

A peer-reviewed electronic journal.

Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation.
Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited.
PARE has the right to authorize third party reproduction of this article in print, electronic and database forms.

Volume 18, Number 4, February 2013 ISSN 1531-7714

Factor Analysis using R

A. Alexander Beaujean, Baylor University

R (R Development Core Team, 2011) is a very powerful tool to analyze data, that is gaining
in popularity due to its costs (its free) and flexibility (its open-source). This article gives a
general introduction to using R (i.e., loading the program, using functions, importing data).
Then, using data from Canivez, Konold, Collins, and Wilson (2009), this article walks the
user through how to use the program to conduct factor analysis, from both an exploratory
and confirmatory approach.

R (R Development Core Team, 2011) is an
open-source statistical environment (language). It is
a very flexible and powerful language that many
data analysts are now using (e.g., Kelley, Lai, & Wu,
2008; Vance, 2009). This article will focus on using
R in conducting factor analysis, but before doing
do will first give a general introduction to the
programming language.

Why Use R?

One question that readers may have is, why use
R when I am already familiar with data analysis package
X? One reason is that it is a very powerful
programming language that is able to conduct a
wide range of analysis. Thus, for many projects, all
analysis can be conducted within the same
program. This is particularly useful for factor
analytic work, as one can examine the data’s
properties, check any model assumptions, conduct
exploratory factor analysis, and then follow up
with a confirmatory factor analysis without ever
having to export data or write syntax in another
program’s language. Once the data has been
entered into R, it will be available for use until the
R program is closed. If the user saves the initial
syntax used to import data, then importing the data
for the second, third, forth, etc. data analysis session
is only a matter of copying-and-pasting syntax
written for the first session.

A second reason to use R, closely related to
the first, is that it allows for users to submit their
own packages to the R server for anyone to use.
This has resulted in a large variety of packages (over
4000 at the time of writing this article) that can do
everything from spatial statistics to text mining.

A third reason for using R is that it is a free
open source programming language, available for
most operating systems (e.g., Windows, Mac,
Linux), and the vast majority of syntax and
packages are transportable from one system to
another. This can aid in both research
collaboration and making one’s research replicable
(e.g., Pashler & Wagenmakers, 2012), as colleagues
can reproduce results by copying and pasting the
syntax. Moreover, these same features also allow R
to be strong tool for teaching statistics, as it not
only allows for students to reproduce the
instructor’s examples, but it allows them to examine
the underlying processes behind complex topics
such as Bayesian estimation and finding function
extrema (e.g., Horton, Brown, & Qian, 2004).

Using R

R is currently maintained by the core-
development team and the R Project ’s web site
(also known as Comprehensive R Archive Network
[CRAN]) is http://www.r-project.org. This is the
main site for R information, directions for

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 2
Beaujean, Factor Analysis Using R

obtaining the software, accompanying packages, and
some user documentation.

Modes for Using R.

There are three different modes the user can
select when using R. The first is through batch
mode, whereby the user writes a document of R
syntax, sends the entire file to R through the
terminal (Mac or Linux) or command prompt
(Windows), and then receives an output file with
all the results. This mode is most useful when using
R that is installed on a “supercomputer” for jobs
that require massive computing power, such as
Monte Carlo studies or Bayesian analysis of
complex models. For more information about this
mode, see Appendix B of Venables, Smith, and R
Development Core Team (2012).

A second mode to run R is by using a
graphical user interface (GUI). GUI mode allows
the user to conduct the desired analyses through a
series of point-and-clicks. There is not an “official”
GUI for R, so many 3rd parties have developed
GUIs for different niches of users, a list of which
can be found at http://www.sciviews.org/_rgui.
Because 3rd parties develop the GUI, there is not
necessarily a universality to them. That is, some will
only work on a single operating system, some are
designed to do only a certain subset of analyses,
and some are designed to interface with other
software (e.g., the RStudio GUI can interface with
LATEX). While the specialization of the GUI can be
useful for a given user, the lack of universality
makes it hard to explain how to conduct analyses
as it will be different from GUI to GUI. Moreover,
like most statistical program GUIs, they tend to
focus on certain subsets of analyses and neglect
others. For example, one popular GUI is R
Commander (Fox, 2005), whose menu-driven options
are similar to those from SPSS. Thus, it has some
basic options for general analysis, but if the user
wants to conduct a “non-traditional” analysis [e.g.,
rotate factors using McCammon’s (1966) entropy
criterion], the GUI is not of much use.

The third, and arguably most popular mode for
conducting analyses in R is through interactive
mode, which basically means writing syntax and

passing as much of it to R as needed. It is called
interactive mode because when the user submits the
syntax, R will parse the syntax immediately and
deliver the output the user requested. One can use
interactive in one of two ways. First, write the
syntax in a syntax editor and have the editor pass
the syntax into R. This method can be very useful
as whatever syntax the user writes can be saved and
then used again at a later time or by another user.
R comes with a native syntax editor, but its
functionality differs depending on the operating
system used. The second way is to type (or paste
from an external document) the syntax into R
directly. This method has the largest universality, as
the procedures for conducting a given analysis are
usually identical across operating systems. Thus, this
is the method this article will use in explaining R
usage.

After downloading and starting R in interactive
mode, the user will see a >, which is called the
prompt. It is not typed (if typed, R will assume
the user means “greater than”). Instead, it is used
to indicate where to type syntax. If a command is
too long to fit on a line, a + is used for the
continuation prompt. Another symbol that most
users will use frequently is the left arrow, <-, which
is R’s standard assignment operator (another
option is using =, but it is better to reserve using =
for defining argument values within functions). The
<- is R’s way of assigning whatever is on the right
of the arrow to the object on the left of the
arrow.

Functions and Packages

R stores data and analysis results in the
computer’s active memory in the form of named
objects. The user can then do actions on these
objects with functions (which are themselves objects).
To use functions: (a) give the function’s name
followed by parentheses; and (b) in the parentheses,
give the necessary values for the function’s
argument(s). Table 1 contains some widely used
functions.

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 3
Beaujean, Factor Analysis Using R

Table 1: Commonly Used R Functions
Function Use

Comment. R ignores all text after
the #.

c() Concatenate. Concatenate the
arguments included in the function.

Help() or ? Show information about, and
e xample uses of, a function.

With the initial download of R, it w i l l come
with some pre-defined functions (e.g., mean(),
var()), stored in packages, most of which
automatically load when starting R. These
functions, however, may not conduct the needed
analysis. Thus, the user can search CRAN to see if
a contributed package can do the required analysis.
These contributed packages usually consist of data
and functions that were written in the R language.

To install an R package, use the
install.packages() function, naming the package
to install in quotation marks. One argument for
install.packages() is dep, which stands for
dependencies. If the user specifies dep = TRUE, R
will concurrently download any other package upon
which the package of interest is dependent, which
saves the user from having to download each
required package separately. For example, to install
the BaylorEdPsych (Beaujean, 2012) package, use the
following syntax.

1 install.packages("BaylorEdPsych", dep =
TRUE)

The user only needs to install an R package

to the hard drive one time, but will need to load it
into memory every time the user starts a new R
session and needs to use one of the package’s
functions. To load a package into R’s memory, use
the library() function, without any quotation
marks around the package name.

Importing Data

Users will usually want to store the data in an
external file and then have R load the data. There
are multiple ways to import data into R, depending
on the format of the data.

The easiest way to import data into R is to
save the file as a tab- or comma-delimited text file.
Most spreadsheet and database programs can save
data this way. If it is possible to store (or export)
the data in this format, then the read.table() or
read.csv functions, both of which are native to
R, can read the data. Before importing it though,
the user is advised to do two things. First, replace
all missing value indicators to NA, which is R’s
default missing value indicator. Second, either
remove any spaces in the variable names or replace
it with a period (e.g., first.name).

If it is not possible to store/export the data
as a text file, there are R packages that can read
data from other file formats. Table 2 lists some
packages and the data type they will open.

Table 2: Different R Packages to Import
Various Data Formats
Package Filetypes
xlsReadWrite,
gdata

Excel (.xls)

xlsx Excel (.xlsx)
RODBC databases that are ODBC

compliant, e.g., MS SQLServer,
MS Access, Oracle

RMySQL MySQLRJDBC JDBC
compliant databases

RSQLite SQLite
foreign Minitab, S3, SAS, SPSS,

Stata,Systat, dBase, ARFF,
DBF, REC, Octave

In order to read the data file, point R to the
directory where it is located. R uses forward slashes
for reading directory structures (i.e., how UNIX-
type systems store files) or double backslash, e.g.,
C:\\Regression\\Data.csv. As an example, say a
dataset with variable names in the first row is
stored in a file named data.csv that is located in a
folder called name, which is in a folder called file. R
can read the file using the following syntaxes:

1 #Windows
2 new.data<-

read.csv("C:\\file\\name\\data.csv",
header=TRUE)

3 #Windows, Mac, and Unix systems

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 4
Beaujean, Factor Analysis Using R

4 new.data<-
read.csv("C:/file/name/data.csv",
header=TRUE)

Inputting a covariance matrix.

In some situations, the user does not have
access to raw data, but does have access to a
covariance matrix. One option in such cases is to
type the entire matrix into R using the matrix()
function, but the user can make use of the fact that
covariance matrices are symmetric and use the
diag(), upper.tri(), lower.tri() and t()
(transpose) functions. After entering the matrix
data, it is useful to name the variables, which can
be done using the rownames() and colnames()
functions. The following syntax creates a correlation
matrix titled CorM that consists of the correlations
among four variables (the default option in R is
to enter matrix data by columns), and names the
columns and rows of the matrix.

1 CovM<-diag(4) #Create a 4 x 4 diagonal
matrix, with ones on the diagonal

2 CovM[lower.tri(CovM, diag=FALSE)]<-c(.85,
.84, .68, .61, .59, .41) #input the
lower triangle of the matrix, by
columns

3 CovM[upper.tri(CorM, diag=FALSE)] <-
t(CorM)[upper.tri(CorM)] #make matrix
full

4 > rownames(CovM)<-colnames(CovM)<-
c("Var1", "Var2", "Var3", "Var4") #
Name rows and columns

For more information on importing data or
using other R functions, CRAN has manuals
(http://cran.r-project.org/manuals.html) and
other documents available (e.g., Paradis, 2005). In
addition, there is a growing number of textbooks,
both introductory and advanced, devoted to using
R (e.g., Crawley, 2007; Field, Miles, & Field, 2012),
including a whole series of books published by
Springer titled Use R! (http://www.springer.
com/series/6991).

Using R to Conduct a Factor Analysis

To facilitate the explanation of using R for
factor analysis (FA), this analysis will use the data
reported by Canivez, Konold, Collins, and Wilson
(2009), who conducted both an exploratory FA
(EFA) and confirmatory FA (CFA). They collected

data on 152 individuals on two brief tests of
cognitive ability: Wechsler Abbreviated Scale of
Intelligence (WASI; The Psychological Corporation,
1999) and Wide Range Intelligence Test (WRIT;
Glutting, Adams, & Sheslow, 2000). They were
interested in examining if the data were better
explained by a single factor (i.e., general
intelligence, g; Jensen, 1998), or two factors (i.e.,
Fluid Reasoning and Comprehension-Knowledge;
Newton & McGrew, 2010). Their summary
statistics are reproduced in Appendix 1.

The following syntax will input the Canivez et
al. (2009) data into R.

1 #make an empty matrix with 8 rows and
columns

2 WASIWRIT.cor<-matrix(NA, 8,8)
3 #input ones on the diagonal elements of

the matrix
4 diag(WASIWRIT.cor)<-1
5 #input the lower triangle of the

correlation matrix
6 WASIWRIT.cor [lower.tri(WASIWRIT.cor)]<-
7 c(.57, .79, .62, .69, .83, .56, .51, .57,

.65, .51, .54, .59, .66, .60, .70, .74,

.58,
8 .55, .53, .57, .71, .62, .71, .65, .51,

.58, .53, .62)
9 #input the upper triangle of the

correlation matrix
10 WASIWRIT.cor[upper.tri(WASIWRIT.cor)]<-

t(WASIWRIT.cor)[upper.tri(WASIWRIT.cor)]
11 #Name the rows and columns of the

correlation matrix
12 dimnames(WASIWRIT.cor)<-

list(c(paste("WASI.", c("Voc", "BD",
"Sim", "MR"), sep=""), paste ("WRIT.",
c("VerbAn", "Voc", "Mat", "Dia"),
sep="")), c(paste("WASI.", c("Voc",
"BD", "Sim", "MR"), sep=""),
paste("WRIT.", c("VerbAn", "Voc", "Mat",
"Dia"), sep="")))

13 #Create a vector of means
14 WASIWRIT.mean<-c(97.75, 97.87, 103.81,

99.81, 101.51, 100.63, 101.45, 100.64)
15 #Name the columns of the mean vector
16 names(WASIWRIT.mean)<-c(paste("WASI.",

c("Voc", "BD", "Sim", "MR"), sep=""),
paste("WRIT. ", c("VerbAn", "Voc",
"Mat", "Dia"), sep=""))

17 #Create a vector of standard deviations
18 WASIWRIT.sd<-c(17.37, 14.49, 17.26,

16.61, 14.77, 16.42, 16.17, 13.92)

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 5
Beaujean, Factor Analysis Using R

19 #Name the columns of the standard
deviaitons vector

20 names(WASIWRIT.sd)<-c(paste("WASI.",
c("Voc", "BD", "Sim", "MR"), sep=""),
paste("WRIT." , c("VerbAn", "Voc",
"Mat", "Dia"), sep=""))

The paste() function concatenates string
arguments, and is useful when there is repetition in
strings.

Exploratory Factor Analysis

R has multiple functions that will do factor
extraction. As part of R’s native packages, the
factanal() function will do maximum likelihood
extraction. The psych package (Revelle, 2012)
has a function, fa(), that will do extraction using
either principal axis/factor, maximum likelihood,
minres (ordinary least squares), weighted least
squares, or generalized weighted least squares
methods. Below is syntax for a principal axis
extraction of a single factor using the fa()
function.

 1> fa(WASIWRIT.cor, nfactors=1, n.obs=152,
fm="pa")

 2 Standardized loadings (pattern matrix)
based upon correlation matrix

 3 P A 1 h 2 u 2
 4 WASI.Voc .84 .71 .29
 5 WASI.BD .73 .54 .46
 6 WASI.Sim .83 .70 .30
 7 WASI.MR .78 .60 .40
 8 WRIT.VerbAn .78 .62 .38
 9 WRIT.Voc .83 .69 .31
10 WRIT.Mat .77 .60 .40
11 WRIT.Dia .71 .51 .49

The nfactors argument tells the fa()

function how many factors to extract, the n.obs
arguments gives the sample size (only needed to
calculate some fit statistics), and the fm arguments
tells the type of extraction to conduct, with "pa"
standing for principal axis.

To rotate the extracted factors with the fa()
function, use the rotate argument. For example,
to replicate Canivez et al.’s (2009) two-factor
extraction with varimax rotation, use the following
syntax:

1 > fa(WASIWRIT.cor, nfactors=2, n.obs=152,
fm="pa", rotate="varimax")

For rotation of the two factors using the
promax criterion, use the following syntax.

1> fa(WASIWRIT.cor, nfactors=2, n.obs=152,
fm="pa", rotate="promax")

2 Standardized loadings (pattern matrix)
based upon correlation matrix

3 PA1 PA2 h2 u2
4 WASI.Voc .91 .00 .84 .16
5 WASI.BD .01 .77 .62 .38
6 WASI.Sim .74 .15 .74 .26
7 WASI.MR .04 .80 .68 .32
8 WRIT.VerbAn .64 .20 .63 .37
9 WRIT.Voc .88 .01 .80 .20
10 WRIT.Mat .09 .74 .66 .34
11 WRIT.Dia -.06 .83 .62 .38
12
13 With factor correlations of
14 PA1 PA2
15 PA1 1.00 0.76
16 PA2 0.76 1.00

Since promax is an oblique rotation method,
the output has the added With factor
correlations of section that gives the factor
correlations. As oblique rotations cause structure
and pattern coefficients to differ, to obtain the
structure coefficients, call the Structure object
created by the fa() function by either adding
$Structure to the end of the syntax or by saving
the fa() output as an object and then calling that
object with the $Structure suffix.

1> fa(WASIWRIT.cor, nfactors=2, n.obs=152,
fm="pa", rotate="promax")$Structure

2> promax.2fac<-fa(WASIWRIT.cor, nfactors=2,
n.obs=152, fm="pa", rotate="promax")

3> promax.2fac$Structure
Lines two and three are redundant with line one,
so only one of the two options needs to be used.

R has the capacity to do more than the
“typical” rotations that Canivez et al. (2009) report.
The GPArotation package (Bernaards & Jennrich,
2005), for example, which is used in conjunction
with the factanal() function allows the user to
select from a much larger menu of rotation options.
For example, to use a rotation in the Crawford-
Ferguson family (Browne, 2001; Crawford &

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 6
Beaujean, Factor Analysis Using R

Ferguson, 1970), use the factanal() function with
the rotation argument being either cfQ (for
oblique rotations) or cfT for orthogonal rotations.
By default, the κ parameter is zero. To change the
default κ value, use the kappa argument within
the control argument of the factanal()
function (e.g., for parsimax rotation of a dataset
with 10 variables and two factors:
control=list(rotate=list(kappa=(2-
1)/(10+2-2))))).

Below is syntax for a quartimin rotation of
Canivez et al.’s (2009) data, using the Crawford-
Ferguson (Crawford & Ferguson, 1970) criterion
with oblique rotation and setting κ = 0.

1> quartimin<-factanal(covmat=WASIWRIT.cor,
factors=2, rotation="cfQ",
control=list(rotate=list(kappa=0)))

By default, the factanal() function will not
print small pattern coefficients. To print all the
coefficients, the factanal() function needs to be
wrapped in the print() function with the
cutoff argument set to some arbitrarily small
value (i.e, .001).

Schmid-Leiman Transformation.

Schmid and Leiman (1957) developed a
transformation of a higher-order factor model to
yield uncorrelated first-order factors that represent
both a general (second-order) and more domain
specific (first-order) constructs (cf. Yung, Thissen,
& McLeod, 1999). This transformation of the
factor loadings makes them reflect the incremental
influence of both general and specific abilities on
the indicator variables. With cognitive ability
variables, the Schmid-Leiman (S-L) transformation
is usually used to estimate the direct influence of g
and the first-order constructs on the subtests (e.g.,
Carroll, 1993). The psych package’s schmid()
function will carry out the S-L transformation.

1> schmid(WASIWRIT.cor,nfactors=2)
2 Schmid Leiman Factor loadings greater than

0.2
3 g F1* F2* h2 u2 p2
4 WASI.Voc .81 .46 .86 .14 .76
5 WASI.BD .69 .35 .60 .40 .80
6 WASI.Sim .78 .35 .73 .27 .83
7 WASI.MR .74 .37 .69 .31 .80

8 WRIT.VerbAn .73 .29 .62 .38 .85
9 WRIT.Voc .78 .43 .80 .20 .77
10 WRIT.Mat .73 .38 .67 .33 .79
11 WRIT.Dia .68 .39 .61 .39 .75

A newer rotation whose purpose is similar to
the S-L transformation is the bi-factor rotation
(Jennrich & Bentler, 2011), which is another rotation
option in the fa() function as well as is the
GPArotation package. It is deigned to extract a
general factor as well as domain-specific factors.
Thus, for Canivez et al.’s (2009) data, three factors
should be extracted instead of two; one for g and
the other two for Comprehension-Knowledge and
Fluid Reasoning factors.

1> fa(WASIWRIT.cor, nfactors=3, n.obs=152,
fm="pa", rotate="bifactor", max.iter =
500)

2 Standardized loadings (pattern matrix)
based upon correlation matrix

3 PA1 PA2 PA3 h2 u2
4 WASI.Voc .84 .37 .00 .85 .15
5 WASI.BD .66 .04 .52 .71 .29
6 WASI.Sim .81 .28 .06 .74 .26
7 WASI.MR .73 -.05 .33 .64 .36
8 WRIT.VerbAn .79 .14 -.03 .64 .36
9 WRIT.Voc .83 .32 -.03 .79 .21
10 WRIT.Mat .93 -.60 .00 1.23 -.23
11WRIT.Dia .65 -.03 .44 .62 .38
As expected, the pattern coefficients from the

bi-factor and S-L rotations are quite similar.

Determining the Number of Factors.

There are a variety of ways to determine the
number of factors to extract, but best practice
suggests that minimum average partial (MAP;
Velicer, 1976) criteria and parallel analysis (Horn,
1965) are some of the more robust methods (Velicer
& Jackson, 1990). As Costello and Osborne (2005)
lament, “Unfortunately [these] methods, although
accurate and easy to use, are not available in the
most frequently used statistical software and must
be calculated by hand” (p. 3). The psych package
has functions for both methods, though, making
factor retention decisions easier for the R user than
the user of “most frequently used statistical
software”. Below is syntax for both factor retention
methods, using Canivez et al.’s (2009) data.

1 #Parallel Analysis

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 7
Beaujean, Factor Analysis Using R

2 > fa.parallel(WASIWRIT.cor, n.obs=152,
fm="pa")

3 Parallel analysis suggests that the number
of factors = 2 and the number of
components = 1

1 #Velicer’s minimum average partial (MAP)
2 > VSS(WASIWRIT.cor, n.obs=152)
3 The Velicer MAP criterion achieves a

minimum of NA with 2
 factors

4 Velicer MAP
5 [1] 0.07 0.06 0.09 0.17 0.32 0.52 1.00 NA

Confirmatory Factor Analysis

There are multiple packages that can do
structural equation modeling in R (e.g., sem,
OpenMx), but this article will focus solely on the
lavaan (Rosseel, 2012) package. Information and
documentation about the package can be found at
http://www.lavaan.org.

Table 3 : lavaan Commands

Syntax

Command

Example
 Regress onto Regress B onto A: B A
 (Co)varaince Variance of A: A A

Covariance of A and B: A
 B

1 Constant/
mean

Regress B onto A, and include
the intercept in the model:

 B 1 + A

= Define
reflective
latent variable

Define Factor 1 by A-D: F1 =
A + B + C + D

:= Define non-
model
parameters

Define parameter u2 to be 2
times the square of u: u2 :=

2*(u2)
<∼ Define

formative
variables

Define Variable A by X1 X4
: A <∼X1 + X2 + X3 +
X4

To compute a model in lavaan, the user first
needs to specify the model structure as text, using
a few pre-defined commands that are shown in
Table 3 . Within a model, the user can label
parameters by premultiplying the label onto one of
the variables on the left hand side of an equation,
(e.g., Factor1 = a*A + b*B + c*C + d*D).

Before fitting the CFA model with summary
data, it wise to convert the correlation matrix to a

covariance matrix (Cudeck, 1989). This can be done
using the cor2cov() function, which is included
in the lavaan package. It takes a correlation matrix
and vector of standard deviations as arguments,
and returns the covariance matrix.

1> library(lavaan)
2> WASIWRIT.cov<-cor2cov(WASIWRIT.cor,

WASIWRIT.sd)

Canivez et al. (2009) fit two confirmatory

factor analytic models with their data: (a) a single
factor (i.e., g); and (b) a two-factor model (i.e.,
Fluid Reasoning and Comprehension Knowledge).
For other possible CFA models, see Beaujean and
Parkin (in press).

The lavaan syntax for the single factor model
is given below.

1> singleFactor.model<-’
2 + g=∼WASI.Voc + WASI.Sim + WRIT.VerbAn +

WRIT.Voc + WASI.BD + WASI.MR + WRIT.Mat
+ WRIT.Dia

3 + ’

Line 1 consists of the name for the model
(singleFactor.model), the assignment operator
(<-) and single apostrophe, which indicates that the
subsequent syntax will be passed as text. Line 2
defines the single factor structural model, while
line 3 is another single apostrophe that tells R to
stop interpreting the input as text.

Once the model is specified, then the next
step is to estimate the parameters. This can be
done using either the cfa() (for factor analysis
models), or sem() (for structural equation models)
function. The cfa() and sem() functions are both
calls to a more general lavaan() function with
some of the default arguments specified differently.
To obtain the default values for all the cfa() or
sem() functions’ arguments, type ?cfa or ?sem,
respectively, in R.

lavaan accepts either a covariance matrix
(with sample size) or raw data as input, using the
sample.cov= (with sample.nobs=) or data=
arguments, respectively. If using the covariance
matrix as input, the user can (optionally) also input a
mean vector using the sample.mean= argument. By
default, lavaan uses normal-theory maximum

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 8
Beaujean, Factor Analysis Using R

likelihood as the parameter estimation technique for
continuous-variable indicators, but the user can
change this to generalized least squares, weighted
least squares (ADF), unweighted least squares, or
diagonally weighted least squares (for categorical
indicators) by specifying them in the estimator=
argument.

The resulting parameters from the cfa() or
sem() functions are not shown automatically, but
can be requested. One such way to request the
parameter estimates is by using the summary()
function. By default, the summary() function for
lavaan objects will produce: (a) a note indicating if
the minimization algorithm converged; (b) the
sample size; (c) estimator; (d) χ 2; (e) χ2 degrees of
freedom; (f) p-value of the χ2; (g) the
unstandardized parameter estimates; (h) the
parameter estimates’ standard errors; (i) the ratio
of the parameter estimates to their standard
errors; and (j) the that ratio’s p-value. The
summary() function has these default
specifications for its arguments:

standardized = FALSE, fit.measures =
FALSE, rsquare = FALSE, modindices =
FALSE. Setting standardized = TRUE will include
standardized estimates in the results, setting
fit.measures = TRUE will include various fit
indices in the results, setting rsquare = TRUE
will include the R2 for each exogenous variable, and
setting modindices = TRUE will include modification
indices.

The default option in lavaan is to set the
pattern coefficient for the first indicator equal to
one and estimate the latent variable’s variance. One
way to override that default is to use the
std.lv=TRUE argument, which sets the variance of
all the latent variable(s) to one, and estimates each
factor pattern coefficient. The syntax for fitting
Canivez et al.’s (2009) single factor model, as well as
obtaining the results using the summary()
function, are given below. The actual output is
given in Appendix A.

1> singleFactor.fit<-cfa(singleFactor.model,
sample.cov=WASIWRIT.cov,
sample.nobs=152, std.lv=TRUE)

2> summary(singleFactor.fit,
fit.measures=TRUE, standardized=TRUE,
rsquare=TRUE)

Canivez et al.’s (2009) two factor model is
specified in lavaan using the following syntax.

1> twoFactor.model<-’
2 Gc=~WASI.Voc + WASI.Sim + WRIT.VerbAn +

WRIT.Voc
3 Gv=~WASI.BD + WASI.MR + WRIT.Mat +

WRIT.Dia
4 ’
5> twoFactor.fit<-cfa(twoFactor.model,

sample.cov=WASIWRIT.cov,
sample.nobs=152, std.lv= TRUE)

6> summary(twoFactor.fit, fit.measures=TRUE,
standardized=TRUE, rsquare=TRUE)

Within rounding error, the results (i.e.,
standardized pattern coefficients, fit statistics)
from lavaan are identical to those reported by
Canivez et al. (2009).

Conclusion

With the many steps involved in factor analysis
(FA), it can be difficult finding a program that does
everything that one may desire. While R (R
Development Core Team, 2011) does not have a
function for everything involved in FA, it does have
many, including those for extraction, rotation,
determination of the number of factors, as well as
confirmatory methods. This, alone, sets it apart R
from many other programing options currently
available. What makes R even more powerful,
though, is that because its syntax is open source,
the user can write his/her own functions to
conduct any analyses not currently available in any
R package. When added to fact that the only cost
involved in using R is the time it takes to learn
the language, it is easy to see why Kelley et al.
(2008) write that “there is no time like the present
to begin incorporating R into one’s set of
statistical tools” (p. 569).

References

Beaujean, A. A. (2012). BaylorEdPsych: R package for
Baylor University Educational Psychology quantitative
courses (Version 0.5) [Computer software]. Waco, TX:
Baylor University.

Beaujean, A. A., & Parkin, J. (in press). Using R for the
analysis of cognitive abilities and behavior genetic data.

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 9
Beaujean, Factor Analysis Using R

In J. Kush (Ed.), Intel ligence quotient: Testing, role of genetics
and the environment and social outcomes. New York: Nova
Science.

Bernaards, C. A., & Jennrich, R. I. (2005). Gradient
projection algorithms and software for arbitrary rotation
criteria in factor analysis. Educational and Psychological
Measurement , 65 (5), 676-696. doi:
10.1177/0013164404272507

Browne, M. W. (2001). An overview of analytic rotation in
exploratory factor analysis. Multivariate Behavioral Research,
36 (1), 111-150. doi: 10.1207/s15327906mbr3601_05

Canivez, G. L., Konold, T. R., Collins, J. M., & Wilson, G.
(2009). Construct validity of the Wechsler Abbreviated
Scale of Intelligence and Wide Range Intelligence Test:
Convergent and structural validity. School Psychology
Quarterly , 24 (4), 252-265. doi: 10.1037/a0018030

Carroll, J. B. (1993). Human cognitive abilities: A survey of
factor-analytic studies. New York, NY: Cambridge University
Press.

Costello, A. B., & Osborne, J. W. (2005). Best practices in
exploratory factor analysis: Four recommendations for
getting the most from your analysis. Practical Assessment
Research Evaluation, 10 (7), 1-9.

Crawford, C., & Ferguson, G. (1970). A general rotation
criterion and its use in orthogonal rotation.
Psychometrika, 35 (3), 321-332. doi: 10.1007/bf02310792

Crawley, M. J. (2007). The R book. Hoboken, NJ: Wiley.

Cudeck, R. (1989). Analysis of correlation matrices using
covariance structure models. Psychological Bul letin, 105 (2),
317-327. doi: 10.1037/0033-2909.105.2.317

Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using
R. Thousand Oaks, CA: Sage.

Fox, J. (2005). The R Commander: A basic-statistics graphical
user interface to R. Journal of Statistical Software, 14 (9).

Glutting, J., Adams, W., & Sheslow, D. (2000). Wide range
intel ligence test. Wilmington, DE: Wide Range.

Horn, J. (1965). A rationale and test for the number of factors
in factor analysis. Psychometrika, 30 (2), 179-185. doi:
10.1007/bf02289447

Horton, N. J., Brown, E. R., & Qian, L. (2004). Use of R as
a toolbox for mathematical statistics exploration. The
American Statistician, 58 (4), 343-357. doi:
10.1198/000313004X5572

Jennrich, R., & Bentler, P. (2011). Exploratory bi-factor
analysis. Psychometrika, 76 (4), 537-549. doi:
10.1007/s11336-011-9218-4

Jensen, A. R. (1998). The g factor: The science of mental ability.
Westport, CT: Praeger Publishers/Greenwood.

Kelley, K., Lai, K., & Wu, P.-J. (2008). Using R for data
analysis: A best practice for research. In J. W. Osborne

(Ed.), Best practices in quantitative methods (p. 535-572).
Thousand Oaks, CA: Sage.

McCammon, R. B. (1966). Principal component analysis and
its application in large-scale correlation studies. Journal of
Geology , 74 (5-2), 721-733.

Newton, J. H., & McGrew, K. S. (2010). Introduction to
the special issue: Current research in Cattell-Horn-
Carroll-based assessment. Psychology in the Schools, 47 (7),
621-634. doi: 10.1002/pits.20495

Paradis, E. (2005). R for beginners. Montpellier, France:
Universite Montpellier II. Retrieved from http://cran.r-
project.org/doc/contrib/Paradis-rdebuts_en.pdf

Pashler, H., & Wagenmakers, E. (2012). EditorsâĂŹ
introduction to the special section on replicability in
psychological science: A crisis of confidence? Perspectives on
Psychological Science, 7 (6), 528-530. doi:
10.1177/1745691612465253

R Development Core Team. (2011). R: A language and
environment for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing. Available from
http://www.R-project.org .

Revelle, W. (2012). psych: Procedures for psychological, psychometric,
and personality research (Version 1.2.4) [Computer software].
Evanston, IL: NorthwesternUniversity.

Rosseel, Y. (2012). lavaan: An R package for structural
equation modeling. Journal of Statistical Software, 48 (2), 1-
36.

Schmid, J., & Leiman, J. (1957). The development of
hierarchical factor solutions. Psychometrika, 22 (1), 53-61.
doi: 10.1007/bf02289209

The Psychological Corporation. (1999). Wechsler abbreviated
scale of intel ligence. San Antonio, TX: Author.

Vance, A. (2009, Jan 6). Data analysts captivated by R’s
power. New York Times. Retrieved from
http://www.nytimes.com/2009/01/07/technology/busine
ss-computing/07program.html/?pagewanted=all

Velicer, W. F. (1976). Determining the number of components
from the matrix of partial correlations. Psychometrika, 41
(3), 321-327. doi: 10.1007/bf02293557

Velicer, W. F., & Jackson, D. N. (1990). Component analysis
versus common factor analysis: Some issues in selecting
an appropriate procedure. Multivariate Behavioral Research,
25 (1), 1-28. doi: 10.1207/s15327906mbr2501_1

Venables, W. N., Smith, D. M., & R Development Core
Team. (2012). An introduction to R. R Development Core
Team. Retrieved from http://cran.r-
project.org/doc/manuals/R-intro.pdf

Yung, Y.-F., Thissen, D., & McLeod, L. D. (1999). On the
relationship between the higher-order factor model and
the hierarchical factor model. Psychometrika, 64 (2), 113-
128. doi: 10.1007/bf02294531.

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 10
Beaujean, Factor Analysis Using R

Appendix 1

Wechsler Abbreviated Scale of Intel ligence and Wide Range Intel ligence Test Summary Statistics

 WASI.

Voc
WASI.

BD
WASI.

Sim
WASI.

MR
WRIT.
VerbAn

WRIT.
Voc

WRIT.
Mat

WRIT.
Dia

 WASI.Voc 1.00 0.57 0.79 0.62 0.69 0.83 0.56 0.51
WASI.BD 1.00 0.57 0.65 0.51 0.54 0.59 0.66
WASI.Sim 1.00 0.60 0.70 0.74 0.58 0.55
WASI.MR 1.00 0.53 0.57 0.71 0.62
WRIT.VerbAn 1.00 0.71 0.65 0.51
WRIT.Voc 1.00 0.58 0.53
WRIT.Mat 1.00 0.62
WRIT.Dia 1.00
Mean 97.75 97.87 103.81 99.81 101.51 100.63 101.45 100.64
SD 17.37 14.49 17.26 16.61 14.77 16.42 16.17 13.92
Note. Data taken from Canivez et al. (2009, p. 257). WASI: Wechselr Abbreviated Scale of Intelligence; WRIT:
Wide Range Intelligence Test; Voc: Vocabulary; BD: Block Design; Sim: Similarities; MR: Matrix Reasoning;
VerbAn: Verbal Analogies; Mat: Matrices; Dia: Diamonds.

Appendix 2

lavaan Results from the Single-Factor Model

1 lavaan (0.5-9) converged normally after 61 iterations
2 Number of observations 152
3 Estimator ML
4 Minimum Function Chi-square 121.483
5 Degrees of freedom 20
6 P-value 0.000
7 Chi-square test baseline model:
8 Minimum Function Chi-square 918.115
9 Degrees of freedom 28
10 P-value 0.000
11 Full model versus baseline model:
12 Comparative Fit Index (CFI) 0.886
13 Tucker-Lewis Index (TLI) 0.840
14 Loglikelihood and Information Criteria:
15 Loglikelihood user model (H0) -4681.416
16 Loglikelihood unrestricted model (H1) -4620.674
17 Number of free parameters 16
18 Akaike (AIC) 9394.832
19 Bayesian (BIC) 9443.214
20 Sample-size adjusted Bayesian (BIC) 9392.574
21 Root Mean Square Error of Approximation:
22 RMSEA 0.183
23 90 Percent Confidence Interval 0.152 0.215
24 P-value RMSEA <= 0.05 0.000

Practical Assessment, Research & Evaluation, Vol 18, No 4 Page 11
Beaujean, Factor Analysis Using R

25 Standardized Root Mean Square Residual:
26 SRMR 0.068
27
28 Estimate Std.err Z-value P(>|z|) Std.lv Std.all
29 Latent variables:
30 g =
31 WASI.Voc 15.192 1.122 13.538 0.000 15.192 0.877
32 WASI.Sim 14.701 1.134 12.967 0.000 14.701 0.855
33 WRIT.VerbAn 11.735 1.008 11.645 0.000 11.735 0.797
34 WRIT.Voc 14.088 1.074 13.120 0.000 14.088 0.861
35 WASI.BD 10.107 1.043 9.686 0.000 10.107 0.700
36 WASI.MR 12.284 1.170 10.498 0.000 12.284 0.742
37 WRIT.Mat 11.866 1.143 10.384 0.000 11.866 0.736
38 WRIT.Dia 9.387 1.014 9.261 0.000 9.387 0.677
39 Variances:
40 WASI.Voc 68.947 0.264 68.947 0.230

41 WASI.Sim 79.832 11.241 79.832 0.270

42 WRIT.VerbAn 79.000 10.282 79.000 0.365

43 WRIT.Voc 69.380 9.898 69.380 0.259

44 WASI.BD 106.433 13.057 106.433 0.510

45 WASI.MR 123.169 15.409 123.169 0.449

46 WRIT.Mat 118.942 14.834 118.942 0.458

47 WRIT.Dia 104.381 12.698 104.381 0.542

48 g 1.000 1.000 1.000

Citation:

Beaujean, A. Alexander (2013). Factor Analysis using R. Practical Assessment, Research & Evaluation, 18(4).
Available online: http://pareonline.net/getvn.asp?v=18&n=4

Author:

A. Alexander Beaujean
Department of Educational Psychology
Baylor University
One Bear Place #97301
Waco, TX 76798-7301
Alex_Beaujean [at] Baylor.edu

