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What is Rotating in Exploratory Factor Analysis? 

 
Jason W. Osborne, University of Louisville 

 

Exploratory factor analysis (EFA) is one of the most commonly-reported quantitative methodology 
in the social sciences, yet much of the detail regarding what happens during an EFA remains 
unclear.  The goal of this brief technical note is to explore what “rotation” is, what exactly is 
rotating, and why we use rotation when performing EFAs.  Some commentary about the relative 
utility and desirability of different rotation methods concludes the narrative. 
 

Those of us who regularly use exploratory factor 
analysis (EFA), one of the most commonly-used 
statistical techniques reported in the social sciences 
literature (e.g., Fabrigar, Wegener, MacCallum, & 
Strahan, 1999; Osborne, Costello, & Kellow, 2008), 
know that rotation happens, that there are different 
types of rotation, and hopefully that the goal of all 
rotation methods is to clarify results.  But what exactly 
is rotating during an EFA?  The goal of this article is to 
answer that simple question.   

  Let us look “under the hood” at the mysterious 
inner workings of EFA.1 

Basics of exploratory factor analysis 

Exploratory factor analysis is a statistical tool used 
for many purposes.  It was originally developed in the 
early 1900s to attempt to establish intelligence as a 
unitary or multidimensional construct (Spearman, 
1904), and is a general-purpose dimension reduction 
tool with many applications.  In the modern social 
sciences, it is perhaps most frequently used to explore 
the psychometric properties of an instrument or scale.  
Exploratory factor analysis examines all the pairwise 
relationships between individual variables (e.g., items 
on a scale) and seeks to extract latent factors from the 
measured variables.  During the 110 years since 

                                                 
1
 In this article the discussion is limited to exploratory factor 

analysis as there is no rotation analogue in confirmatory factor 

analysis. 

Spearman’s seminal work in this area, few statistical 
techniques have been so widely used and, often, subject 
to misperceptions (see, for example, Costello & 
Osborne, 2005; Osborne, Costello, & Kellow, 2008).   

Principal components analysis (PCA) is a 
computationally simplified version of the general class 
of dimension reduction analyses.  PCA computes the 
analysis without regard to the underlying latent 
structure of the variables, using all the variance in the 
manifest variables.  PCA was developed decades ago 
when analyses were mostly computed by hand and thus 
shortcuts that did not substantially diminish the 
outcome were valuable.  Now with popular statistical 
software packages and the readily available processing 
power in even the cheapest laptop computers, PCA is 
probably not necessary.  It is also not considered a true 
method of factor analysis and there is disagreement 
among statisticians about when it should be used, if at 
all. There are some situations where PCA might be an 
appropriate option, but more often than not, 
researchers use PCA when EFA would be appropriate 
and preferable (for example, see Ford, MacCallum, & 
Tait, 1986; Gorusch, 1983; Widaman, 1993).  It is still 
the default dimension reduction procedure in many 
statistical analysis software packages despite it usually 
not being the desirable choice.  We will not discuss 
PCA further, as the goal of the paper is to focus on 
EFA and rotation. 
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Exploratory factor analysis.  The second method of 
dimension reduction is common factor analysis or 
exploratory factor analysis.  Common factor analysis 
recognizes that model variance contains both shared 
and unique variance across variables. EFA examines 
only the shared variance from the model each time a 
factor is created, while allowing the unique variance 
and error variance to remain in the model.  

The general process for conducting exploratory 
factor analysis is briefly outlined in Table 1. Many of 
these steps are discussed in depth elsewhere (Osborne 
et al., 2008; Osborne & Fitzpatrick, 2012; Thompson, 
2004).  Because this is intended to be a brief technical 
note, let us focus on step #4, rotation.   

 
Table 1. Steps To Follow When Conducting 
EFA 

1. Data cleaning 
2. Deciding on extraction method to use 
3. Deciding how many factors to retain 
4. Deciding on a method of rotation (if 

desired) 
5. Interpretation of results (return to #3 if 

solution is not ideal) 
6. Replication 

 
A pedagogical example 

To illustrate the points in this paper, I will use data 
from a study on engineering majors conducted several 
years ago.  For this example, we will examine two scales 
that should be minimally correlated:  Engineering 
problem solving and interest in engineering.  The items 
from the relevant subscales are listed below: 

Engineering problem solving items:2 
 

How well did you feel prepared for: 
1. Defining what the problem really is 
2. Searching for and collecting information 

needed to solve the problem 
3. Thinking up potential solutions to the 

problem 
4. Detailing how to implement the solution to 

the problem 

                                                 
2
 Assessed on a seven point Likert type scale anchored by “did 

not prepare me at all” to “prepared me a lot” 

5. Assessing and passing judgment on a possible 
or planned solution to the problem 

6. Comparing and contrasting two solutions to 
the problem on a particular dimension such 
as cost 

7. Selecting one idea or solution to the problem 
from among those considered 

8. Communicating elements of the solution in 
sketches, diagrams, lists, and written or oral 
reports 

 
Interest in engineering:3 

1. I find many topics in engineering to be 
interesting 

2. Solving engineering problems is interesting to 
me 

3. Engineering fascinates me 
4. I am interested in solving engineering 

problems 
5. Learning new topics in engineering is 

interesting to me 
6. I find engineering intellectually stimulating 

 
In this example I will use principal axis factoring 

extraction, specifying two factors to be extracted, and 
will request a factor loading plot.4  In this example, the 
analysis produces two strong factors (extracted 
eigenvalues of 7.42 and 3.28, which accounts for 
76.42% of the variance).  The extracted (un-rotated) 
factor matrix is presented in Table 2, below.  I also 
present the scree plot from this analysis showing that 
the two-factor solution is strongly supported. 

As you can see in Table 2, although we expect two 
very clear factors, the factor loadings are not 
immediately identifiable as two separate factors prior to 
rotation.  To be sure, looking only at Factor 1 loadings, 
all fourteen items seem to be similar.  It is only in 
combination with the loadings on Factor 2 where the 
two factors separate.  If one plots each item in two-
dimensional space (Factor 1 on the X axis, and Factor 2 
on the Y axis), we see clearly the separation, as 
presented in Figure 1, below: 

                                                 
3
 Assessed on a seven point Likert type scale anchored by 

“strongly disagree” and “strongly agree” 
4
 In many analyses of these data, no other eigenvalue rose 

above 0.50 in value and thus for the purposes of this 

increasingly inaccurately labeled brief technical note is 

discounted as a legitimate possibility. 
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Figure 1:  Unrotated solution from initial extraction 

 
What exactly is rotation, and what is being 

rotated?  

Unrotated results from a factor analysis – as 
presented above- is not easy to interpret, although the 
plot helps.  Simply put, rotation was developed not 
long after factor analysis to help researchers clarify and 
simplify the results of a factor analysis.  Indeed, early 
methods were subjective and graphical in nature 
(Thurstone, 1938) because the calculations were labor 
intensive.  Later scholars attempted to make rotation 

less subjective or exploratory (e.g., Horst, 1941), 
leading to initial algorithms such as Quartimax (Carroll, 
1953) and Varimax (Kaiser, 1958).5   

Quite simply, we use the term “rotation” because, 
historically and conceptually, the axes are being rotated 
so that the clusters of items fall as closely as possible to 
them.6  Looking at Figure 1, for example, if you 
imagine rotating the axes so that they intersect the 
centroid of each cluster variables, you get the essence 
of rotation.   

As you can see in Figure 2 (and Table 3), following 
rotation of the axes (or items), the items now fall 
closely about each axis line.  This has the effect of 
making the factor loading pattern much clearer as one 
of the two pairs of coordinates for each item tends to 
be close to 0.00, as you can see in Table 3.  In this 
example analysis, the factors were correlated r = 0.37. 

 

                                                 
5
 Note that rotation does not alter the basic aspects of the 

analysis, such as the amount of variance extracted from the 

items.  Indeed, although eigenvalues might change as factor 

loadings are adjusted by rotation, the overall percentage of 

variance accounted for will remain constant.   
6
 Alternatively, you could imagine rotating each cluster of items 

toward the axis.  It really works out to be functionally the same. 

Table 2.  Unrotated Factor Matrix and scree plot 

 Factor  

1 2 

EngProbSolv1 .759 -.389 

EngProbSolv2 .703 -.418 

EngProbSolv3 .784 -.392 

EngProbSolv4 .798 -.416 

EngProbSolv5 .811 -.375 

EngProbSolv6 .795 -.369 

EngProbSolv7 .804 -.360 

EngProbSolv8 .763 -.299 

INTERESTeng1 .630 .521 

INTERESTeng2 .660 .630 

INTERESTeng3 .669 .627 

INTERESTeng4 .668 .609 

INTERESTeng5 .657 .607 

INTERESTeng6 .647 .578 

Extraction Method: Principal Axis Factoring. 
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Figure 2:  Rotated factor solution following Principal 
Axis Factoring extraction and oblique (oblimin) 
rotation 

 
Table 3. Pattern Matrix7 

 

 Factor 

1 2 

EngProbSolv1 .859 -.016 

EngProbSolv2 .841 -.071 

EngProbSolv3 .879 -.008 

EngProbSolv4 .909 -.025 

EngProbSolv5 .886 .021 

EngProbSolv6 .869 .020 

EngProbSolv7 .868 .033 

EngProbSolv8 .790 .072 

INTERESTeng1 .042 .801 

INTERESTeng2 -.023 .921 

INTERESTeng3 -.014 .922 

INTERESTeng4 -.001 .904 

INTERESTeng5 -.007 .897 

INTERESTeng6 .009 .864 

Extraction Method: Principal Axis Factoring.  

Rotation Method: Oblimin with Kaiser Normalization. 

 
Most statistical packages will allow small loadings 

to be suppressed following rotation, so that the results 
become even more obvious and immediately apparent.  

                                                 
7
 When an oblique rotation is performed, where factors are 

allowed to correlate, the factor loadings are contained in a 

table called the “pattern matrix.”  More on this below. 

In Table 4, below, loadings less than 0.10 are 
suppressed, allowing easy visual confirmation that the 
EFA with oblique rotation produced our expected 
result.   

Table 4. Pattern Matrix with loadings < 0.10 
suppressed 

 Factor 

1 2 

EngProbSolv1 .859  

EngProbSolv2 .841  

EngProbSolv3 .879  

EngProbSolv4 .909  

EngProbSolv5 .886  

EngProbSolv6 .869  

EngProbSolv7 .868  

EngProbSolv8 .790  

INTERESTeng1  .801 

INTERESTeng2  .921 

INTERESTeng3  .922 

INTERESTeng4  .904 

INTERESTeng5  .897 

INTERESTeng6  .864 

Extraction Method: Principal Axis Factoring.  

 Rotation Method: Oblimin with Kaiser Normalization. 

 
Different types of rotations 

There are many choices of rotation method, 
depending on what software you are using.  Each uses 
slightly different algorithms or methods to achieve the 
same broad goal- simplification of the factor structure.  
Rotation methods fall into two broad categories:  
orthogonal and oblique (referring to the angle 
maintained between the X and Y axes).  Orthogonal 
rotations produce factors that are uncorrelated (i.e., 
maintain a 90o angle between axes); oblique methods 
allow the factors to correlate (i.e., allow the X and Y 
axes to assume a different angle than 90o).  
Traditionally, researchers have been guided to 
orthogonal rotation because (the argument went) 
uncorrelated factors are more easily interpretable.  
There is also an argument in favor of orthogonal 
rotation as the mathematics are simpler, and that made 
a significant difference during much of the 20th century 
when EFA was performed by hand calculations or 
much more limited computing power.  Orthogonal 
rotations are generally the default setting in most 
statistical computing packages. 
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There does not seem to be a compelling reason for 
modern researchers to default to orthogonal rotations.  
In the social sciences (and many other sciences, such as 
biomedical sciences) we generally expect some 
correlation among factors, since behavior is rarely 
partitioned into neatly packaged units that function 
independently of one another. Therefore using 
orthogonal rotation potentially results in a less useful 
solution where factors are correlated.  Remembering 
that EFA is an exploratory technique (not a 
confirmatory technique), we should be looking for the 
clearest solution possible.  Further, there does not 
appear to be a drawback to using oblique rotation even 
if the factors are truly uncorrelated.   Oblique rotations 
do not force factors to be correlated, and so in that 
instance, the factors would be allowed to assume a 
correlation of zero, and the solution would be the same 
as that of an orthogonal rotation. 

Oblique rotation output is only slightly more 
complex than orthogonal rotation output, but should 
yield either identical or superior results to that of 
orthogonal rotations.  In SPSS output the rotated factor 
matrix is interpreted after orthogonal rotation; the 
rotated factor matrix represents both the loadings and 
the correlations between the variables and factors.  In 
contrast, when using oblique rotation the pattern matrix 
is examined for factor/item loadings and the factor 
correlation matrix reveals any correlation between the 
factors. The pattern matrix holds the loadings (which 
are of most interest), and each row of the pattern 
matrix can be thought of as a regression equation 
where the standardized observed variable is expressed 
as a function of the factors, with loadings as the 
regression coefficients. The structure matrix holds the 
correlations between the variables and the factors, 
which are generally of less interest in exploratory 
applications (e.g., Gorusch, 1983). 

There are a variety of choices in each category. 
Varimax rotation is by far the most orthogonal 
rotation, likely because it is the default in many 
software packages, but also because it was developed as 
an incremental improvement upon prior algorithms 
quartimax, and equamax.  There is no widely preferred 
method of oblique rotation; all tend to produce similar 
results (Fabrigar et al., 1999), and it seems generally fine 
to use the default settings in software packages. 
Common oblique rotations you will see include: direct 
oblimin, quartimin, and promax.   

The mathematical algorithms for each rotation are 
different, and beyond the scope of this brief technical 
note.  Note that for all rotations, the goal is the same: 
simplicity and clarity of factor loadings.  For details on 
how they achieve these goals, you should refer to the 
manual for your statistical software (e.g., IBM SPSS 
base statistics manual p. 97,8 or Gorusch, 1983;  for a 
good overview of the technical details of different 
versions of varimax rotation, see Forina, Armanino, 
Lanteri, & Leardi, 1989). 

Do orthogonal and oblique rotations produce 
noticeable differences? 

Orthogonal and oblique rotations will produce 
virtually identical solutions in the unlikely case where 
factors are perfectly uncorrelated.  As the correlation 
between latent variables diverges from r = 0.00, then 
the oblique solution will produce increasingly clearer 
results.  Looking at the same data after orthogonal 
(Varimax) rotation (Figure 3 and Table 5, below), one 
 

 
Figure 3:  Same data using orthogonal rotation 
(Varimax) 

 
can see that this outcome still provides a similar 
conclusion, but with a slightly less clear solution.  This 
is because these factors are modestly correlated, but the 
mandate to maintain a 90o angle between axes means 

                                                 
8
 Retrieved from 

ftp://public.dhe.ibm.com/software/analytics/spss/documentati

on/statistics/22.0/en/client/Manuals/IBM_SPSS_Statistics_Bas

e.pdf  
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that the centroids of the clusters cannot move closer to 
the axis lines.  In this case, the difference is not great, 
but noticeable in Table 5, where again loadings less 
than 0.10 were suppressed.  You can see that only one 
loading in Table 5 is less than the suppression cutoff of 
0.10, leaving a less clear result than the oblique rotation 
from Table 4.  This is a small but clear example of the 
higher efficacy of oblique rotations to create clear 
patterns of results in EFA where the factors are indeed 
correlated. 

Table 5. Rotated Factor Matrix with loadings < 
0.10 suppressed 

 Factor 

1 2 

EngProbSolv1 .830 .153 

EngProbSolv2 .809  

EngProbSolv3 .861 .157 

EngProbSolv4 .888 .146 

EngProbSolv5 .879 .185 

EngProbSolv6 .861 .181 

EngProbSolv7 .862 .189 

EngProbSolv8 .791 .218 

INTERESTeng1 .194 .793 

INTERESTeng2 .149 .901 

INTERESTeng3 .158 .906 

INTERESTeng4 .164 .897 

INTERESTeng5 .165 .868 

INTERESTeng6 .172 .849 

Extraction Method: Maximum Likelihood.  

 Rotation Method: Varimax with Kaiser Normalization. 

 

Summary 

The enigmatic and widely-used technique of 
exploratory factor analysis is a complex class of 
procedures with many options.  Many of us, even those 
with decades of experience using EFA, remain unclear 
on some of the nuances and details of what exactly is 
happening “under the hood” when we perform this 
analysis.  Rotation is literally a rotation of X- and Y- 
axes in order to align clusters of variables plotted in 
two-dimensional space with the axis lines, which has 
the effect of clarifying the loading patterns in tables 
(making larger numbers larger, and smaller numbers 
closer to zero).9  Recall that the original goal of EFA 

                                                 
9
 Or, if you prefer, rotation of the clusters of items to more 

closely align with the axis lines.   

was to reduce groups of variables to conceptually 
important latent variables.  Given this, the overriding 
goal of EFA must be to make sense of data.  A clear, 
easily- interpreted structure to the EFA is the goal, 
therefore.   

Many authors have written on guidelines for 
extraction and rotation of factors, focusing on 
eigenvalues, scree plots, parallel analysis, replication, 
and so on.  It is my belief that the over-arching value 
has to be theoretical framework and an easily-
interpretable factor structure.  Absent this, which we 
use to make sense of data, none of the technical details 
seem important. 

In this brief technical note I used two-dimensional 
plots as an example.  If an instrument is uni-
dimensional no rotation is possible.  If an instrument is 
three- (or more) dimensional, then items are plotted in 
multidimensional space, and three (or more) axes are 
rotated within this multidimensional space with the 
same goals.   

I also suggest that in the modern era of high-
power computing, orthogonal rotations are probably 
not a best practice, as oblique rotations can accurately 
model uncorrelated and correlated factors, whereas 
orthogonal rotations cannot handle correlated factors 
as effectively.  Thus, there is little cost to using oblique 
rotations regardless of the underlying relatedness of the 
factors.   
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