Variable Groups ['

You have chosen o restructsns selecied vanables indo proups of related Cases in the now file

A groug of refalad vanables, called a vanadle growg, reptesents Measurements on one vanablie

For aeample, he varabie may ba widih, If ks recorded in thies Separals maasurements, each

ane representing a dMerent point in Bme—w1, w2, and w3l hen he dala are amanged in a group
W ol vanables,

IFthere is more than one vanatie in the file often RS aiso recorded in a vanable group, fox

example Nesght, recorded in n1, R2, andnd

Hion maey vafiable groups 60 you want 10 festuciure?

48{0e for sameis, w1, w2 and wa]

141 10 Whore than ane (for azample, w1, w2 Wl and b1, h2, 3, ele
ORI = el o e
EEhaio]

el kil

I

Figure 3. Restructuring 3.

In the next window, from the Case Group
Identification section choose Use selected variable
and then select the “d’ variable from the Variables in
the Current File in the left box and move it into the
box in front of the Variable in the right. Then choose
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Item1 through Item060 variables from the Variables in
the Current File box and move them into the box
under the Variables to be Transposed. One can
optionally change the name of the Target variable
from trans1 (which is the default of SPSS) as shown in
Figure 4.

13 Restructure Data Wezaed - Step 30l 7 - Y
| Variables to Cases: Select Variables
For gach variable group you have in e curent data the restruciurad file will have one targe! vanable

In thiz step, choase how o sdentdy case groups infhe resfruclured data, and choose which vanables
polong with each targel varabis,

Cpbonally, you can aks0 chaoso variables 1 Copy 10 e now by 25 Fiod Vanables

Varablas in thi Current Fite

| [ temss E] case Grap loenttication
| | iemse [use selacten vanatie
i & items? ~ = -
| | # itemss W Varadie: |7
I & ltemso
1 f Hems0 Warables iv be Transposed
Il | & grams
Il | & vocatit Target Variabbe. |responsel
|| & oozt + | 3 [P
| | & reading1 7 Moz
& totain & s
e @s
It & uragram A2 fwms
| & vocab o -
I & univocat Flted Varabie{s)
| | & co
f & uradaze -
Il | & reading -
I e VAR A—

Figure 4. Restructuring 4.

In the next few dialog boxes, go with the SPSS’s
defaults and just click Next in each dialog box and you
will come up with the ‘long’ data file.

In the next step, we need to create dummy
variables for the items. It can be much more
conveniently carried out through writing a set of
commands in the SPSS Syntax Editor. From the File
menu select New and then syntax. In the Syntax
Editor window type the following commands as shown
in Figure 5:

Compute x1 = (item=1).
Compute x2 = (item=2).
Compute x3 = (item=3).
Compute x4 = (item=4).
Compute x5 = (item=5).

Compute x60 = (item=60).
EXECUTE.
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Then select all the commands and from the menu
above click on the Run Selection button, as shown in
Figure 5. Running this command will return dummy
variables X1 through X60 for Items 1 through 60.

s
l‘:ﬂ dismenay symbecsps - [EM SPES Saatistics Symitex Editor
File Edt View Dala Transiem  Anakze  DweclMarkeling  Grapghs

SHE M e » § B & M

Computs

Complbe
Compute
Computs
Camplbe
Coamputs
Compute
Compute
Compute
Compute
Compubs
Computs
Compiits
Computs
Compute
Compube
Camigdibe
Compate
Compute
Compute
Complute
Compute

[Eem=40)
= (dem=41)

{Aam=47)
¥13 = [dem=d )
Compuie xdd = [nem=d44)
Compute k45 = {dem=45}
Compute xib = @

m
NUEasanstas YRR

Figure 5. Dummy item coding.

HLM works with either separate data files for each
level or a single data file which contains information on
all the levels. For the purpose of illustration,
information for each level was saved in a separate SPSS
file. It is worthy of mention that HLM requires that
data in all the data files should include an ID wvariable
for the respective level and IDs for all the levels above
it and they should be sorted according to the ID of the
highest level. In a two-level model, for example, where
the first level is the item level and the second level is
the person level, both the item and person files should
be sorted according to person ID. And in a three-level
model where the third level is class or university, all the
three data files should be sorted according to
class/university ID. Figure 6 shows an excerpt of the
item-level (level-1) data file.

As one can see the first level data file has been
sorted according to the third-level IDs (i.e., unilD).
The first column is university ID (unilD), the second
column represents data on student ID (stID), the third
column display item id (item) information, and the
fourth column is a vector of item responses where 1
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@ Level-1.cav [DataSetl] - IBM SPSS Statistics Data Editor SRR = ]
File. Edit View Data Transform Analyze DirectMarketing Graphs  Utiities  Addons  Window  Help
SR M e~ BLFAR K EE BT {00 %
| ‘ |Visible 64 of 64 Variables
ml st || item ﬁrespun,,,!l x1 ” x2 || X3 || x4 || x5 ” X6 H X7 H %8 \l x9 ” %10 || 1l
| 116 1 1 1.00 .00 00 .00 .00 .00 .00 .00 00 .00 ﬂ
116 2 0 00 1.00 00 00 00 .00 00 .00 00 00
116 3 0 00 00 1.00 00 .00 00 00 .00 00 00
116 4 1 00 .00 00 1.00 .00 .00 00 .00 00 .00
116 5 0 00 .00 00 .00 1.00 .00 .00 .00 00 .00
116 S. 0 00 00 00 .00 00 1.00 00 .00 00 00
116 7 0 00 00 00 00 .00 00 1.00 .00 00 00
116 & 1] 00 .00 00 00 .00 .00 00 1.00 00 .00
116 )l 0 00 .00 00 .00 .00 .00 .00 .00 1.00 .00
116 1CI. 0 00 00 00 00 00 .00 00 .00 00 1.00
116 1 0 00 00 00 00 .00 00 00 .00 00 00
116 12 1 00 00 00 00 .00 .00 .00 .00 00 00
116 13 0 00 .00 00 .00 .00 .00 .00 .00 00 .00
116 14. 1 00 00 00 .00 00 .00 00 .00 00 00
116 15 0 00 00 00 00 .00 00 00 .00 00 00
116 16/ 1 00 00 00 .00 .00 .00 00 .00 00 00
116 17 0 00 .00 00 .00 .00 .00 .00 .00 00 .00
116 18. 0 00 00 00 00 00 .00 00 .00 00 00
116 19 1 00 00 00 00 .00 00 00 .00 00 00
116 20 1 00 .00 00 00 .00 .00 .00 .00 00 .00
116 21 1 00 .00 00 .00 .00 .00 .00 .00 00 .00
116 22. 0 00 00 00 .00 00 .00 00 .00 00 00
116 23 1 00 00 00 00 .00 00 00 .00 00 00 |
115 24 1 nn an nn nn nn on an an nn an \’ll

—
1:53 PM

Fire 6. Item-level data file.

indicates a correct answer and 0 indicates an incorrect
answer. Since item responses are arrayed in a column D) o2 e [DwiaSons) T S8 Semisis Do B
and there are 60 items on the test, data for each test

~ ’ [Ele Eat view Dats Transtorm  Analze  DireciMarkstng  Graphs
taker consists of 60 rows. Put another way, ID for -

each student is repeated 60 times which results in Ij E ng [E £ E &%Eﬂ ﬂ

60x 20342 =1220520 rows of data. From the fifth I

variable onward, the dummy variables for each item _ funild| id | gender  gpa v
(X1 to X60) are displayed. ! 1| 1% 2 1646 E—]

2 1 116 2 1646
Figure 7 displays the person-level data file. As the 3 1 116 2 1646
reader might note, the second-level data file has also 4 1 186 2 1645
been sorted according to the highest level ID variable : L I 55
. . . . 1 " 1g.4
(unilD). This data file includes unilD, stID, and s : == Lo
‘ 7 116 2 1646
sec'ond—level related variables such as gender and grade S R T
point average (gpa). ] 1 116 2 1646
. . . . . 10 1 116 2 16.4B
Flgally, the th1.rd—le.vel data file 1pcludes university = e S
ID (unilD) and university-related variable of university 12 1 418 2 1646
type (unitype). A slice of the third-level data (university 13 1 116 2 1646
in this case) is displayed in Figure 8. 14 1 116 2 1646
18 1 1= 3. 1R4R

Therefore, an important point to note about the
data files is that the highest-level ID variable (here
unilD) should appear in the data files for all the three
levels and exactly in the same order.

Figure 7. Person-level data file.
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T3 Level-3sav [DataSeta] - IBM SPSS Statistics Data Editor
|Ele  Eem Mew Data

Er e

Transform  Analymé Dwredd Markefin

e =

1 umliD
[umiD  wnitype - =
1 [1 ] 1
2 i 1
3 1 1
& 1 1
5 1 1
& 1 1
7 1 1
B 1 1
g 1 1
10 1 4
11 { 1

Figure 8. University-level data file.

Working with HLM

In the next step, the models for different levels
should be specified. HLLM stores data in its own MDM
format which can be created from SPSS, Stata, SAS,
and SYSTAT. To create the MDM file, after you run
the HLM 7, select “Make the new MDM file” and then
“Stat package input” from the file menu, as shown in
Figure 9. The latter is selected since our data are stored
in a statistical package (in this case SPSS).

| ] HLM for Windows
s o ik Fmipuiessi bietuin

ettings
Create 3 new model using an edting MOM file
Edit/Run old commend{.hlm/ mim) file

Manually edit command] him/.mim)] file

Save mied model asemi

IMake new MDM file B ASCH input
KMake new MOM from old MDM templatel.mdmt) file Stat package input

Display MDM stats

View Output

Graph Equations 3
Graph Data B
Preferences

Exit

Figure 9. MDM construction 1.

In the next dialog box the type of the MLM
should be selected. For simple two-, three-, and four-
level MLMs the respective model should be selected
from the upper section of the dialog box. For the
purpose of the present study select HLM3 option
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because there are three levels: items (level 1) nested
within students (level 2) and students in turn nested
within universities (level 3). Then click OK (Figure 10).
CEJwWHM bz MDM e g T

File  Batic Settenge  Otfver Setiongn © Fun Anabyia - Help

[ Select MO type

Mested Models
HLMZ & HLMI HLMA

Hierarchical Multivariate Linear Models |
HMLM HMLMZ

Cross-classilied Models
HCM2 HLM-HCM HCM3I

Cancel

Figure 10. MDM construction 2.

In the next dialog box, click the Browse button
for each respected level, as shown in Figure 11, and go
to the directory where each of the data files have been
saved. As soon as the data files are located, the Choose
variable buttons for each respective level are activated.
Click the buttons and specify the variables related to
each level as shown in Figure 11. For the level-1 model

Maks MDA HLMI

MDM tarmglate e MOM File bamae (uss mdm suffix)

File Name 0 l > Dracuce
cmn_sm mamise| (£t mamiisie Pt File Trpe - SPSSAncaws

Exucture of Dala - Bis affacks T notahon oniy!

EIB82-5 BLOONE] Wl MEssurement mosel ot leval-1
1A TRl wilh TS ear] el 3 bivwl-1

9 croes Suctonsl

$‘ hangidmal
Luvel-1 Specificaion
ﬂ > BrowSE | gl Flla Hame  CHDropEaay pRpers 15 ¢4|Mﬂ'ﬂ.h.|m Chaose Variablss

Missing Data? Diedale misming bevel-1 data whan

& Mo Yes making mdm AN G analyses

Luvel-2 Specificaion

ﬁ} Brows® . | Level-2 File Hame:  DDopDorily Da0ers 1o comnwm | Chaose Vanaties |

Lavei-] Specificalion

&} Drowas | Lewei-3File ame.  DADropDoa'dly papeds 1o comu'uwl@ Chooue Vanaties

]D$ ks MO Check Stats 11$ Tone

Figure 11. MDM construction steps.

in the present study the ID variables for all the three
levels, the first-level-specific variables such as
“response” and the dummy variables for the items
should be specified. For Level 2, the ID variables for
Levels 2 and 3 and second-level-related variables of
gender and 'gpa' should be specified. Finally, for the
third level, university ID (unilD) and university type
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(unitype) should specified. Save the MDM template by
giving it a name and clicking “save mdmt file”; as
specified in Figure 11. To complete the model
construction process, click Make MDM. When the
MDM is created click Done to exit the screen.

Specifying an intercept-only (null) model

An important step before embarking upon
multilevel analysis is the inspection of the amount of
dependence between observations (i.e., data points).
Intraclass correlation (ICC) is an index of the amount
of within-cluster dependency. A high ICC indicates
that the average correlations between data points (i.e.,
scores or item responses) from the same cluster (here
university) are higher than the average correlation
between scores obtained from different cluster. The
more similar within-group observations to each other
are and the more different they are than observations
from other groups, the more inappropriate the
application of the traditional statistical tests to the data
will be. If the amount of variance in the person-level
(Level 1 in MLLMs and Level 2 in HGLMs) outcome
variable attributable to the cluster level is negligible,
multilevel modeling is not appropriate for the data. If
ICC is +1 it indicates that there is no variation within
the groups but the groups are very different from each
other. If it is negative or approaches O multilevel
analysis is not needed. To calculate ICC an intercept-
only (null) model should be used.

How to specify a model

To add variables at any level, first activate the
level by pressing the respective button in the left
panel; all the variables related to the level will appear
in the lower part of the left panel. Click on the related
variable and in the drop-down menu choose “add
variable uncentered”.

To add a random term to any equation, click on
the equation then click on the random term (ry;, for

Level 2 and Uy, for Level 3) it will be activated.

Clicking once again on the same random term, will
delete it from the equation. To delete any covariate
already added, click on the relevant equation the
variables related to the respective level appear in the
left panel. In the panel click on the variable you
intend to delete. In the drop-down menu click on the
only active option: “Delete variable from model”.
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An intercept-only model is a baseline model
against which more extended models can be compared.
A null Rasch HGLM model is a model which includes
only item dummy variables at Level-1 and no variable
at other levels but intercepts. Generally, to add a
variable at any level select the level you intend to add
the variable to from the upper part of the left panel of
the model specification dialog box. When a level is
selected, the level name is embraced by double “less
than” and “greater than” symbols (22 Levell <<y A¢
Level 1 first, the outcome variable (in this case
“RESPONSE”) and then all the item dummy variables
except the one for the reference item (in this case the
last item) should be included. To add the outcome
vatiable, when the Level-1 button is activated, click on
“RESPONSE” in the left panel and from the drop-
down menu click on “add as dependent variable”. To
add the dummy variables, in the left panel click on
them one by one and from the drop-down menu click
on “add variable uncentered”, as shown in Figure 12.

WHLM: him3 MDM File: final Command File: whimtemp.him
File BasicSettings OtherSettings Run Analysis Help

__Outeome | | FyE| 1 MODEL ibol: group-mean centering; bold talc: grand-mean centering)

{ 2> Levell &) 1 RESPONSE=1]7) = 6
Levek
[ Levers | Loalt(1-¢N=n
INTRCPT1 N =yt K)oy {X2) + K3 + (K] + i XKE] + (6] + o (XT) + wgfXE) + (XS] + o (K10) 4 (K1) 4
RESPONSE
x1 LEVEL 2 MODEL (beid: group-mean centering; bold falic: grand-mean centering)
g T Fpth
X4 T = Eg

-
&
Qo2
PRI
8y

>
e
Kl
&
&

g

Bl o

2
&
wl ool owow oo
a°
a

pod

S
K
i
3

Lo
B
o
o
g

add variable uncentered
add variable group centered
add variable grand centered

Delete variable from model

15 = Fisot M1
15 = Figa * 116
T17 = Fizo

e = Fieo * 1g

LEVEL 3 MODEL (bold taiic: grand-mean centering)

Foo = Tooo * Yo

% ) 6 ) corer B

Figure 12. Model Specification.

Since we have already specified a 3-level model
(see Figure 10), as soon as we include the Level 1
variables the respective Level 2 and Level 3 equations
are automatically created. For the purpose of an
intercept-only model leave Level-2 and 3 models intact.
Next, press the “Run Analysis” button from the top
menu.

In the context of the present study, ICC is the
proportion of the university-level variance compared to
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the total variance. ICC can be computed through
Equation 8.

JuO + Jr

Where 0, and O, (in our case) are the variances

of the person-level errors I; and the university-level

errorU,. As Tables 1 and 2 show, the variance
component associated with the random term in the
second level (here person level) is about 0.20 and that
associated with the third level (here university level) is

about 0.06. Plugging in the respective values into
Equation 8, we will have

_ 006 _
0.06+0.20
Thus 23% of the RESPONSE variance is at
university level and 77% (1-23%) is at person level.

Thus addition of a cluster level to the model is
warranted.

Table 1. Final estimation of level-2 variance
components

Variance
2 -
Random Effect  sd Component af X p-value
INTRCPT1,, 0.45081  0.20323 20116 75802.42875 <0.001

Table 2. Final estimation of level-3 variance
components

Variance
2 -
Random Effect sd Component af X p-value
INTRCPT1/
INTRCPT2.1,, 0.24111  0.05814 225 4660.66298 <0.001

Obtaining Iltem and Person parameters

As it was mentioned above, one of the advantages
of using the Rasch HGLM is that it circumvents the
inconsistency associated with simultaneous estimations
of person and item parameters (Kamata, 2001). In the
Rasch HGLM, person parameters vary across people
(are random) and fixed across items. That’s why in
Equation 5 (see above) there is a random term (I;)
only for the intercept not the items. To go with the
conventional practice in MLM, we will start with the
simplest possible model: a model with no explanatory
variables or an intercept-only model. As it was said
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before, person parameters in Rasch HGLM are not
estimated they are the residuals of the intercept
component. In a two-level Rasch HGLM, person
abilities are level-2 residuals, which HLM generates on
demand. In a three-level model person abilities are sum
of level-2 and 3 residuals. To get the residuals, go to
the “Basic Settings” menu and click “Level-2 Residual
File” and “Level-3 Residual File” and in the new dialog
boxes specify the format you want HLM to produce
the file in and give the files a name and then click
“OK”. One more thing needs to be specified in this
dialog box: the distribution of the dependent
variable(s). Since we are working with binary variables
with one trial (i.e., each test taker tries each item once)
the “Bernoulli” distribution should be specified from
the “Distribution of the Outcome Variable” section.
Then click on the “Run the Analysis” button to run the
specified model. In the interest of space, only a slice of
the level-2 and 3 residual files are displayed in Figures
13 and 14.

@ resfil2.sav [DataSet]] - IBM SPSS Statistics Data Editor
File Edit View Data Transform  Analyze  Direct Marketing Graphs  Utilities  Add-ons

SHE D -~ BiHE N 5
[1:EBINTRCPT |-27932230853504
L3ID LD | nK  |EBnTRCPTY EBRIZ | EBY
I 1 116 6o -279 -045
[ "7 60 407 -047
3 1 118 60 222 056
[ 2 1 118 60 606 049
| s 1 5535 60 384 -046
[Ei 5536 60 AT2 066
I 1 9337 60 110 074
8 1 10642 60 825 022
9 1 10903 60 - 450 072
10 1 10904 60 344 o072
1 1 14817 60 466 -030
12 1 14818 60 016 044
13 1 16353 60 -329 -026
41 16354 60 417 030
15 2 27 60 199 045
16 2 120 60 651 043
17 2 121 60 439 031
18 2 122 60 - 146 -.069
19 5 123 60 011 -.053
20 2 124 60 357 050
21 2 125 60 615 019
5 2 126 60 268 050
23 2 127 60 -339 -052
4 a 12 RN 136 NRA
L_

Data View | Variable View

Figure 13. Level-2 Residuals.
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ﬁ) resfil3.zav [DataSet2] - IEM SPSS Statistics Data Editor
File  Edit View Data Transform Analyze  DirectMarketing Graphs  Utilities  Adc

SLIER "N « BE. M M %5

11:EBOD 186882527?8043
L3iD | mk | EBos | owo | Fveo | Fu
[ — 1 [ e 256 -338
S| 2 148 340 352 -335
3 3 248 1388 395 -335
4 |4 233 173 AT -335
5 |5 89 -291 309 -335
6 |6 176 167 72 -335
77 142 - 142 147 - 335
8 |s 98 -139 147 -335
g |9 34 212 245 -335
10 10 81 -3 -353 -335
L RE! 23 -352 434 -335
12 12 126 -.264 -265 -335
B |13 88 -227 241 -335
14 14 29 -247 292 -335
15 |15 7 -072 077 - 335
16 |16 203 144 148 -335
|17 404 -077 078 -335
15 18 127 - 152 - 158 -335
13 |19 135 - 206 -214 - 335
20 |20 375 024 022 -335
21 2 292 102 103 -335
22 22 332 076 077 335
23 |z 29 -324 -384 -335
4 .?‘1_ 17 2 437 [
L_

Data View | Variable View
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read from the figure, the first 14 students belonged to
university No. 1. As Figure 13 shows, ability of Person
No. 116 which belongs to University No. 1 is -.279
logits and according to Figure 14 the mean university
ability for the university he/she attended (university
No. 1) is .187. Therefore his/her ability can be
computed by summing his/her person-level ability and
the mean university ability as follows:-.279+.187=0.092

In a threelevel model, item difficulties are
computed based on the item effects in the third level.
In the interest of space the effects for Items 1 to 3 are
presented in Table 3.

Table 3. Item effects

Fixed Effect Coefficient Stand. t-ratio Approx. p-value
error daf.
For INTRCPT1, z,
For INTRCPT2, f,,
INTRCPTS3, py -0.334462 0.017469 -19.146 225  <0.001

For X1 slope, 7,
For INTRCPT2, 8,
INTRCPTS3, p,yp  0.827132

0.014959 55.293 1199933 <0.001

Figure 14. Level-3 Residuals.

If we were working with a two-level model person
abilities could be directly read from the “olintrcp” or
the “ebintrcp” columns in Figure 13. However, in a
three-level model, as shown in Equations 13 and 14
below, there are two random terms: one for the level-2

intercept ([y;, in Equation 13 below) and one for level-
3 intercept (Ugyy, in Equation 14 Below). The random

term for the level-2 intercept (I ) indicates the degree

to which person ; in university 7 is deviated from the
mean of the university 7 whereas the random term for

Level 3 (Uyy ) indicates how much the mean ability in

university 7 deviates from the grand mean (ie., the
mean of all universities’ means). In a three-level model,
ability of persons can be obtained by aggregating level-

2 and level-3 random terms (i.e., loom +Ugjm)-

Level-3 residuals can be read from the “olintrcp”
or the “ebintrcp” columns in Figure 14. One can
manually compute person parameters by summing
level-2 and level-3 residuals. In Figure 13 the first
column (t.e., L3D column) represents the university
each person belongs to and the second column (i.e.,
L2D column) represents the person IDs. As one can

For X2 slope, 7,
For INTRCPT2, 4,
INTRCPT3, p,y, -0.814584 0.016640 -48.953 1199933 <0.001

For X3 slope, 7;
For INTRCPT?2, g,
INTRCPTS3, p;, -0.343377 0.015278 -22.476 1199933 <0.001

Voo 1s the difficulty of the reference item (-0.334462)
and according to the Rasch HGLM the difficulties of
other items are computed by subtracting each item’s
~ Tlooo)-
The difficulty for Item 1, for example, is computed as
follows: 0.827132 -0.334462=0.49267

effect from the reference item effect (—7T,

Adding level-2 predictors

Impact

Beretvas, Cawthon, Lockhart, & Kay (2012) define
impact as “difference in person abilities as a funciton
of some person-level predictors”(p. 6). Take a simple
case where a researcher intends to study the effect of
test takers’ gender on their perfomance in a reading
comprehension test. As was explained formerly, the
usual approach in conventional IRT models is to
estimate person and item parameters first and then in
the second step estimate the effect of explanatory
variables such as gender on test perofmance. However,
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the two-step approach may not yeild accurate results.
Approached form a Rasch HGLM one-step
perspective, the level-1 mdoel remains the same, as in
Equation 4, and the person-level predictor (in this case
gender) is added to the level-2 model as in Equation 9.

ﬁoi Vot yOl(gender)j *1

ﬁu = Vo
O )

0]
0]

Biyi = Vicvor

where Cocfficient Jy represents impact. Since [By; is a

parameter that is common to all items in the level-1
model and the intercept value affects every item’s

difficulty, statistically significant coefficient of )}

would indicate that overall, males and females
performed significantly differently on @/ of the items.

Therefore coefficient J,is the difference in ability of a

male versus a female test taker.

Generally, to add any covariate to level-2 and 3
equations, click on the relevant equation; all the
variables related to the respective level appear in the
left panel. Click on the relevant variable and from the
drop-down menu select “add variable uncentered”. To
add gender impact, for example, to the model, in the
""model specification" menu click on the first line of

the level-2 equation (the intercept equation J7§) to

activate the relevant variables in the left panel and then
add the variable as explained above. A slice of the
output is displayed in Table 4.

Table 4. Final estimation of fixed effects:
(Population-average model)
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negative value implies that on average males had higher
ability estimates than females by 0.22 logits (because
the code assigned to males [i.e., 0] was lower than that
of females [i.e., 1]).

How much variance was explained?

In traditional multiple regression R® is a gauge of
the amount of variance explained by the predictor
variables. In MLM the amount of variance explained
should be examined for each level separately by

calculating a  statistic analogous to R?. A
straightforward approach is to compare the variance of
the intercept in each level after addition of the
explanatory variables with the variance component of
the baseline model (i.e., intercept-only model).
Raudenbush and Bryk (2002) suggested using Equation

10 to calculate R® for the person-level model:

2 2
o, -0

R = (——) (10)
g ab
where O 2e|b is the person-level residual variance for the

intercept-only model and o?_ is the person-level

em
residual variance for the model with explanatory
variable. As Table 5 shows, inclusion of gender into the
person-level model reduced the variance component to
about 0.17.

Table 5. Final estimation of level-1 and level-2
variance components

Variance

Random Effect  sd af 2 p-value

Component
INTRCPT1,7, 0.41352 0.17100 20114 65943.84306 <0.001

Stand. Approx.

Fixed Effect Coefficient /ratio df p-value
For INTRCPT1, 7,

For INTRCPT2, f,,

INTRCPTS3, y,00  -1.854943 0.039772 -46.639 225  <0.001

For GENDER, g,

INTRCPTS3, y,,, -0.224154 0.008099 -27.678 20114 <0.001

According to Figure 18, the intercept for gender (
Vo1 =-0.22) is significant ( p-value <0.001). The

As Table 1 above showed the variance of the
intercept in the baseline model was 0.20. Plugging in
the respective values into Equation 10 we will have

2 020-017 _
0.20

The implication is that gender explain about 15%
of the explainable variance at person level. The
significance variance component in Table 5 suggests
that more person characteristic variables should be

added.
E'stimating DIF

0.15

DIF occurs when test takers with the same
ability level but from different observed groups have
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different probabilities of giving the correct answer to
an item (Clauser and Mazor, 1998). In other words,
DIF refers to significant difference in item difficulties
across different groups in the same population, which
are matched for ability. Differences in item difficulties
and discriminations across subpopulations with equal
latent trait abillity are refered to as wuiform and non-
uniform DIF, respectively. Rasch HGLM tests only for
uniform DIF. To investigate DIF, a person covariate
(here gender ) can be added as to the level-2 equation
as follows:

By = Voo + Vou(gender); +uy,

B = Vo + Vi (gender),

0 (11)
[l

[l

:B(k—l)j =V T y(k—1)1(gender)j ,

In Equation 11, ), represents impact and }; to
Yy represent DIF. If the coefficient ), is positive,

the item is, after controlling for ability, easier for
females (since females were code as 1) and if the
coefficient is negative, after controlling for ability, the
item is easier for males (since O represented males
here). To add gender DIF to the equation for any of
the items, first select the respective equation and, as
explained above, add gender. To save space, the results
for Items 15, 16, and 18 are presented in Table 0.

Table 6. Final estimation of fixed effects (Unit-
specific model with robust standard errors)
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For GENDER, f,,
INTRCPTS3,
Visio -0.481891 0.049642 -9.707 20107 <0.001

Fixed Effect Coefficient Standard t-ratio APS}OX' p-value
For X15 slope, 7,5

For INTRCPT2, 5

INTRCPTS3,
V1500 1.002693 0.088475 11.333 20107 <0.001

For GENDER, j,,,
INTRCPT3, 7,5, -0.673751 0.043299 15560 20107 <0.001

For X16 slope, 7,4
For INTRCPT2, 5,4,
INTRCPTS3,
Y1600 0.416603 0.073470 5.670
For GENDER, g,
NTRCPT3, y,;p 0.175237 0.038120 4.597

20107 <0.001

20107 <0.001

For X18 slope, 7,4
For INTRCPT2, 5,4,
INTRCPT3,

Visoo 0346167 0.097776 -3.540 20107 <0.001

According to Table 6, the effect of gender on the
three items was statistically significant (p-value <0.001).
Items 15 and 18 were easier for males as indicated by
the negative signes(males were coded as 0) and Item 16
was easier for females as indicated by the positive
sign(females were coded 1).

Rasch HGLM is flexible in that it can also test
for  unobservable  (i.e., not-yet-measured) person
characteristics as DIF source. Equation 11 above tested
for gender DIF as an obsevable DIF source. Testing for
unobservable sources of DIF can be carried out by
adding a person-specific residual contributing to the
overall difficulty of any given item through Equation
12. That is item difficulits should be modeled as
random rather than fixed.

By = Voo + Vou(geENder), +1,,
1311' b s yll(gmder)j ST
0
0
0

:B(k—l)j =Viko T y(k—1)1(gender)j

(12)

Signnificance of the random effect I indicates

that “the item’s difficulty is affected by an , as-yet-
unmeasured person charactirsic and cannot be assumed
as fixed across people”(Beretvas, Cawthon, Lockhar, &
Kaye,2012,p.760).

In what follows Items 15,16, and 18 are tested for
unobsevable source of DIF. To do so, in the “model
specification” menue select the equation for the
relevant item by clicking once on the equation and then

click on the random term (i.e., I) for the respective

equation and it will get activated (i.e., gets black).
Running the model by clicking the “Run analysis”
button you will get the following output (Table 7)
regarding the random terms of Items 15,16, and 18. As
one can read from the table, the variance component
for Item 16 is still significant (p-value<0.001) which
implies that other person covariates than gender should
be added to the model for Item 16 to capture
variations in test takers’ performance on the item.
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Table 7. Final estimation of level-1 and level-2
variance components

Random Standard Variance

2 -
Effect Deviation Component af. X prvalue
X13 0.32404 0.10539 20340 20054.83849 >.500
slope,r;;
X15 0.54028 0.29190 20340 19031.63363 >.500
slope,7;5
X16 0.52583 0.27649 20340 21145.05560 <0.001
slope,ry,
X18 0.55096 0.30356 20340 18286.01242 >.500
slope,ryg

Adding Level-3 Predictors

Flexibility of the Rasch HGLM permits
researchers to add a third level to capture the clustering
of examinees nested within classes or schools. In a
three-level model, at the second level, item difficulties
are modeled as fixed across test takers as shown in
Equaiton 13.

/Bojk = Voox T Tojk
181jk = Viok
(13)

ﬂmj = ymOk
where Ij;, represents the extent to which the ability of

person 7 in school £ deviates from the mean ability of
school £ And at the third level, item difficulties can
also be assumed fixed across schools:

Yook = oo * Ugok

lek = niOO

14)

YVik-nom = Tlk-100

where Uy, is the residual for school £ In Equaiton

14, Vioto Vi, represent the difficulty for item ¢ but
the ability is now decomposed into a person-specific
ability , Iy, and the school-specific ability which is
the average ability of students in school 4. Thus the
ability, & in the standard Rasch model in Equation 7
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above, corresponds tolyy + Uy, . The three-level

model can also be extended by adding school-level
predictors. The level-3 predictor in this study is
university type (i.e., “unitype”). As it was explained
before, subjects in the present study for their B.A.
studied at four university types: state unversity, Azad
unvirsity, Payam-e-Noor university, and nonprofit not-
government university. The model at the third level is
specified as in Equation 15.

Yook = Tloo + Ty (UNILYPE), + U,
Viok = 7hoo

(15)

YVik-nyom = Tlyoo

To add “UNITYPE”, which is the only predictor
variable at Level 3, select the intercept equation ( Yy)

and as explained above, in the left panel click on
‘unitype’ variable.  Next, click on “add wvariable
uncentered” and run the analysis. Part of the output for
the three-level model is displayed in Table 8. According
to this table, the type of university students attended
had a significant effect on their performance
(P<0.001).

Table 8. Final estimation of fixed effects: (Unit-
specific model)

Fixed Effect Coefficient Standard t-ratio Approx. p-value
error af

For INTRCPT1, z,

For INTRCPT2, f,,

INTRCPTS3,
Yooo 0.142087 0.042568 3.338 224  <0.001

UNITYPE, -

Yoor -0.102606 0.015305 6.704 224  <0.001

The variance component for the intercept at the
third level is still significant at p<0.001, as shown in
Table 8. The implication is that more university-level
covariates can be added to capture variations in the
performance of the universities. According to
Raudenbush and Bryk (2002), the amount of variance
explained by the third-level predictor can be calculated
using Equation 16 as follows:
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2 _ 2
o uglb g u0|m)

0.2

R? =( , (16)

uglb

2 . . . . .
where 0°  is the university-level residual variance for

Uo
the intercept-only model and JZUDImis the university-

level residual variance for the model with “unitype” as
the predictor.

Table 9. Final estimation of level-3 variance

components
Standard  Variance 5
Random Effect Deviation Component af X p-value
INTRCPT1/
INTRCPT2,y, 0.21733 0.04723 224 4280.86603 <0.001

Plugging in the respective values from Tables 2
above and 9, we will have

R = 0.058-0.047
0.058

The implication is that “unitype” explains about
19% of the explainable variance at the university level.

=0.19

Summary

In the present paper I tried to introduce MLMs in
general and HGLMs in particular in an easy-to-follow
language and illustrate their application to language
testing data. First the ‘wide” data format was converted
into “long” format to make it compatible with HGLM.
Then I showed how person and item parameters can
be estimated and items showing DIF can be detected.
Finally, I explained how to add a third level and the
related covariates. It was illustrated how to calculate
the amount of variance explained after addition of the
covariates at Levels 2 and 3.
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