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Computerized classification testing (CCT) is an approach to designing tests with intelligent algorithms, similar to 
adaptive testing, but specifically designed for the purpose of classifying examinees into categories such as “pass” 
and “fail.”  Like adaptive testing for point estimation of ability, the key component is the termination criterion, 
namely the algorithm that decides whether to classify the examinee and end the test or to continue and 
administer another item.  This paper applies a newly suggested termination criterion, the generalized likelihood 
ratio (GLR), to CCT.  It also explores the role of the indifference region in the specification of likelihood-ratio 
based termination criteria, comparing the GLR to the sequential probability ratio test.  Results from simulation 
studies suggest that the GLR is always at least as efficient as existing methods.

 
In educational assessment, a common purpose of a test 

is to classify examinees into mutually exclusive groups rather 
than obtain accurate estimates of individual scores.  This is 
often termed mastery testing when the test is designed to 
determine if a student has mastered material by classifying 
them as “pass” or “fail.”  There are several methods of 
calculating this decision, the most obvious of which is 
utilizing the observed number-correct score on a traditional 
fixed-form test.  However, more sophisticated methods have 
been suggested in which the computerized test delivery 
mechanism is designed to be intelligent and adapt both the 
number and nature of the items in the test to each examinee as 
they proceed sequentially through the test.  The 
variable-length statistical mechanism that decides when to 
stop the test and classify the examinee is known as the 
termination criterion or stopping rule (Kingsbury & Weiss, 
1983). 

These computerized classification tests (CCTs; Parshall, 
Spray, Kalohn, & Davey, 2002) can be based on item response 
theory (IRT; Hambleton & Swaminathan, 1985) or classical 
test theory (Rudner, 2002).  While the classical approach can 
be quite efficient (Frick, 1992), this paper will focus on the 
utilization of IRT.  When based on IRT, the classification 
decision is made with two paradigms: likelihood ratios (e.g., 
Reckase, 1983) and confidence intervals (e.g., Kingsbury & 
Weiss, 1983).  Both utilize the likelihood function of examinee 
ability, and have been termed statistical classification and statistical 
estimation by Eggen (1999).   

The likelihood ratio was originally formulated as a point 
hypothesis sequential probability ratio test (SPRT) by Reckase 
(1983).  The SPRT operates by testing that a given examinee’s 
ability value θ is equal to a fixed value below (θ1) or above (θ2) 
the classification cutscore.  The space between these two 
points is referred to as the indifference region, as the test 
developer is indifferent to the classification assigned.  The 
SPRT has been shown to be more efficient than confidence 
intervals around ability estimates as a method for CCT 
delivery (Spray & Reckase, 1996; Eggen & Straetmans, 2000).   

However, Weitzman (1982) suggested that the 
classification problem could also be formulated as a composite 
hypothesis, namely that a given examinee’s θ is below θ1 or above 
θ2.  This conceptually matches the goal of CCT more closely, 
which is to test whether θ is above or below the cutscore.  
Weitzman proposed a method of specifying parameters for 
the likelihood ratio with a composite hypothesis, but used 
classical test theory as an approximation of IRT.  Some of the 
issues encountered by Weitzman can be addressed by the 
application of item response theory directly to the termination 
criterion as a composite hypothesis.   

Bartroff, Finkelman, and Lai (2008) and Thompson 
(2009a) suggest using a generalized likelihood ratio (GLR: 
Huang, 2004) based on the IRT likelihood function.  The 
purpose of this paper is to explore the application of the GLR 
to CCT with two monte carlo simulation studies.  The first 
study provides a comparison of the GLR to other methods of 
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CCT.  The second study explores the difference between the 
GLR and the SPRT, and the role of the indifference region. 

Termination criteria 

The likelihood ratio compares the ratio of the likelihoods 
of two competing hypotheses.  In CCT, the likelihoods are 
calculated using the probability P of an examinee’s response 
to item i if each of the hypotheses were true, that is, if the 
examinee were truly a “pass” (P2) or “fail” (P1) classification.  
With IRT, the probability of an examinee’s response X to 
item i is calculated with an item response function.  An IRT 
model commonly applied to multiple-choice data for 
achievement or ability tests when examinee guessing is likely is 
the three-parameter logistic model (3PL).  With the 3PL, the 
probability of an examinee with a given θ correctly responding 
to an item is (Hambleton & Swaminathan, 1985, Eq. 3.3): 
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where  

ai is the item discrimination parameter, 

bi is the item difficulty or location parameter, 

ci is the lower asymptote, or pseudoguessing parameter, 
and 

D is a scaling constant equal to 1.702 or 1.0. 

The likelihood ratio is expressed as the ratio of the 
likelihood of a response at two points on θ, θ1 and θ2, 
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Note that, since the probabilities are multiplied, the 
SPRT is equivalent to the ratio of the value of the IRT 
likelihood function at two points.  A value greater than 1.0 
indicates a higher likelihood of the examinee being a “pass” 
classification.  The ratio is then compared to two decision 
points A and B, (Wald, 1947):  
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 1
B β

α
≥

−
 (3)

Upper decision point: 
1A β
α
−

≤  (4)

If the ratio is above the upper decision point after n 
items, the examinee is classified as above the cutscore.  If the 
ratio is below the lower decision point, the examinee is 
classified as below the cutscore.  If the ratio is between the 
decision points, another item is administered.  Note that the 
decision points do not need to be specified directly.  Instead, 

the nominal error levels α and β are specified to reflect the 
need of the testing program, and used to calculate A and B.  
As a practical example, setting both to 0.025 would indicate 
95% accuracy, and translate to A = 39.0 and B = 0.026. 

Formulations of the likelihood ratio for CCT differ in 
the calculation of the probabilities by composing the structure 
of the hypotheses differently.  The calculation of the ratio and 
the decision points remain the same.  The point hypothesis 
method calculates P1 and P2 at fixed points selected by the test 
developer, while the composite hypothesis method calculates 
at variable points, wherever the likelihood function is the 
highest. 

Because IRT is utilized, this first requires the cutscore to 
be set on the θ metric.  This can be done in one of two ways.   
A point can be specified directly on θ, such as a cutscore of 0.0 
to identify the top half of the population.  The cutscore can 
also be translated from a cutscore previously set on the 
proportion-correct metric by applying a test characteristic 
curve and solving for the value of θ linked to the 
proportion-correct cutscore (Parshall, Spray, Kalohn, & 
Davey, 2002). 

Point hypothesis formulation 

The point hypothesis method suggested by Reckase 
(1983) specifies two fixed points θ1 and θ2 on either side of the 
cutscore.  Conceptually, this is done by defining the highest θ 
level that the test designer is willing to fail (θ2) and the lowest θ 
level that the test designer is willing to pass (θ1), hence the 
term indifference region for this range.  In practice, however, 
these points are often determined by specifying an arbitrary 
small constant δ, then adding and subtracting it from the 
cutscore (e.g., Eggen, 1999; Eggen & Straetmans, 2000). 

Therefore, the hypothesis test is structured as  

H0: θ = θ1 (5)

H1: θ = θ2 (6)

A graphic representation of this method is shown in 
Figure 1.  In this example, the cutscore is -0.4 and δ= 0.1, such 
that θ1 = -0.3 and θ2= -0.5.   The likelihood function is 
evaluated at these two points, producing a ratio of 
approximately 0.055/0.044 = 1.25.  The likelihood that the 
examinee is a “pass” is greater than the likelihood they are a 
“fail,” but the classification cannot be made with much 
confidence at this point in the test.  

This is partially due to the relatively small value of δ that 
is illustrated, which produces a relatively small P2 – P1 
difference.  It is evident from Figure 1 that increasing the 
space between θ1 and θ2 would increase this difference and 
therefore the likelihood ratio.  The generalized likelihood ratio 
(GLR) is designed to take advantage of this. 
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Figure 1: Example likelihood function and indifference region

 

The generalized likelihood ratio 

The GLR is specified and calculated with the same 
methods as the fixed-point SPRT, with the exception that θ1 
and θ2 are allowed to vary.  Rather than evaluate the likelihood 
function at each endpoint of the indifference region, instead it 
is evaluated at the highest points beyond the endpoints.  If the 
maximum of the likelihood function is outside the 
indifference region, that maximum will be utilized in the 
likelihood ratio for that side.  For example, in Figure 1 the 
maximum is to the right of the indifference region, at 0.0, and 
will be utilized in the likelihood ratio.  The side without the 
maximum is evaluated the same as with the SPRT, as the 
highest likelihood to the left of θ1 is at θ1. 

In the example of Figure 1, this modification to the 
likelihood ratio now produces a value of 0.062/0.044 = 1.41.  
Because this ratio is further from a ratio of 1.0 than the fixed 
SPRT value of 1.25, the classification can be made with more 
confidence given the same number of items, or with equal 
confidence given a fewer number of items.  The primary 
research question of this paper is whether this increase in 
efficiency comes with an increase in classification error (false 
positives and false negatives) as compared to other methods 
of pass/fail decisions, and if the efficiency is moderated by the 
width of the indifference region. 

Ability confidence intervals 

Ability confidence intervals (ACI) is an alternative 
method of using the likelihood function to make a 
classification decision.  However, rather than considering the 
entire likelihood function, it makes a confidence interval 
around the maximum likelihood (or Bayesian) estimate of 
ability using the conditional standard error of measurement 
(SEM).  This can be expressed as (Thompson, 2009b; 
Hambleton & Swaminathan, 1985, Eq. 5.28): 

ˆ ˆ( ) ( )ε εθ θ θ− ≤ ≤ +j j jz SEM z SEM  (7)

where zε is the normal deviate corresponding to a 1 - ε 
confidence interval, given α + β = ε for nominal error rates α 
and β.  For example, a 95% confidence interval entails zε = 
1.96, with α =0.025, β = 0.025, and ε = 0.05.  While the SPRT 
and GLR differentiate examinees only at the cutscore, ACI 
evaluates across the spectrum of θ, wherever the current 
estimate lies.  Therefore, previous research (Spray & Reckase, 
1996; Eggen & Straetmans, 2000; Thompson, 2009b) has 
shown that ACI operates more efficiently when items are 
selected adaptively at the current estimate, while the SPRT 
and GLR operate more efficiently when items are selected to 
maximize information at the cutscore. 

For this study, the confidence intervals were calculated 
with two methods: theoretical and observed.  For the 
theoretical approach, model-predicted SEM is calculated 
using the test information function evaluated at the relevant θ 
regardless of response pattern (Embretson & Reise, 2000, Eq. 
7A.6), 

1 / ( )SEM TI θ=  (8)

and θ is estimated using brute force methods by directly 
evaluating the likelihood function from -3.0 to +3.0 in 
intervals of 0.01 to find the empirical maximum.  In practice, 
it is more common to estimate θ with efficient 
Newton-Raphson methods (Embretson & Reise, 2000, p. 
164), and calculate an observed SEM based on the second 
derivative of the likelihood function (Baker & Kim, 2004, Eq. 
3.16): 
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Study 1 

The study utilized a monte carlo simulation 
methodology, with 10,000 examinees simulated under each 
testing condition, to evaluate differences in efficiency and 
accuracy.  The population of examinees was randomly 
selected from a N(0,1) distribution.  With monte carlo 
simulation, item responses are generated by comparing a 
randomly generated number 0.0 < r < 1.0 to the probability of 
a correct response for each examinee to each item.  The 
probability is calculated using the item response function and 
the true examinee θ, which is known because it was generated.  
For example, if there is a 0.70 probability of a correct 
response, an r = 0.65 would produce a response of “correct’ 
and an r = 0.75 would produce a response of “incorrect.”  
Responses are generated as each item is administered to the 
examinee in the simulation. 

The independent variable was the design of the test.  The 
three primary levels investigated were the ACI, SPRT, and 
GLR variable-length termination criteria.  Fixed-form tests of 
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200 items, 100 items, and 50 items, with both number-correct 
and IRT maximum likelihood scoring, were included as a 
baseline.  The fixed forms were constructed by selecting items 
from the bank of 500 with the most information at the 
cutscore, producing tests with a highest possible level of 
differentiating capability.  The dependent variables are 
average test length (ATL), and percentage of correct 
classifications (PCC).  If a test is performing well, it will 
produce high PCC but low ATL, namely accurate decisions 
with only a few items. 

Because the value of δ affects the results of the SPRT 
and GLR, it must be manipulated to provide an opportunity 
for adequate comparison.  Namely, a wide range of values was 
not arbitrarily selected, but methods were rather matched on 
observed PCC.  The ACI simulations were completed first 
with a 95% confidence interval, and then the SPRT and GLR 
simulations completed with δ varied until a similar PCC (95.7) 
was reached, which was 0.3.  Simulations were also completed 
with δ= 0.2 for an additional comparison. 

The cutscore for the simulations was θ = -0.5, which 
corresponds to a pass rate of approximately 69%, 
representing a mastery test where the majority of students 
typically pass.  For the fixed-form tests with number-correct 
scoring, this was converted to a raw cutscore using the test 
response function (Parshall, Spray, Kalohn, & Davey, 2002): 
122.5 for the 200-item test, 63.85 for the 100-item test, and 
32.49 for the 50-item test.  The variable-length tests were 
constrained to have a minimum of 20 items and a maximum 
of 200 items.  A maximum is necessary to prevent the entire 
bank from being administered to examinees with true ability 
at the cutscore, because a decision would never be able to be 
made with confidence.  A minimum is not psychometrically 
necessary, but has a public relations function in that it protects 
against examinees failing after only a few items, possibly 
reducing complaints. 

The bank for the test consisted of 500 items with IRT 
parameters to represent plausible values for a test designed to 
differentiate at a cutscore of -0.50.  The difficulty of the bank 
was centered on the cutscore, and the discrimination values 
were generated with a target mean of 0.70, which is typical for 
achievement tests.  The guessing parameter c was generated to 
have a mean of 0.25, representing 4-option multiple choice 
items.  The summary statistics for the generated parameters 
are presented in Table 1. 

The results of the simulations are presented in Table 2.  ATL 
refers to the average number of items seen by each examinee; 
for the fixed-form tests, this is of course equal to the test 
length.  PCC is the percentage of examinees correctly 
classified, comparing the results of the test to the generated 
person parameter θ.  Type I errors are examinees that passed 
but should have failed, having a true generated θ below the 
cutscore, and Type II failed but should have passed. 

Table 1: Summary statistics of item bank

Statistic a b c 

Mean 0.716 -0.480 0.251 

SD 0.204    0.552 0.041 

 

 

Table 2: Average test length (ATL) and percent 
correctly classified (PCC) for each condition 

Test design Scoring ATL PCC Type 
I 

Type 
II 

200 item fixed Number- 
correct 200.00 96.10 1.81 2.09 

200 item fixed IRT 200.00 96.19 2.07 1.74 

100 item fixed Number- 
correct 100.00 95.19 2.56 2.25 

100 item fixed IRT 100.00 95.13 2.62 2.25 

50 item fixed Number- 
correct 50.00 93.62 3.60 2.78 

50 item fixed  IRT 50.00 93.46 3.24 3.30 

Ability 
confidence 
intervals (ACI) 

Theoretical 
SEM 51.65 95.73 2.57 1.70 

Ability 
confidence 
intervals (ACI) 

Observed 
SEM 54.61 95.78 2.51 1.71 

Sequential 
probability ratio 
test (SPRT) 

δ= 0.3 39.30 95.74 1.85 2.41 

Generalized 
likelihood ratio 
(GLR) 

δ= 0.3 37.62 95.73 2.03 2.24 

Sequential 
probability ratio 
test (SPRT) 

δ= 0.2 55.77 96.21 1.81 1.98 

Generalized 
likelihood ratio 
(GLR) 

δ= 0.2 48.41 96.06 2.01 1.93 

 

As hypothesized, the variable-length methods produced 
short tests, with ATL ranging from 37.62 to 55.77, while 
maintaining the level of accuracy produced by the longer fixed 
form tests that delivered two to four times as many items.  
Specifically, the two likelihood ratio methods with δ = 0.2 had 
PCC approximately equivalent to the 200-item fixed test, but 
with only 48.41 and 55.77 items. The 50-item fixed test 
entailed approximately as many items as the variable-length 
methods, but with notably decreased accuracy. 
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Also notable are the differences between the 
variable-length methods.  The SPRT and GLR produced 
shorter tests than ACI while maintaining accuracy.  The two 
ACI conditions required more than 50 items, with the 
intentionally matched PCC of approximately 95.75.  The 
SPRT and GLR produced equivalent accuracy with less than 
40 items.   

There was a small but recognizable difference between 
the two methods of calculating ACI.  The two produced 
equivalent PCC, but utilizing the observed SEM and the more 
computationally efficient Newton-Raphson θ estimation 
required three more items, on average, than the 
model-predicted SEM calculated with the test information 
function and the empirical likelihood estimate. 

The GLR was slightly more efficient than the SPRT; this 
gain in efficiency increases with a decrease in δ because a wide 
δ forces the GLR and SPRT to utilize the same calculations.  
For example, the GLR produced a larger ratio with Figure 1, 
but if the indifference region in Figure 1 was -0.8 to 0.0, then 
the GLR and the SPRT would be equivalent.  Therefore, the 
GLR utilized only two fewer items on average with the wider 
indifference region (δ= 0.3), but there was a difference of 
seven items when δ = 0.2. 

This study demonstrates that the GLR performs as 
expected, namely highly similar to the point hypothesis SPRT, 
but with several fewer items, indicating an increase in 
efficiency.  This increase is greater with a narrower 
indifference region.  Study 2 will examine this effect further, 
focusing on the GLR and SPRT.  Both are much more 
efficient than fixed-form tests.   
 

Study 2 

A similar monte carlo simulation was designed to further 
compare the GLR with the SPRT, while investigating the 
effect of indifference region width on efficiency by 
simultaneously comparing the observed classification error 
rates to the nominal rate.  Parameters were generated for a 
bank of 300 items; fewer items were necessary because 
200-item tests were not being created.  The descriptive 
statistics of the item parameters are shown in Table 1, and 
reflect the fact that the bank was again intended to provide a 
substantial number of items with difficulty near the cutscore 
of -0.50.  A distribution of examinees was also randomly 
generated, from a N(0,1) distribution.  PCC and ATL were 
again the dependent variables, with the practical test length 
constraints of a minimum of 20 and a maximum of 200. 

Besides the comparison of the two termination criteria, 
the width of the indifference region was an independent 
variable, manipulated by varying δ from 0.0 to 1.0 in 
increments of 0.1.  The results are presented in Figure 2 for a 

Table 3: Item parameter statistics 

Statistic a b c 

Mean 0.70 -0.50 0.25 

SD 0.20   0.51 0.04 

 

nominal error rate of 1% and in Figure 3 for a nominal error 
rate of 5%.  Note that while a GLR with δ = 0.0 is possible 
because it will search for values away from the cutscore, an 
SPRT with δ = 0.0 is impossible because the ratio is always 1.0 
(both values exactly at the cutscore). 

Figure 2: ATL and PCC for 1% nominal error rate, 
comparing GLR and SPRT 

 

Figure 3: ATL and PCC for 5% nominal error rate, 
comparing GLR and SPRT 

 

With regards to the termination criteria, the GLR 
requires fewer items when δ is 0.3 or smaller, while the two 
methods perform equivalently with larger values of δ.  The 
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detailed values for δ = 0.2 are presented in Table 4 to show 
this effect; here, the GLR required substantially fewer items 
(ATL) while maintaining accuracy (PCC).  This is concordant 
with the results of the first simulation study, as large values of 
δ force the same values to be selected for input into the 
likelihood ratio.   

Table 4: Results with δ = 0.2 

Termination Nominal δ ATL PCC 

GLR 99 0.2 67.90 96.02 

GLR 95 0.2 53.61 95.32 

SPRT 99 0.2 85.55 95.68 

SPRT 95 0.2 62.62 95.65 

 

However, note that while PCC appears stable when δ is 
0.3 or smaller, PCC decreases beyond 0.3.  Moreover, ATL 
dropped dramatically with smaller values of δ, but 
successively larger values decreased ATL only slightly.  
Increasing the size of the indifference region will greatly 
decrease the number of items needed to make classifications, 
but will also marginally decrease the accuracy of the test, and 
this effect depends on the range of δ in question.  It is 
therefore imperative that testing programs which employ the 
likelihood ratio as a termination criterion perform extensive 
simulation research to ensure that the drop in ATL is 
maximized while maintaining PCC at nominal levels.  Not 
doing so could lead to tests longer than necessary, or accuracy 
less than nominal levels. 

The maintenance of PCC near nominal levels is itself a 
substantial issue.  In Figure 3, the accuracy remained near 
nominal levels for the 5% condition while δ < 0.3.  However, 
for the 1% condition, observed accuracy was always lower than 
the nominal accuracy.  In fact, the highest observed PCC in 
Figure 2 was only 96.02 (in Table 4), well short of the nominal 
99%.  Furthermore, as δ increased, the observed PCC 
dropped to approximately 92%.  This extreme disconnect 
between observed and nominal accuracy has been found in 
past research and warrants further research.  For example, 
Eggen (1999, Table 1) reported observed accuracy of 
approximately 95% with nominal levels of 90%, 85%, and 
80%. 

Discussion 

The results of the first study demonstrate the 
well-known (Kingsbury & Weiss, 1983; Spray & Reckase, 
1996; Eggen, 1999) result that variable-length testing methods 
are highly efficient in the context of pass/fail decisions.  While 
100-item fixed-form tests produced approximately 95% 
accuracy, the SPRT and GLR could do so with less than 40 
items on average.  While 200-item fixed-form tests produced 

more than 96% accuracy, the SPRT and GLR could do so 
with approximately 50 items on average. 

Moreover, the likelihood-ratio approaches (SPRT and 
GLR) produced even shorter tests than ACI, as has been 
show in previous research (Eggen & Straetmans, 2000; 
Thompson, 2009b).  However, the SPRT and GLR have one 
substantial disadvantage: the selection of items at the cutscore 
for each examinee means that each examinee receives the 
same test, as they would with a fixed-form approach.  The 
adaptive item selection of ACI means that nearly every 
examinee sees a different set of items, aiding in test security by 
reducing overexposure of items.  Nevertheless, for many 
applications this disadvantage might be irrelevant. 

Additionally, the GLR is always at least as efficient as the 
fixed-point SPRT while maintaining equivalent levels of 
accuracy.  If the value of δ is relatively large (> 0.3) then the 
two procedures are equivalent, but for smaller values there is a 
notable increase in efficiency with the GLR.  This suggests 
that the GLR be used in applied assessment programs rather 
than the SPRT, especially since the difference in algorithm is 
small. 

However, the most important result of this study is the 
strong effect that δ has on both the accuracy and efficiency of 
the test.  For this reason, the width of the indifference region 
should never be specified by the arbitrary methods often 
suggested: attempting to estimate the θ values corresponding 
to a minimal pass or a maximal failure, or even worse, simply 
adding and subtracting an arbitrarily chosen number δ.  
Instead, a study such as this one should be conducted, 
designed based on actual characteristics of a testing program 
like bank size and examinee distribution, to determine the 
value of δ that produces the shortest test lengths while still 
maintaining the desired level of accuracy.  This is especially 
true given the finding that observed accuracy is not necessarily 
equal to, or even near, the nominal accuracy of the procedure. 

While the variable-length approaches investigated in this 
study require the use of IRT, similar tests can also be designed 
with classical test theory (Rudner, 2002; Rudner & Guo, in 
press).  That has the advantage of smaller sample sizes for 
calibrating the item bank while still producing highly efficient 
CCTs, but has the drawback that is requires an independent 
verification of pass/fail for examinees in the calibration 
sample. 

In summary, the GLR approach is optimal for testing 
programs that need to make a classification decision with as 
few items as possible, though fixed-form tests are still 
appropriate for many testing programs due to practical or 
content-distribution constraints.  However, the design of 
CCTs with likelihood ratio approaches require simulation 
research to ensure that the test is as efficient as possible.    
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