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Many assessment and evaluation studies use statistical hypothesis tests, such as the independent 
samples t test or analysis of variance, to test the equality of two or more means for gender, age groups, 
cultures or language group comparisons. In addition, some, but far fewer, studies compare variability 
across these same groups or research conditions. Tests of the equality of variances can therefore be 
used on their own for this purpose but they are most often used alongside other methods to support 
assumptions made about variances. This is often done so that variances can be pooled across groups to 
yield an estimate of variance that is used in the standard error of the statistic in question. The purposes 
of this paper are twofold. The first purpose is to describe a new nonparametric Levene test for equal 
variances that can be used with widely available statistical software such as SPSS or SAS, and the 
second purpose is to investigate this test‟s operating characteristics, Type I error and statistical power, 
with real assessment and evaluation data.  To date, the operating characteristics of the nonparametric 
Levene test have been studied with mathematical distributions in computer experiments and, although 
that information is valuable, this study will be an important next step in documenting both the level of 
non-normality (skewness and kurtosis) of real assessment and evaluation data, and how this new 
statistical test operates in these conditions. 

 

When conducting assessments or evaluations in the 
social, psychological or educational context it is often 
required that groups be compared on some construct or 
variable such as math achievement or emotional 
intelligence.  Nordstokke & Zumbo (2007, 2010) remind 
us that when conducting these comparisons, typically 
using means or medians, we must be cognizant of the 
assumptions that are required for validly making 
comparisons between groups.  It was highlighted by 
those authors that the assumption of homogeneity of 
variances is of key importance and must be considered 
prior to conducting these tests.   

The assumption of equality of variances is based on 
the premise that the population variances on the variable 
being analyzed for each group are equal.  The 

assumption of homogeneity of variances is essential 
when comparing two groups, because if variances are 
unequal, the validity of the results are jeopardized (i.e., 
increased Type I error rates leading to invalid inferences) 
(Glass et al., 1972).  There are at least three possible 
occasions where testing for equality of variances are a 
concern.  The first is when one wants to make inferences 
about population variances because they are of scientific 
interest on their own.  For example, a health researcher 
may be interested in studying the effects of a new drug 
that helps prevent mood swings on some members of a 
mood management program.  The researcher 
hypothesizes that the drug will decrease the severity of 
mood swings in patients.  In this case, the researcher is 
interested in the overall increase or decrease in the 
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severity of mood swings (operationalized as the change 
in the range of mood scores from high extremes to low 
extremes to more moderate shifts in mood) in which 
case a test for equal variances would be conducted to test 
for differences. This is needed because those in the 
group that received the program would be hypothesized 
to have less severity in the range of their scores.  The 
second is when there is suspected heterogeneity of 
variances in a t-test or an analysis of variance (ANOVA).  
A researcher is interested in spatial ability and uses a 
categorical variable, such as gender, as a grouping 
variable in a t-test.  It cannot be assumed that males and 
females vary equally on spatial ability so, prior to the 
t-test; a test for equal variances must be carried out.  A 
third occasion when one might be concerned about 
heterogeneity of variances is in a t-test or ANOVA in 
which the numbers of observations in the groups are 
widely disparate (Glass, 1966; Glass, Peckham, & 
Sanders, 1972).  When there is reasonable evidence 
suggesting that the variances of two or more groups are 
unequal, a preliminary test of equal variances is 
conducted prior to conducting the t-test or ANOVA.   

It cannot necessarily be assumed that groups of 
participants are homogeneous or exchangeable, and so 
there is no basis to assume equality of variances when 
testing the null hypothesis of no difference between two 
or more groups.  Furthermore, if this assumption is 
ignored, the results of the statistical test (i.e., t-test and 
ANOVA) are greatly distorted leading to incorrect 
inferences based on the results.  Of note is that 
nonparametric tests are also susceptible to issues of 
unequal variances when testing for equal medians 
(Harwell, Rubinstein, Hayes, & Olds, 1992; Zimmerman 
& Zumbo, 1993a; 1993b), thus switching to a 
nonparametric statistical approach does not alleviate the 
problem of unequal variances. 

When testing for equal variances between groups, a 
problem arises when samples are collected from 
populations that result in skewed data.  Data can become 
skewed because there are extreme scores in one end of 
the distribution resulting in an asymmetrically shaped 
distribution.  In fact, it can be argued that, in many cases, 
data commonly collected in educational, behavioral and 
health research do not meet the assumption of normality 
or symmetry (Bradley, 1977; Micceri, 1989).   

Many of the current tests of equality of variances 
that are widely recommended such as Levene‟s test for 
equality of variances based on means are founded on the 

assumption of symmetric distributions (e.g., normality).  
It has been demonstrated using computer simulation 
that violations of symmetry increase the Type I error rate 
of the Levene test (e.g., Shoemaker, 2003; Zimmerman, 
2004).  Further, statistical researchers have investigated 
other approaches to testing for equality of variances. 
Conover, Johnson, and Johnson (1984) reviewed these 
approaches and provided simulation results investigating 
their performance under various conditions of violating 
their assumptions.  They investigated the robustness of 
56 tests for equal variances, and demonstrated that the 
median based Levene test (Brown and Forsythe, 1974) is 
the most valid in terms of maintenance of its nominal 
Type I error rate and average power values1.  However, 
to this point, there is no consensus amongst 
methodologists and researchers regarding what the 
“gold standard” or test of choice is when the assumption 
of symmetry of distribution and particularly normality 
has been violated.   

A newly developed test for equality of variances, the 
nonparametric Levene test, which utilizes the method of 
ranks (Friedman, 1937) has demonstrated its robustness 
of validity through maintenance of its nominal Type I 
error and its statistical power via a series of simulations 
(Nordstokke & Zumbo, 2010).  In their study, the newly 
developed nonparametric Levene test was compared to 
the median based Levene test across a large number of 
conditions that varied in terms of its degrees of 
distributional symmetry, unequal sample sizes, and 
overall sample size.  The nonparametric Levene test 
outperformed the median test consistently when the 
population distributions that were being sampled were 
asymmetric to varying degrees.  As Nordstokke and 
Zumbo (2010) describe it, the nonparametric Levene 
test involves pooling the data from both groups, in the 
two group situation, ranking the scores, placing the rank 
values back into their original groups, and conducting 
the Levene test on the ranks.  This test can be defined as, 

ANOVA (
jij

XR  ), 

wherein Rij is calculated by pooling the values from each 
of the (j) groups and ranking the scores.  An analysis of 
variance is conducted on the absolute value of the mean 

of the ranks for each group (
j

X ) subtracted from each 

                                                 
1 Average power is defined as the power of the test averaged across 
a number of simulation conditions. See Conover, Johnson, and 
Johnson (1984).   
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individual‟s rank (Rij).  From a computational point of 
view, this nonparametric Levene test uses Conover and 
Iman‟s (1981) notion of the rank transformation as a 
bridge between parametric and nonparametric statistics 
and simply involves (i) pooling the data and replacing the 
original scores by their ranks and then (ii) separating the 
data back into their groups and (iii) applying the 
conventional mean-based Levene test to the ranks. This 
can be easily accomplished using widely available 
software such as SPSS or SAS. When the data are 
extremely non-normal, perhaps caused by several 
outliers or some other intervening variables, the 
transformation changes the distribution and makes it 
uniform.  Conover and Iman (1981) suggested 
conducting parametric analyses such as the analysis of 
variance on rank transformed data.  Rank 
transformations are appropriate for simple tests of equal 
variances because, if the rankings between the two 
groups are widely disparate, it will be reflected by a 
significant result.  For example, if the ranks of one of the 
groups tend to have values whose ranks are clustered 
near the top and bottom of the distribution and the 
other group has values whose ranks cluster near the 
middle of the distribution, the result of the 
nonparametric Levene test would lead one to conclude 
that the variances are not homogeneous.  Thus the 
nonparametric Levene test is, essentially, a parametric 
analysis of variance conducted on rank transformed 
data. 

The next logical step for the development of the 
nonparametric Levene test is to investigate its validity on 
“real-world” assessment and evaluation data; therefore, 
the purpose of this paper is to investigate and 
demonstrate the performance of the nonparametric 
Levene test using assessment and evaluation data. 

Methods 

Data 

Data for this simulation study were gathered from 
two sources.  All simulations were conducted using 
SPSS.  The first data source (data set #1) (n = 4,600) 
came from an evaluation study that was conducted at the 
University of Calgary Counselling Center, Calgary, AB, 
Canada.  The variable from the evaluation study was age 
(i.e., number of years old).  The skew of the population 
distribution was 2.051, the kurtosis was 6.27.  This data 
sources was continuous in nature.  The second data 
source (n = 9,200) was from the Canadian Broadcasting 

Corporation  “Test the Nation”, a nationwide televised 
program that measured the cognitive functioning of the 
participants.  Three subscale scores, calculated for this 
paper, consisted of a Language scale score (data set #2, 6 
items) (skew = .13, kurtosis = .61), a Math scale score 
(data set #3, 5 items) (skew = -.47, kurtosis = 1.29), and 
a Memory scale score (data set #4, 5 items) (skew = 
-1.17, kurtosis = 5.31).  These three subscale scores were 
calculated by combining the responses to several Likert 
scaled items to yield the scale score.  A fourth 
demographic variable (data set #5) was selected from 
this data set asking participants to report the number of 
pairs of shoes they owned (skew = 1.35, kurtosis = .59).  
The shapes of the population distributions are illustrated 
in Figure 1. 

Variance ratios 

Five levels of variance ratios (var1/var2) are utilized 
in this design.  The first level (1/1) represents the case 
where variances are equal and the Type I error rates for 
the nonparametric Levene are investigated.  The other 
levels (3/1, 2/1, 1/2 and 1/3) represent the instances in 
the design where the variances are unequal and the 
statistical power of the nonparametric Levene test is 
investigated.  The design was created so that there were 
direct pairing and inverse pairing in relation to 
unbalanced groups and direction of variance imbalance.  
Direct pairing occurs when the larger sample sizes are 
paired with the larger variance and inverse pairing occurs 
when the smaller sample size is paired with the larger 
variance (Tomarken & Serlin, 1986).  This was done to 
investigate a more complete range of data possibilities.  
In addition, Keyes and Levy (1997) drew our attention to 
concern with unequal sample sizes, particularly in the 
case of factorial designs – see also O‟Brien (1978, 1979) 
for discussion of (the original versions of) Levene‟s test 
in additive models for variances.  Findings suggest that 
the validity and efficiency of a statistical test is somewhat 
dependent on the direction of the pairing of sample sizes 
with the ratio of variance (Tomarken & Serlin, 1986). 

Simulation 

Each of the five data sets selected from the two data 
sources was treated as a population.  For each of the data 
sources, a 3x4 completely crossed design was utilized 
with three levels of sample size ratios (n1/n2: 1/1, 2/1, 
and 3/1) and five levels of variance ratios (var1/var2: 
1/3, 1/2, 1/1, 2/1, and 3/1).  Each population was 
exhaustively randomly sampled into sets of 40,  
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Evaluation Study                                               Assessment Data – Language score 

  
Assessment Data – Math score                        Assessment Data – Memory score 

  
Demographic variable - How many pairs of shoes do you own? 

 
 

Figure 1. Shapes of the population distributions used in simulations 

 

and members of each of the sets were further randomly 
assigned into two groups.  This resulted in 115 sets of 
grouped data, which will be henceforth called 
replications, for the first data source and 230 replications 
for the second data source.  Each replication (involving 
two groups of 20) was entered into the simulation.  What 
follows are the steps involved in conducting the 
simulation in one cell of the design where the sample 
size ratio (n1/n2) is 1/1 and the variance ratio 

(var1/var2) is 1/1.  Once the population has been 
exhaustively sampled to create the grouped data, the 
mean of each of the groups are centered and the 
variance for each group was manipulated to one of the 
ratios outlined in the design.  In this case the ratio is 1/1, 
so the variance of both of the groups was unchanged.  
Next, for each of the pairs of groups in the set, the scores 
for the two groups are pooled, ranked in ascending 
order, split back into their original groups, and then an 
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independent samples t-test is then performed on the 
ranked data of the two groups.  A Levene‟s test for 
equality of variances is reported in this procedure as a 
default test to determine if the variances are statistically 
significantly different at the nominal alpha value of .05.  
The frequency of Type I errors was tabulated for each 
cell in the design.   

The criteria for maintaining the Type I error rate of 
the nonparametric Levene test is .05 (±.025), this was 
considered to be liberal criteria according to Bradley, 
(1978); however, it should be noted that when Type I 
error rates are less than .05, the validity of the test is not 
jeopardized in the same way as they are when they are 
inflated.  This makes a test invalid if Type I errors are 
inflated; but when the Type I error rate decreases the test 
becomes more conservative potentially reducing its 
power.  Reducing power does not invalidate the results 
of a test, per se, so tests will be considered to be invalid 
only if the Type I error rate is inflated.  In the cells where 
the ratio of variances was not equal, and that maintained 
their Type I error rates, statistical power is represented 
by the proportion of times that the nonparametric 
Levene‟s test correctly rejected the null hypothesis.  
Type I error rates and power are often represented as 
percentages.  For example, if the nominal alpha is .05, 
that means that 5 percent of the time the test will reject 
the null hypothesis when it should not be rejected; and 
the power of the test may be .20, meaning that 20 
percent of the time the test will be powerful enough to 
detect real differences between groups.  In all cases in 
the present study, Type I error rates and statistical power 
values are converted from proportions to percentages. 

Results 

For the first data set (i.e., the age data from the 
evaluation study), the Type I error rates and the 
statistical power for the nonparametric Levene test is 
presented in Table 1.  The rows of Table 1 represent the 
ratio of sample sizes (i.e., n1/n2), which are 1/1, 2/1 and 
3/1.  The columns represent the ratio of variances (i.e., 
var1/var2) for each of the cells of the design.  In the 
column where the ratio of variances is 1/1, the Type I 
error rates for the nonparametric Levene are shown, and 
when the ratio of variances is unequal (e.g., 2/1), the 
statistical power is represented.  For example, when the 
sample sizes are equal (1/1) and the variances are equal 
(1/1), the Type I error rate for the nonparametric 
Levene test is 3.5%.  The nonparametric Levene test 
maintained its Type I error rate in each cell of Table 1.  

To give an example of a power value, when the sample 
sizes are (2/1) and the ratio of variances are directly 
paired with the sample size ratio (2/1) the statistical 
power of the nonparametric Levene test is 77.4%.  
Overall for the results in Table 1, the Type I error rates 
ranged between 3.5% and 5.2%, and the power values 
ranged between 44.3% and 93%. 

Table 1. Type I error rates and power for nonparametric 
Levene test on Age data. 

 Variance ratio (var1/var2)         

  Direct pairing  Inverse pairing 

sample size 
ratio (n1/n2) 

 3/1 2/1 1/1 1/2 1/3 

1/1 92.2 67.8 3.5 67.8 92.2 

2/1 94.8 77.4 5.2 59.1 82.6 

3/1 93.0 71.3 5.2 44.3 69.6 

 

For the second data set (i.e., Language scale score 
for the CBC Test the Nation data), the Type I error rates 
and statistical power are presented in Table 2.  All of the 
Type I error rates are within the criteria for validity 
ranging between 4.3% and 7%, for example, in the cell 
of the design where the sample sizes were equal (1/1) 
and the variance ratios were equal (1/1), the Type I error 
rate of the nonparametric Levene test was 4.3%.  The 
statistical power values in Table 2 range from 31.7% to 
90.4%.   

Table 2. Type I error rates and power for nonparametric 
Levene test on Language score data. 

 Variance ratio (var1/var2)         

  Direct pairing  Inverse pairing  

sample size 
ratio (n1/n2) 

 3/1 2/1 1/1 1/2 1/3 

1/1 90.4 58.7 4.3 58.7 90.4 
2/1 77.0 43.0 5.2 60.9 90.9 
3/1 64.8 31.7 7.0 50.9 84.8 

 

The simulation results for the third data set (i.e., 
Math scale score data from the CBC Test the Nation 
data) are illustrated in Table 3.  The Type I error rate for 
the nonparametric Levene was within the criteria for 
validity with values ranging from 5.7% to 7.4%.  For 
example, in the cell of the design where the sample sizes 
were equal (1/1) and the variance ratios were equal 
(1/1), the Type I error rate of the nonparametric Levene 
test was 7.4%.  The statistical power values in Table 2 
range between 28.3% and 73.5%.   
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For the fourth data set (i.e., Memory scale score for 

the CBC Test the Nation data), the Type I error rates 
and statistical power are illustrated in Table 4.  The Type 
I error rates for the nonparametric Levene test were 
valid in all cells of Table 4.  For example, in the cell of 
the design where the sample sizes were equal (1/1) and 
the variance ratios were equal (1/1), the Type I error rate 
of the nonparametric Levene test was 7.5%.  In addition, 
the statistical power values of the nonparametric Levene 
test ranged between 30.4% and 83.9%. 

 

Table 3. Type I error rates and power for nonparametric 
Levene test on Math score data. 

 Variance ratio (var1/var2)         

  Direct pairing  Inverse pairing 

Sample size 
ratio (n1/n2) 

 3/1 2/1 1/1 1/2 1/3 

1/1 73.5 47.4 7.4 47.4 73.5 
2/1 54.8 36.5 5.7 44.3 67.0 
3/1 51.3 28.3 6.5 34.3 69.1 

 

Table 4. Type I error rates and power for nonparametric 
Levene test on Memory score data. 

 Variance ratio (var1/var2)         

  Direct pairing  Inverse pairing 

Sample size 
ratio (n1/n2) 

 3/1 2/1 1/1 1/2 1/3 

1/1 83.9 56.1 7.5 56.1 83.9 
2/1 74.3 44.8 7.4 51.7 82.6 
3/1 62.6 30.4 4.8 50.9 81.7 

 

The simulation results for the fifth data set (i.e., 
Demographic variable from the CBC Test the Nation 
data) resulted in Type I error rates of 23.9%, 15.2%, and 
17.8% for the 1/1, 2/1, and 3/1 sample size ratios, 
respectively. Clearly, given that the Type I error rate 
ranged for 15.2% to 23.9% the nonparametric Levene 
was not within the criteria for validity for the nominal 
5% Type I error rate and the statistical power was not 
reported. 

Discussion 

It is evident from the simulation results that the 
nonparametric Levene test for equality of variances 
overall performs well on real evaluation and assessment 
data, in terms of maintenance of its nominal Type I error 
rate and statistical power, when data are sampled from 
skewed population distributions. However, this result 

was not consistent across all the cells of the design in the 
five data sets.   

The first data set (i.e., the age data from the 
evaluation study) provides the best results in terms of 
maintenance of the nominal Type I error rate and high 
statistical power values, in some cases reaching as high as 
90% power. The reader should note that Cohen (e.g., 
1988, 1992), in the absence of any other basis for setting 
the value for desired power, suggested that 80% be used. 
We acknowledge that Cohen‟s criterion is somewhat 
arbitrary, and dependent on effect size magnitude, but 
nonetheless it provides us a working criterion and 
reference point. Therefore, even though these data were 
quite skewed, by Cohen‟s standard for statistical power, 
the nonparametric Levene test performed well by 
maintaining its nominal Type I error rate and exhibited 
substantial statistical power.  An explanation for the 
performance of the nonparametric Levene test on this 
data is related to its continuous nature.  When sampling 
from these data occurred, there were very few ties, and it 
is has been shown that a large number of tied scores 
result in the breakdown of rank transformation 
procedures because of the assumption of continuity 
central to many nonparametric tests (Bradley, 1968).  
When data come from a continuous population 
distribution, the method of ranks (Friedman, 1937) is quite 
efficient because the likelihood of tied scores is small.   

The second, third and fourth data sets (language, 
math, and memory tests, respectively) from the CBC 
Test the Nation program represented typical assessment 
data, where several items are scored on a Likert scale and 
combined to yield a scale score representing a 
psychological construct.  In the cases of the language 
and memory measures, the nonparametric Levene test 
maintained its nominal Type I error rates and 
demonstrated statistical power values of at least 80% in 
several cases involving a variance ratio of three to one.  
These results demonstrate the usefulness of the 
nonparametric Levene test on „typical‟ assessment data 
that is used throughout psychological, social, and 
educational research. It should be noted, however, that 
the statistical power for the math test data never reached 
Cohen‟s standard of 80% even in the case of a variance 
ratio of three to one. In addition, two of the data sets 
used in the simulation (i.e., data set #3 and data set #4, 
math and memory tests) had distributions with marked 
outliers – test score values in the range of 5.0 in Figure 1.  
This demonstrates that the nonparametric Levene test is 
able to efficiently deal with distributions that not only 
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deviate from normality in terms of skewness, but also 
possess marked outliers.   

The fifth data set (i.e., Demographic variable from 
the CBC Test the Nation data) used in this simulation 
study resulted in elevated Type I error rates making the 
results of the nonparametric Levene test invalid.  This is 
likely due to the nature of the variable used in this data.  
The population distribution had many ties, thus, upon 
sampling the distributions, many ties were present in the 
sample data.  As mentioned earlier, the rank 
transformation procedure breaks down when there are 
many ties.  It should be noted, that a distribution with a 
large number of tied scores results in a highly kurtotic 
distribution that is difficult to analyze using either 
parametric (i.e., t-test/ANOVA) or nonparametric 
(Mann-Whitney U/Kruskal-Wallis) techniques due to a 
lack of variability in the data, so this issue is not just an 
artifact of the method of ranks.  In essence, crude scaling 
and measurement procedures impedes researchers‟ 
ability to discern between the „true‟ scores of the study 
participants resulting in tied scores, thus reducing the 
variability in the data due to imprecise measurement.   

Ties are a problem in all rank-based non-parametric 
statistics because, with ties, the set of N observations 
does not correspond to the set of ranks 1, 2, 3, ..., N; 
where N denotes the total sample size. That is, the 
original scores do not uniquely map on to a set of ranks. 
In essence, in the case of ties, the particular set of ranks 
depends on the pattern and number of ties – which in 
turn depends on the reasons for ties (e.g., population 
characteristics, appropriateness of the scaling, skewness 
and kurtosis of the variable). This makes each case of ties 
somewhat idiosyncratic and a valid and uniformly most 
powerful test difficult, and at times impossible, to derive. 
Based on the current knowledge in statistics, our 
recommendation to practitioners is that if ties are a 
concern then one should consider calculating the critical 
values of the test statistic using exact nonparametric tests 
involving computer intensive methods (e.g., 
permutation, randomization, bootstrapping or jackknife 
methods). These methods allow one to calculate the 
critical value for the test that are tailored to one‟s 
particular case of ties; and also, very importantly, allows 
one to investigate the discrete nature of the sample 
distribution of the statistic. As Zumbo and Coulombe 
(1997, p. 141) remind us, discrete sampling distributions, 
by their very nature, constrain the significance levels that 
one can reasonably use to test a hypothesis and hence 
only partially solve the problem of ties. Unfortunately, at 

the moment, specialized software is needed for this 
computation.  In addition, further research is needed to 
investigate the operating characteristics of these 
methods. 

To summarize, when data come from non-normal 
population distributions, the nonparametric Levene test 
maintains its Type I error rates and possesses moderate 
to high statistical power for detecting differences in 
variances. However, when there are a large number of 
ties present in the data, the ranking procedure is not 
appropriate for detecting differences in variances.     
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