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The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an 
extension of the Rasch model with linear constraints on item parameters, along with eRm (an R 
package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to 
estimate the model and interpret its parameters. The applications of the model in test validation, 
hypothesis testing, cross-cultural studies of test bias, rule-based item generation, and investigating 
construct irrelevant factors which contribute to item difficulty are explained. The model is applied to 
an English as a foreign language reading comprehension test and the results are discussed.  

An important aspect of validity theory is ‘explaining’ 
the mental processes that are triggered when test items 
are solved. This is in contrast to ‘prediction’ which is 
based on the correlation of tests with external criteria 
(Messick, 1989, Embretson, 1998). Understanding 
processes and cognitive operations (CO) which 
contribute to item difficulty has been given attention in 
cognitive psychology both for test validation and 
understanding learning processes. One common 
method that has been used for this purpose is 
regressing item difficulties (classical test theory p-values 
or Item Response Theory item difficulty estimates) on 
the frequency of cognitive components involved in 
solving the items. The other method is the estimation 
of the difficulty of cognitive operations as specified by 
the linear logistic test model (LLTM, Fischer, 1973; see 
also Fischer, 2005, and Kubinger, 2008, 2009). 

 LLTM is an extension of the Rasch model (RM, 
Rasch, 1980) which decomposes item parameters into a 
linear combination of several basic parameters that are 
defined a priori. The Rasch model is formally expressed 
as: 

����� = 1 | ξ� , ��) =  exp �ξ� −  �� )
1 + exp �ξ� −  �� )   

where ����� = 1 | ξ� , ��)is the probability that person 
v gives a correct response to item i, given her ability  
ξ� and the difficulty of item i as �� .  

The LLTM imposes the following linear constraint 
on the difficulty parameter: 
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Where qij is the given weight of the basic parameter j on 
item i and ηj is the estimated difficulty of the basic 
parameter j.  

The number of operations p is restricted to p<=k-
1, where k is the number of items (Fischer, 2005). In 
other words, the item parameters σi is decomposed into 
a weighted sum of basic parameters ηj. LLTM has also 
been extended to polytomous items with ordered 
response categories both for items with similar 
response categories (linear rating scale models) and for 
those with different response categories (linear partial 
credit models) (Fischer, 2005; Fischer & Ponocny-
Seliger, 1998; Fischer & Ponocny, 1995). Nevertheless, 
the application of these models is rare.  

Depending on the context of application n can be 
interpreted as the difficulty of the cognitive operations 
involved in solving the items or the contribution of 
each CO to item difficulty. q’s are the weights, that is 
the number of times we hypothesizes (a priori) a 
certain operation is needed to solve the item. In other 
cases where construct irrelevant factors such as item 
position effects (Hahne, 2008; Hohensinn, et al, 2008) 
or item format effects are modeled, η refers to these 
components which are assumed to contribute to item 
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difficulty. Under LLTM, CO difficulty estimates are 
independent of person ability estimates like in the 
Rasch model. Unidimensionality is required for LLTM 
and conditional likelihood estimation is available to 
estimate its parameters (Fischer, 1973/2005).  

In laymen terms, LLTM assumes that the Rasch 
model item difficulty parameters are composed of the 
difficulty of several cognitive components or item 
characteristics which linearly add up and lead to the 
overall estimated difficulty parameter. According to 
Gorin (2005) characteristics of an item can be classified 
as radicals and incidentals. Radicals are substantive 
components of  items which are responsible for their 
difficulty, i.e., characteristics which can be manipulated 
to change the cognitive processing needed to solve the 
item. Incidentals are surface characteristics which are 
not expected to affect item difficulty and the 
processing load of  items. For example, in math word 
problems the names of  objects and people are 
incidentals. LLTM helps us quantify the difficulty of  
radicals and incidentals, if  we hypothesize those 
incidentals also affect difficulty.   

The major motivation behind the development of  
LLTM was the need in educational settings to break 
down learning materials into smaller manageable units 
for learners to master (Fischer, 1973). Researchers for a 
long time have recognized the importance of  
quantitative parameterization of  ‘learning quanta’ for 
optimal teaching and individual learning (Spada, 1972, 
cited in Fischer, 1973). To accomplish this goal, an 
academic subject, such as reading comprehension or 
algebra, should be systematically analyzed qualitatively 
and the basic learning units or cognitive operations 
which are needed to solve the pertinent test items 
derived. LLTM then parameterizes these units and tells 
us if  they contribute significantly to the ‘true’ RM-
based difficulty of  items.  

According to Fischer (1973) the strength of  the 
model is in testing hypotheses that tell us which 
cognitive operations can be considered as psychological 
units. The model enables researchers to empirically test 
hypotheses about item solving processes and to 
establish substantive psychological theories. By 
identifying the cognitive processes which are needed to 
solve the items construct validity of items can be 
demonstrated and items for testing specific cognitive 
processes be written. 

After estimating the difficulty of  the learning units 
we should be able to reconstruct the RM-based 
difficulty of  the items. Knowing which units are 
involved in solving the items we add up the difficulty 
of  the units (multiplied by their weights) that are 
needed to solve the items. This LLTM-based difficulty 
estimates should approach the RM-based item difficulty 
parameters. The closer the LLTM-based difficulty 
parameters to RM-based difficulty parameters the 
better our construct theory, defined qualitatively in 
terms of  the learning units, has accounted for the ‘true’ 
(RM-based) difficulty parameters. In case we cannot 
recover the RM-based difficulty estimates with the 
difficulty of  the units we need to amend our theory by 
adding more units or revising the assignment of  units 
to items. Furthermore, the fit of  LLTM can be 
compared with the fit of  the Rasch model to data by 
carrying out a likelihood ratio test.     

To apply LLTM to a test, which is the 
operationalization of a certain construct, content 
experts should specify the cognitive components or 
operations which are needed to solve the items. Then a 
Q-matrix ((qij)) needs to be defined. In the Q-matrix, 
content experts based on the theory of the construct 
decide on the weight of each cognitive operation in 
solving the items. Table 1 is the Q-matrix for an 
English as a second language reading comprehension 
test composed of 12 dichotomously scored items and 
four hypothesized cognitive operations.  

Columns, CO1 to CO4 indicate the four cognitive 
operations tapped by the test. 0’s and 1’s are the given 
weights of the operations for each item. For instance, 
column CO1 shows that cognitive operation 1 is 
involved for answering items 1, 6, 9, and 12 each with a 
weight of 1. This operation has a weight of 0 for the 
other items, which means that it is not used to solve 
them. 0’s and 1’s indicate the presence or absence of 
the operation in solving the items. Alternatively weights 
of 2 and 3 or greater could have been given to the 
operations if content experts believed the operation is 
employed more than once for solving the item. In 
other words, the weight of a CO is the number of times 
the operation is involved in solving the item. Note that 
great care should be taken in specifying the Q-matrix as 
Q-matrix misspecification has profound effects on 
parameter estimates (Baker, 1993; Green & Smith, 
1987; Macdonald, 2014).  
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Table 1: Q-matrix for a reading 
comprehension test with four cognitive 
operations 

Item CO1 CO2 CO3 CO4 
1 1 0 0 1 
2 0 1 0 1 
3 0 1 0 1 
4 0 0 1 1 
5 0 0 1 0 
6 1 0 1 0 
7 0 1 0 1 
8 0 1 0 0 
9 1 0 0 0 
10 0 0 1 1 
11 0 0 1 0 
12 1 0 1 0 

A prerequisite for applying LLTM is that the 
standard Rasch model should hold for the data 
(Fischer, 1973). Fischer (2005) states that if the RM 
does not fit, at least approximately, there is no point in 
decomposing the item parameter because then the 
basic parameter and its estimator would lack an 
empirical meaning. Green and Smith (1987) suggest 
that before running LLTM one can delete persons and 
items that do not fit the assumptions of the Rasch 
model. In this way persons and items with alternative 
solution strategies are identified and can be removed.  

The fit of the standard Rasch model is compared 
to the fit of LLTM using a likelihood ratio test. The 
deviance of -2 times log-likelihood of the two models is 
approximately chi-square distributed with degrees of 
freedom equal to the difference between the numbers 
of parameters in the two models (Fischer, 1973). Poor 
fit for LLTM results if all relevant COs are not 
modeled or the weights are not assigned correctly. In 
case of lack of fit the hypothesis can be improved and 
the model reapplied (Fischer, 2005). If RM does not fit 
significantly better than the LLTM then we have 
evidence of validity for the test in terms of the specified 
cognitive operations. If LLTM does not fit as good as 
the RM then the specified cognitive operations do not 
sufficiently account for the item difficulty parameters. 
This calls for revising the construct theory and our 
hypothesis about the structure of the construct in 
question and its underlying cognitive components. For 
validation purposes several competing Q-matrices can 
be defined and tested. However, looking for the best fit 
a-posterior always requires an independent 

confirmation study.  In an a-posterior model fit, it is 
possible that your model fits only the sample data and 
not the population. Thus you need an independent 
sample to test the new model as confirmation for the a-
posterior fit (cf. “cross-validation” in Rasch, Kubinger, 
& Yanagida, 2011).  

Previous applications in psychology and 
education 

The earliest application of LLTM in education was 
by Fischer (1973). He analyzed a differential calculus 
test composed of 29 dichotomously scored items. 
Eight cognitive operations or rules were hypothesized 
to be involved in solving the items: (1) differentiation  
of  a  polynomial, (2) product rule, (3) quotient  rule, (4)  
compound  functions, (5) sin (x), (6) cos (x), (7) exp 
(x), and (8) ln (x). The difficulties of these eight 
operations were estimated with LLTM. Results showed 
that except for operations (2) and (7) the other 
operations significantly contributed to item difficulty 
estimates. It was also possible to reasonably reconstruct 
RM-based difficulty of the items with the difficulty of 
the hypothesized underlying operations. The 
correlation between RM-based and LLTM-based 
difficulty parameters was .87.       

Kubinger (1979, 1980) investigated the elementary 
operations necessary to solve the items of a university 
statistics exam. The hypothesized elementary 
operations for this study included: understanding the 
measurement scale of the variable in question, checking 
normality of the data, checking whether the data are 
matched (paired), checking homogeneity of variances, 
etc. The purpose of the study was to identify more 
difficult operations to aid in modifying the teaching 
methods. Findings showed that the RM fitted the data 
significantly better than LLTM. This was interpreted as 
the failure of the theory (the elementary statistical 
operations) in accounting for item difficulties. The 
researcher concluded that there must be more factors 
involved in solving the items. When some other 
construct irrelevant factors such as the position of 
items in the booklet and the length of the item texts 
were considered LLTM fitted as good as the RM.          

Along the same lines Sonnleitner (2008) tried to 
identify components of an item-generating system for 
reading comprehension in German as a first language. 
He identified eight radicals (e.g. propositional 



Practical Assessment, Research & Evaluation, Vol 20, No 1   Page 4 
Baghaei & Kubinger, Linear Logistic Test Modeling 

 

complexity, degree of coherence, inference of causality, 
etc.) to explain reading item difficulty estimates. LLTM 
analyses showed that it was not possible to reconstruct 
item parameters by means of the cognitive operations 
and the textual features. When some response-related 
radicals such as the number of response options and 
the number of correct response options were taken 
into account LLTM sufficiently explained RM-based 
item parameters.  

Embretson and Wetzel (1987) attempted to 
predicate the difficulty of multiple-choice (MC) 
paragraph comprehension items. They hypothesized 
that two major factors, namely, text characteristics and 
response decision factors contribute to item difficulty. 
Their model postulated that performance on MC 
reading comprehension items takes place in two stages: 
1. text representation process, where the text is 
understood, and 2. decision process where item stem 
and alternatives are compared to text to select the 
correct alternative. In their model text factors included 
characteristic of the text to be read and comprehended 
including propositional density, argument density, 
percent of content words, etc. and response decision 
processes included falsification, confirmation, 
reasoning, etc. LLTM analysis of the data showed that 
both types of processes had significant impact on MC 
reading comprehension item difficulty estimates. They 
further demonstrated that decision process variables 
impacted item difficulty more that textual 
characteristics. That is, MC paragraph comprehension 
item difficulty parameters depend more on response 
decision than on text. They concluded that their MC 
items measure verbal and reasoning ability. 

  Zeuch, Holling, and Kuhn (2011) analysed the 
Latin Square Task (LST), a nonverbal measure of fluid 
intelligence, relational complexity and working memory 
(Birney, Halford, & Andrews, 2006). Each item 
consists of some cells, each containing a symbol. One 
cell is filled with a question mark. Test-takers have to 
select from a number of symbols which symbol fits the 
cell with the question mark. The rule is that every 
symbol must be used only once in every row or 
column. LST item difficulty is hypothesized to be 
governed by relational complexity (binary, ternary, 
quaternary), i.e., the number of rows and columns that 
are needed to be processed simultaneously to solve the 
item and the number of processing steps. It was 
hypothesized that the order of complexity of 

operations from hardest to easiest is quaternary, 
ternary, binary, and the number of steps, respectively. 
LLTM calibration of processing operations confirmed 
the hypothesis. Quaternary relations turned out to be 
the most difficult operation followed by ternary, 
number of processing steps, and binary. They report a 
correlation coefficient of .85 between RM-based 
difficulty estimate and those recovered by LLTM.    

  Chen, MacDonald, and Leu (2011) used LLTM 
to investigate sources of item complexity in math 
fraction items. They identified six operations, namely, 
using  illustrations,  providing  interpretations,  
applying  judgment,  computation, checking  
distractors,  and  solving  routine  problems underlying 
fraction conceptual items in a math fraction items given 
to a large sample of Taiwanese students (n=2612). 
LLTM showed that all six components significantly 
affect item difficulty, with applying judgment and 
providing interpretations as the hardest operations and 
routine problems and computation as the easiest. 
LLTM did not significantly fit better than the RM as is 
commonly reported by other researchers too. They 
attributed this to their large sample size and the 
sensitivity of the chi square test to large samples. 
Nevertheless, they found a substantially high 
correlation of .95 between LLTM-based item 
parameters and those estimated by the RM. To cross 
check the results of LLTM they regressed RM-based 
item difficulty estimates on the cognitive operations. 
Regression analysis showed that using illustrations and 
checking distractors did not significantly contribute to 
item difficulty. They argued that small sample (the 
number of items) in the regression analysis and low 
power was the reason why these two components 
turned out to be insignificant.         

Another context where LLTM has been used is 
investigating item position effects. It is argued that in 
large scale assessments where, to prevent cheating, 
several test booklets (with the same items but in 
different item orders) are presented position effects 
may occur. Position effects are largely due to learning 
and fatigue. An item might be difficult if it is presented 
at the beginning of a test but easier if presented at the 
end due to the learning that takes place during the 
testing session. Or an item that is easy in the beginning 
might become hard if presented toward the end of the 
test booklet due to examinee fatigue. If all examinees 
take the same items in the same order these effects are 
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equal for all and are not a cause for concern as position 
effect is balanced for all examinees. However, in other 
contexts where the order of items changes (e.g. in large 
scale testing or computer adaptive testing) item 
difficulty parameters contain an unknown component 
due to their position in the test which could lead to 
unfair examinee comparisons. This could happen 
because an examinee might be advantaged or 
disadvantaged by encountering a specific item at a 
certain position (Hohensinn, et al., 2008).  

For investigating position effects or the effects of 
any other experimental condition with LLTM each 
position/condition should be considered a “cognitive 
operation” and each item is parameterized separately in 
each position. Therefore, there will be virtual items, the 
number of which is equal to the number of actual items 
multiplied by the number of positions. The difficulty of 
each virtual item is assumed to be a linear combination 
of the content of the item and the effect of the position 
of the item within the test booklet (Hohensinn, et al. 
2008; Kubinger, 2008/2009). Rather than representing 
the difficulty of cognitive operations basic parameters 
in such designs show the change of item difficulty 
under each experimental condition. Hohensinn, et al. 
(2008) investigated position effects in a large scale 
mathematics competence test and discovered a small 
fatigue effect. However, Hahne (2008) investigated 
position effects in Viennese Matrices Test (Formann & 
Piswanger, 1979) which was presented in six different 
orders and found no position effect for this test. 

Despite being a very powerful model in 
understanding the cognitive processes underlying test 
performance and providing validity evidence, LLTM 
has not received enough attention in cognitive 
psychology and education. The following section 
provides detailed explanations on how to estimate the 
model using eRm package (Mair, Hatzinger, & Mair, 
2014) and interpret the output. 

Estimating LLTM with eRm package in R 

In this section LLTM is applied to an English as a 
foreign language reading comprehension test composed 
of 12 dichotomously scored items. The test is a section 
of a national high stakes test for admitting candidates 
to PhD programmes at Tehran University. A section of 
the data (n=1550) is selected for analysis. The Q-matrix 
for the 12 items, presented above in Figure 1, was 
drawn up by the authors for this analysis.  

LLTM can be estimated with eRm package (Mair, 
Hatzinger, & Mair, 2014) in R, free open source 
software. Below eRm functions for running LLTM and 
the interpretation of the output are explained. More 
details about the applications are presented afterwards. 

> library(eRm) # eRm package is loaded. 
> setwd("C:\\Users\\Baghaei\\Documents\\R-

Analyses")# specify the folder where the data 
file is. Note that back slashes should be doubled.  

> data<-read.table("Reading-
lltm.dat",header=TRUE) # the data file is 
specified. 

> data1<-data [,1:12] # columns of items in the 
data file are specified. 

> res <-RM(data1) # the standard Rasch model is 
estimated. 

> summary(res)  #gives the results of RM estimation: 
(see Table 2) 

 
Table 2: RM Results 

 

The table above shows the RM item easiness1 
parameter estimates for the 12 items along with their 
standard errors and their 95% confidence intervals.  

> fit<-LRtest(res, splitcr = "mean" , se = 
TRUE) # fit of RM according to Andersen’s (1973) 
likelihood ratio test with the mean of raw scores as 
the partitioning  criterion is assessed.  

                                                 
1 Note that eRm package estimates easiness parameters for 
LLTM instead of difficulty parameters. Easiness parameters 
have opposite signs to difficulty parameters. Since the signs 
are arbitrary, reverse the signs if you are more used to 
difficulty parameters.  
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The result is: 

Andersen LR-test: 
LR-value: 12.603 
Chi-square df: 11 
p-value:  0.32 

The p-value shows that the likelihood ratio test is 
non-significant and, therefore, the RM holds for the 
data. In the next step, LLTM is estimated. 

> q.ij<-matrix(c(1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 
+                0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 
+                0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 
+                1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0), 

+                ncol=4) # the Q-matrix presented in 
Table 1 is assigned to the object ‘q.ij’ using the 
function ‘matrix’. 

> Reading.LLTM <- LLTM(data1, q.ij) # LLTM 
function is applied to data1 and the Q-matrix we 
named ‘q.ij’. 

> summary (Reading.LLTM) # gives the results of 
LLTM estimation (see Table 3) 

Table 3 shows the easiness of the four cognitive 
operations or basic parameters (eta 1 to eta 4) as well as 
their standard errors and 95% confidence intervals. For 
easier interpretation of the basic parameters we can 
change them to difficulty parameters by reversing their 
signs. Operations with negative difficulty parameters 
(positive easiness parameters), such as CO1, make 
items easier but COs with positive difficulty parameters 
(negative easiness parameters) make them more 
difficult. The most difficult CO to master is CO3 with 
an estimated difficulty parameter (eta) of .85. 
Additionally, the 95% confidence interval reported for 
each eta parameter shows whether the parameter is 
significantly different from zero or not. Parameters 
whose confidence intervals do not include zero are 
significant. In this study all eta parameters are 
significantly different from zero (p < .05). Bear, 
however, in mind that using some likelihood ratio test 
for testing specifically a certain null hypothesis with 
respect to a certain CO (or even all of them) means a 
study-wise (type-I) risk. Using confidence intervals 
entails only to analyze with a comparison-wise risk so 
that the study-wise risk is in most cases quite larger 
than the nominal type-I-risk a, but actually unknown 
(cf. Rasch, Kubinger, & Yanagida, 2011).  

Table 3: LLTM results 

 

In an LLTM analysis of a math test with eight 
basic operations, Fischer (1973) found that some of the 
operations had negative difficulty parameters. Since this 
was unexpected and theoretically unjustifiable he 
concluded that the construct model defined in terms of 
the Q-matrix was inadequate. He discovered that the 
operations which were found more than once in many 
items (i.e. had weights greater than 1) had negative 
difficulty parameters. Fischer suggested that in the 
context of that math test testees who once mastered a 
specific rule (basic operation) the number of times this 
rule had to be applied within an item was of no 
relevance and hence does not contribute to difficulty. 
Therefore, he defined another Q-matrix with weights 
of only 1’s and 0’s and reanalyzed the data and got 
positive difficulty parameters for all the operations. 
Nevertheless, Kubinger (1979, 1981) showed that when 
COs are weighted by the number of times the 
respective rule is applied within an item LLTM fits and 
the difficulty parameters of COs (eta) are positive.   

The second part of Table 2 shows the LLTM item 
easiness parameters, based on the CO parameters. We 
stated that in LLTM we hypothesize that item 
difficulties are a linear combination of several basic 
parameters (eta). For example, for solving item 1 
cognitive operation 1 and 4 are involved. The difficulty 
estimates of these two operations are 0.176 and -0.360, 
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respectively.  The LLTM item easiness estimate for this 
item is (0.176-0.360) =-0.184. For solving item 2 
operations 2 and 4 with easiness parameters of -0.435 
and -0.360, respectively are required. The LLTM 
easiness estimate for item 2 is (– 0.435-0.360) =-0.795. 
Therefore, we see that LLTM item estimates are 
computed by adding the easiness estimates of the 
operations needed to solve them. When a basic 
operation has a weight greater than 1, the basic 
parameter η should first be multiplied by its 
corresponding weight before summing up. Since here 
all COs have a weight of 1 we did not need to do that.  

The next step is comparing LLTM item easiness 
parameters with the RM item easiness parameters. The 
closer the RM easiness parameters are to the LLTM 
easiness parameters the better our construct theory, 
which is formulated in terms of cognitive operations in 
the Q-matrix, has accounted for item parameters. In 
other words, with the cognitive operations we try to 
recover the RM item parameters. This is more or less 
similar to regressing RM item difficulty parameters on 
cognitive operations trying to predict item parameters 
with a number of predictors which are CO’s here 
(Green & Smith, 1987; Scheiblechner, 1972).  

However, Embretson and Daniel (2008) 
demonstrate that regression modeling of item 
difficulties lead to less clear interpretations of the 
relative impact of CO’s since they have large standard 
errors and the parameters estimated for them cannot be 
used for item banking because they are inconsistent 
and biased. We expect item parameters reproduced 
from LLTM to be the same as those estimated by the 
RM except for random errors (Fischer, 1973, 2005). To 
compare item parameters across the two models we 
can plot the item parameter estimations based on the 
respective models against each other. Before that we 
have to normalize the item easiness parameters based 
on the CO-parameters to a sum of zero:    

> betapar.lltm<-Reading.LLTM$betapar-
mean(Reading.LLTM$betapar) # we subtract 
the mean of the item easiness parameters based on 
the CO parameters from each item parameter in 
order to normalize them to sum to zero. 

Then we can do the plotting: 

> plot(res$betapar, betapar.lltm, xlim = 
c(-4, 4), ylim = c(-4, 4),xlab = "Item 
Easiness Parameter-RM",ylab = "Item 

Easiness Parameter-LLTM") # RM item 
parameters are plotted against LLTM item 
parameters.  

The abscissa is labeled “Item easiness Parameter-
RM" and the ordinate is labeled "Item Easiness 
Parameter-LLTM". The scales of the axes range from -
4 to 4. We additionally like to fit in the 45-degree line, 
which would represent all points in the Cartesian 
system when LLTM and RM completely coincide: 

> abline(0,1) # gives the 45-degree line. 

 

The plot shows that there is some concurrence, but 
some items’ difficulties are not explained exactly by our 
LLTM hypothesis. To compare item parameters across 
the two models we could also correlate them. 

> cor(res$betapar, Reading.LLTM$betapar)# 
computes the correlation coefficient  between RM 
and LLTM easiness parameters. 

Which returns: 

[1] 0.5840389 

The correlation coefficient between the two sets of 
item parameters is 0.584 which is rather small. This 
means that only (0.5842×100) 34% of the variance in 
RM item parameters can be accounted for by the four 
cognitive operations we defined. That is, readers firmly 
established in traditional correlational analysis might 
conclude that our construct theory has failed and needs 
to be amended. However, those grounded in IRT will 
prefer some likelihood ratio test in order to decide 
whether LLTM does explain the data as well as the 
Rasch model. Of course, any correlation coefficient 
depends on the range of the characters’ values, too; in 
our case this leads to a rather small coefficient, but the 
literature proves that for LLTM the correlation 
coefficients comes rather close to one, in most cases 
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(e.g. Kubinger, 1979, 1981; Hohensinn et al., 2008). 
Hence we have to look for such a likelihood ratio test.     

We stated above that the difference between 
likelihoods of the two models is approximately chi
square distributed with the difference between the 
numbers of parameters as degrees of freedom. The 
above outputs show that the log-likelihood of the RM 
and LLTM are -8290.033 and -8844.135, respectively. 
Therefore, -2log-likelihoods of the models are 
16580.066 and 17688.27, respectively. The RM has a 
smaller -2log-likelihood and, therefore, has a better fit 
as expected because RM uses more parameters. 

In eRm we can execute: 

> 2*(res$loglik - Reading.LLTM$loglik)

difference in -2log-likelihoods of the models are 
computed. 

Which returns: 

[1] 1108.203 

> res$npar-Reading.LLTM$npar # the 
the numbers of estimated parameters in the two 
models are computed to have the associated 
degrees of freedom. 

Which returns: 

[1] 7 

> qchisq (0.95, df = 7) # gives the 0.95 quantile 
(α=0.05) of the χ2 distribution with df

Which returns: 

[1] 14.06714 

The resulting value of the (asymptotically) chi
square distributed statistic is much greater than the 
critical value; therefore, the null-hypothesis (there is no 
difference in data’s likelihood for the models) must be 
rejected. The Rasch model fits the dat
better than the LLTM. This means that our reading 
theory defined in terms of the four cognitive operations 
is not satisfactory and has failed to account for (all) the 
item parameters. We could now look for construct 
irrelevant factors such as item position effect or test 
format to account for the RM item difficulties. 

Q-matrix (mis)specification

Correct specification of the Q-matrix is the most 
important factor in successful LLTM analysis. There 
are some general points about building the Q
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(e.g. Kubinger, 1979, 1981; Hohensinn et al., 2008). 
Hence we have to look for such a likelihood ratio test.      

We stated above that the difference between -2log-
of the two models is approximately chi-

square distributed with the difference between the 
numbers of parameters as degrees of freedom. The 

likelihood of the RM 
8844.135, respectively. 

likelihoods of the models are 
16580.066 and 17688.27, respectively. The RM has a 

likelihood and, therefore, has a better fit 
as expected because RM uses more parameters.  

Reading.LLTM$loglik) # the 
likelihoods of the models are 

# the difference in 
of estimated parameters in the two 

models are computed to have the associated 

# gives the 0.95 quantile 
df=7. 

The resulting value of the (asymptotically) chi-
square distributed statistic is much greater than the 

hypothesis (there is no 
difference in data’s likelihood for the models) must be 
rejected. The Rasch model fits the data significantly 
better than the LLTM. This means that our reading 
theory defined in terms of the four cognitive operations 
is not satisfactory and has failed to account for (all) the 
item parameters. We could now look for construct 

as item position effect or test 
format to account for the RM item difficulties.  

matrix (mis)specification 

matrix is the most 
important factor in successful LLTM analysis. There 
are some general points about building the Q-matrix 

and some more specific ones. The first point is that 
there must be some overlap in the items in terms of 
cognitive operations. Consider a test composed of 20 
items measuring four cognitive operations. The 20 
items are divided into four blocks, each 
items. Further suppose that each block of items 
measures a separate cognitive operation. Therefore, 
there is no connection among the items in terms of 
cognitive operations. Such a Q
facilitate parameter estimation. Q
designed in such a way that some items measure at least 
two operations so that the design gets connected. 
However, note that operations which are shared by all 
items are not estimable either and should be removed. 

 The other issue is a matter of c
matrix might be misspecified as assignment of 
operations to items is poor or even wrong. For 
instance, a teacher might specify that a particular CO is 
tapped by an item when in reality it is not. Or a teacher 
might argue that a certain CO is 
answering an item when it is. Since assignment of 
weights is a completely subjective process and is done 
by teachers or other content experts great care should 
be taken by content experts in assigning CO’s to items. 
Usually group consensus and discussions are required 
for correct allocation of weights to items and approval 
of the final Q-matrix. Wrong assignment of weights to 
CO’s can lead to biased estimates of basic parameters. 
Furthermore, for correct estimation of 
cognitive operation must be tapped by a sufficient 
number of items (Baker, 1993). 

Baker (1993) using a simulation study 
demonstrated that misspecification of the weights lead 
to high root mean squares for 
problem exacerbates when the Q
spars Q-matrix many of the cells are 0’s while in a 
dense matrix many of the cells contain 1’s. In other 
words, the relative number of CO’s tapped by the items 
has an impact on the correct estimation of the basic 
parameters. Baker (1993) argues that “In a dense Q 
matrix, a larger number of cognitive operations are 
involved in each item and a low level of 
misspecification tends to get “smoothed out” over the 
test items. Because of this, the consequences of a low 
level of misspecification were not quite as serious in the 
dense matrix condition as they were in the sparse 
matrix condition” (p.208).  He also indicates that 
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and some more specific ones. The first point is that 
there must be some overlap in the items in terms of 
cognitive operations. Consider a test composed of 20 
items measuring four cognitive operations. The 20 
items are divided into four blocks, each having five 
items. Further suppose that each block of items 
measures a separate cognitive operation. Therefore, 
there is no connection among the items in terms of 
cognitive operations. Such a Q-matrix does not 
facilitate parameter estimation. Q-matrixes should be 
designed in such a way that some items measure at least 
two operations so that the design gets connected. 
However, note that operations which are shared by all 
items are not estimable either and should be removed.  

The other issue is a matter of content. The Q-
matrix might be misspecified as assignment of 
operations to items is poor or even wrong. For 
instance, a teacher might specify that a particular CO is 
tapped by an item when in reality it is not. Or a teacher 
might argue that a certain CO is not involved in 
answering an item when it is. Since assignment of 
weights is a completely subjective process and is done 
by teachers or other content experts great care should 
be taken by content experts in assigning CO’s to items. 

and discussions are required 
for correct allocation of weights to items and approval 

matrix. Wrong assignment of weights to 
CO’s can lead to biased estimates of basic parameters. 
Furthermore, for correct estimation of η parameters a 

e operation must be tapped by a sufficient 
number of items (Baker, 1993).  

Baker (1993) using a simulation study 
demonstrated that misspecification of the weights lead 
to high root mean squares for  and η parameters. The 
problem exacerbates when the Q-matrix is sparse. In a 

matrix many of the cells are 0’s while in a 
dense matrix many of the cells contain 1’s. In other 
words, the relative number of CO’s tapped by the items 

ect estimation of the basic 
parameters. Baker (1993) argues that “In a dense Q 
matrix, a larger number of cognitive operations are 
involved in each item and a low level of 
misspecification tends to get “smoothed out” over the 

he consequences of a low 
level of misspecification were not quite as serious in the 
dense matrix condition as they were in the sparse 
matrix condition” (p.208).  He also indicates that 
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sample size has a small impact on the estimation. For 
correct estimation of basic parameter we need a 
minimum number of test takers correctly answering to 
the items which tap the pertinent CO’s. When Q-
matrix is sparse in order to get enough data for each 
CO a large sample size is required.   

Summary and Conclusion 

In this paper linear logistic test model (Fischer, 
1973) and its applications in cognitive psychology and 
education was illustrated. The contribution of the 
model to investigating construct validity is 
demonstrated. Furthermore, eRm functions to estimate 
the model and interpret the output are given.   

Baker (1993) states that LLTM bridges the gap 
between cognitive science and psychometrics. 
Disclosing the mental processes which produce the 
reliable variance is at the heart of construct validity 
(Baghaei, 2009). Identifying the components which 
make items difficult help explicate the construct validity 
of tests and disclose what they really measure.  LLTM 
provides substantive insights into the structure of item 
difficulty and examinees’ cognitive solution strategies 
which in turn lead to more efficient item development.  
This provides a systematic method of validation at the 
item level. 

Ascertaining the substantive aspect of construct 
validity (Messick, 1989) or Embretson’s (1998) 
construct representation validity necessitates identifying 
the processes that test-takers are engaged in when 
solving the items. Adequate fit of LLTM supports the 
substantive aspect of construct validity (Messick, 1989) 
and construct representation validity (Embretson & 
Daniel, 2008). Furthermore, items whose difficulty 
parameters cannot be reasonably reproduced by LLTM 
provide valuable information about the construct 
theory and call for reformulating the basic operations. 

With LLTM new items with known item difficulty 
parameters can be constructed without administering 
them to estimate their difficulties (Fischer & Pendl, 
1980). This is possible when the difficulty of the basic 
operations which contribute to item difficulty is known. 
Once we know the difficulty of the basic parameters, 
the difficulty of items which have unique combinations 
of the estimated cognitive components can easily be 
predicted. This is particularly helpful in item banking 
and adaptive testing. This application necessitates the 

stability of the basic parameter estimates across 
populations. Studies of Piswanger (1975), Nährer 
(1977), and Habon (1981) in the context of Viennese 
Matrixes Test (a nonverbal intelligence test, Formann 
& Piswagner, 1979) show that basic parameters remain, 
more or less, stable across populations (cited from 
Fischer & Formann, 1982). The model can also be used 
in monitoring learning processes by applying it at 
different time points in the course of a programme or 
year to monitor the effect of training and teaching 
programmes on the difficulty of the basic parameters 
(Fischer, 1973). 

Based on these results, we can generally conclude 
that a specific application of LLTM is cross-cultural 
examination of basic parameters; by this means one 
could explicate differential item functioning (DIF) at a 
more substantive level (cf. Tanzer, Gittler, & Ellis, 
1995). Again, the null-hypothesis that the basic 
parameters are equal in the two populations can be 
tested against the alternative hypothesis that they differ 
by means of a Likelihood Ratio-test.  

But of course there are other topics that LLTM 
can address. Kubinger (2008, 2009) exemplified, how 
several item administration effects could be tested: a) 
Rasch model item calibration using data sampled 
consecutively in time but partly from the same 
examinees; b) measuring position effects of item 
presentation, in particular, learning and fatigue effects – 
specific for each position, linear or non-linear; c) 
measuring content-specific learning effects; d) 
measuring warming-up effects; e) measuring effects of 
speeded item presentation; f) measuring effects of 
different item response formats. 

Applying LLTM is not without limitations and 
problems, though. Green and Smith (1987) enumerate 
LLTM limitations: First, it is not possible to include all 
the cognitive operations which are involved in problem 
solving in the model and one runs the risk of focusing 
on observable aspects of the items instead of the actual 
processes and strategies that examinees use to arrive at 
the solutions. Second, the model assumes that the 
difficulty of the items is the linear combination of CO 
difficulties. This assumption may not be warranted in 
light of our knowledge of CO’s for solving items. And 
third, the model assumes that the same CO’s are used 
by all examinees, while different examinees may use 
different ways to arrive at the solutions.  “Given these 
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constraints we suggest that it is still useful to develop a 
component equation that can be used to predict the 
difficulty of items. This is particularly true in those 
cases in which the items can be thought of as 
consisting of a small number of components” (Green 
& Smith, 1987, p. 372).  

A common observation in the application of 
LLTM is that the model most often does not fit the 
data (according to the likelihood ratio test). This 
frequently happens when it is applied to existing tests 
rather than those developed on the basis of a cognitive 
model. Even Fischer and Formann (1982) argue that 
such statistical significance tests should not be 
overrated as large samples and few parameters are used 
to test the hypotheses, i.e., the tests are rather powerful. 
The more relevant factor when applying LLTM is 
whether the basic parameters are consistent enough 
across populations and items and useful for test 
construction purposes and development of cognitive 
theories. “Even in cases of an unsatisfactory 
conformity of the model to the data, the mere 
formulation of those hypotheses which are needed for 
working with the LLTM leads to a clearer 
understanding of the substantive problems” (Fischer & 
Formann, 1982, p. 412). And “Nevertheless, item 
difficulty could often be explained approximately” 
(Fischer, 2005, p.511).  
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