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Propensity score applications are often used to evaluate educational program impact. However, various 
options are available to estimate both propensity scores and construct comparison groups. This study used a 
student achievement dataset with commonly available covariates to compare different propensity scoring 
estimation methods (logistic regression, boosted regression, and Bayesian logistic regression) in combination 
with different methods for constructing comparison groups (nearest-neighbor matching, optimal matching, 
weighting) relative to balancing pre-existing differences and recovering a simulated treatment effect in small 
samples. Results indicated that applied researchers evaluating program impact should first consider use of 
standard logistic regression methods with nearest-neighbor or optimal matching or boosted regression in 
combination with propensity score weighting. Advantages and disadvantages of the methods are discussed. 

Experimental studies provide rigorous evidence 
for evaluating treatment efficacy by randomly assigning 
subjects to treatment groups.  However, when random 
assignment is impractical or unethical, observational 
studies or quasi-experimental designs are often 
considered.  Absent random assignment, any observed 
differences between groups may not be attributed 
unequivocally to an intervention or educational 
program.  To help control for pre-existing differences, 
a matched-pairs design (Cook & Campbell, 1979; 
Shadish, Cook, & Campbell, 2002) is often proposed.  
In this type of design, each member in a treatment 
group is matched with a member of a non-treatment 
group using relevant variables or characteristics.  
However, matching on many variables is difficult to 
implement particularly when continuous variables are 
involved.  Alternatively, propensity scoring methods 
can be used to implement a matched-pairs design 
(Rosenbaum & Rubin, 1983; 1985; Schneider, Carnoy, 
Kilpatrick, Schmitt, and Shavelson, 2007). 

A propensity score is a single summary score that 
represents the relationship between multiple observed 
characteristics for group members and treatment group 
assignment.  It has been described as the “propensity 
towards exposure to treatment…given the observed 
covariates” (Rosenbaum & Rubin, 1983; pg. 47).  This 

single score considers simultaneously all the relevant 
characteristics and attempts to reduce selection bias by 
weighting the characteristics relative to their influence 
on predicting treatment group assignment (Rudner & 
Peyton, 2006).  The idea underlying propensity score 
matching is that if a member of the treatment group is 
matched with a member of the control group 
(propensity score matching), both have the same 
probability of being in the treatment condition (i.e., the 
same assumption underlying random group assignment 
designs).  Further, Rosenbaum and Rubin (1983) 
showed that, in large samples, treatment and control 
groups matched on a propensity score will be similar 
relative to the characteristics used to compute 
propensity scores.  Thus, “…if treatment and control 
groups have the same distribution of propensity scores, 
they have the same distribution for all observed 
covariates, just like in a randomized experiment” 
(Rubin, 2001; p. 171).  Note that propensity scores can 
also be used to reduce selection bias by using the scores 
to weight differentially treatment and control cases 
(propensity score weighting).   

Researchers have discussed different methods for 
estimating propensity scores and different procedures 
for using propensity score estimates to create 
comparison groups, and there is on-going debate as to 
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the relative merits of different approaches (An, 2010).  
Further, research comparing different approaches has 
yielded different recommendations.  Examples of 
studies involving real data comparisons and simulation 
studies include Wilde & Hollister (2007), Harder, 
Stuart, Anthony (2010), and An (2010), Luellen, 
Shadish, and Clark (2005), Austin (2010), and Luellen 
(2007).  These researchers found that the choice of the 
method and the context of the evaluation can impact 
the assessment of a treatment effect.  Wilde & 
Hollinster concluded that “further research is needed 
before policymakers rely on [propensity score 
matching] as an evaluation tool” (p.455). 

While the literature contains studies examining 
different propensity scoring methods and assumptions 
underlying the use of the methods, there is a lack of 
evidence when treatment group sample sizes are small.  
Small intact samples are not uncommon in educational 
program evaluation since educational interventions may 
be time intensive and difficult to implement on a larger 
scale.  The purpose of this study was to address this 
specific context and compare different propensity 
scoring methods in a simulation study.  The simulation 
study compared a randomized design with a variety of 
different methods for estimating propensity scores in 
combination of methods for constructing comparison 
groups under conditions which applied researchers 
commonly encounter in studies evaluating instructional 
or educational programs. 

Propensity Score Estimation 

A propensity score is defined by Rosenbaum and 
Rubin (1983) as the conditional probability of being 
selected into the treatment group given a set of 
covariates or observed characteristics for group 
members: p(X) = Pr{Tr = 1 | X} = E{Tr | X}, where 
Tr = {0, 1} is an indicator variable for treatment group 
selection and X is a multidimensional vector of 
covariates.  Propensity scores therefore describe the 
likelihood that a population member would have been 
selected into the treatment group based on a set of 
model covariates, given they were eligible.  Propensity 
score estimates are then used to construct a 
comparison group, and the average treatment effect (τ) 
based on a outcome measure (Y) is then estimated as 
follows: τ = E{Y1 | Tr=1} – E{Y0 | Tr = 0}.   

In contrast to randomized designs, propensity 
scoring methods rely on a set of covariates to model 
the treatment group selection process, and the methods 
cannot adjust for relevant unobserved covariates or 

“hidden selection bias”.  Propensity scoring therefore 
assumes observations with the same propensity score 
have the same distributions for observable and 
unobservable characteristics independent of treatment 
group status.  Thus, for a given propensity score, 
treatment and control group members should be on 
average identical or exchangeable.  This links 
propensity scoring to the assumption of ignorable 
treatment group assignment and to the corollary that 
the estimate of τ is unbiased (Rubin, 1997). 

In the context of social and educational program 
evaluation research, the treatment or intervention effect 
could reflect attainment of program outcomes or 
efficacy of an intervention.  For example, a treatment 
effect could be evaluated using a difference in mean 
scores on an instrument assessing program outcomes, a 
mean score on a test reflecting achievement outcomes, 
or be based on the frequency of success or completion 
by individuals participating in a program (i.e., odds of a 
successful intervention).    

A common approach for modeling the treatment 
selection process or estimating propensity scores is 
logistic regression (LR) with treatment group 
assignment (1=Tr, 0=C) as the dichotomous outcome 
and a set of measured covariates as predictors 
(Rosenbaum & Rubin, 1983; D’Agostino, 1998). Based 
on the estimated model, predicted probabilities for 
being assigned to the treatment group (propensity score 
estimates) may be obtained for both the treatment 
group and potential control group members.  However, 
simulation studies have found that logistic regression 
methods are sensitive to the functional form of the 
relationship between the set of covariates and 
treatment selection (McCaffrey, Ridgeway, & Morral, 
2004).  In response to this issue, McCaffrey et. al. 
discussed the use of generalized boosted-regression 
modeling (GBM) which is a nonparametric approach 
that recursively partitions the data for each covariate.  
Each partition allows for additional interactions 
between variables and the algorithm selects partitions 
which provide the most information about the 
outcome, in this case treatment assignment.   An 
advantage of this approach over LR is that a large 
number of covariates can be used and the correct 
functional forms for each covariate and interactions 
between covariates do not have to be specified.  The 
reader is referred to Luellen, Shadish, and Clark (2005) 
for an introductory treatment of the two methods for 
estimating propensity scores. 
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 Using propensity score estimates to construct 
comparison groups assumes that the propensity scores 
are known for each observation (treatment and control 
group members), and their use therefore does not 
consider possible uncertainty in the propensity score 
estimates.  Alternatively, a Bayesian propensity score 
analysis (BPSA) can be used (McCandless, Gustafson, 
& Austin, 2009; An, 2010; Kaplan & Chen, 2010).  A 
Bayesian approach generates a distribution of 
propensity score estimates for each treatment group 
member. Using BPSA, it is possible to sample 
repeatedly from these distributions, construct multiple 
replications of treatment and comparison groups, and 
estimate a treatment effect for each replication of 
treatment and comparison groups. A distribution of 
estimated treatment effects can therefore be obtained 
that considers the uncertainty in estimating the 
propensity scores.   A Bayesian approach could be 
particularly useful when there is less stability in the 
estimation of propensity scores such as when there is a 
small treatment group relative to the control group 
population. 

Creating Comparison Groups Using Propensity 
Score Estimates 

Once the propensity scores are estimated for all 
members of the population (treatment and potential 
control group members), there are different methods 
for creating comparison groups (c.f., Luellen et. al., 
2005 for an introductory treatment of the methods): 1) 
construct matched samples; 2) construct subgroupings 
or stratifications on the propensity scores; and 3) 
weight each treatment and control group member.  For 
all of these methods, the distributions of propensity 
score estimates for the treatment and control group 
should overlap substantially and researchers should 
evaluate the extent of overlap prior to constructing 
comparison groups.  

Propensity Score Matching (PSM). PSM reflects a 
class of methods frequently used to construct 
comparison groups. For one method, a control group 
member with the closest propensity score to a 
treatment group member is matched without 
replacement (nearest neighbor matching).  All 
remaining control group members are disregarded.  
One disadvantage of this approach is that if a match is 
not found for a treatment group member, there is a 
loss of treatment group members. Loss of treatment 
group members, in turn, could produce biased 
treatment effect estimates and loss in power to detect a 

treatment effect.  Also, a number of control group 
members typically have approximately equal propensity 
scores. Thus, any variation due to different control 
group matches for each treatment group member is not 
considered.  Note that there are a number of variants 
to this type of matching algorithm (c.f., Guo & Fraser, 
2010). 

A more recently discussed alternative, optimal 
matching, may also be used.  The goal of optimal 
matching is to find a matched set of treatment and 
control group members, from all possible sets of 
matched pairs, which minimizes the total difference 
between propensity scores for matched pairs.  Gu and 
Rosenbaum (1993) found that “…optimal matching is 
often better than nearest neighbor matching when the 
goal is to minimize the average distance within pairs…” 
(p.413). For all PSM methods, the treatment effect can 
then be analyzed by comparing outcome variables for 
the two matched groups. 

Propensity Score Stratification (PSS).  This method 
ranks all members (treatment and control group) by 
propensity score estimates and creates subclasses or 
groups of treatment and control group members that 
have similar propensity scores.  Typically five 
subclasses are formed with approximately the same 
number of members (Rosenbaum & Rubin, 1983).  For 
each stratum, the average treatment effect (τi ) is 
computed and a weighted combination of these 
treatment effects is computed to evaluate treatment 
impact.  An advantage of this method is that all 
treatment and control group members factor into the 
evaluation of the treatment effect.  However, this 
method works best when the members within strata are 
homogenous in regard to the propensity score, and 
strata based on the same sample size do not guarantee 
this condition is met.  A further disadvantage is that, in 
a small study sample, a subclass may contain a very 
small number of treatment group members or only 
control group members. 

Propensity Score Weighting (PSW). PSW uses the 
estimated propensity scores (PS) to weight all treatment 
and control group observations when estimating a 
treatment effect. Different types of weights may be 
used to estimate two different effects: 1) average 
treatment effect or ATE (weights are 1/PS for each 
treatment group member and 1/(1-PS) for each control 
group member) or 2) average treatment effect for the 
treated or ATT (weights are 1 for each treatment group 
member and PS/(1-PS) for each control group 



Practical Assessment, Research & Evaluation, Vol 18, No 13 Page 4 
Stone & Tang, Propensity Scoring 
 

 

member). Although ATE weights are often used in 
applied research, Heckman (2005) discussed that in 
many policy contexts the effect of interest is often the 
average treatment effect for the treated.  In choosing 
between ATE and ATT sampling weights, Guo & 
Fraser (2010) write “…in deciding whether a policy is 
beneficial, our interest is not whether on average the 
program is beneficial for all individuals [i.e. ATE] but 
whether it is beneficial for those individuals who are 
assigned or who would assign themselves to the 
treatment [i.e., ATT]” (p.47). 

An advantage of PSW is that all possible control 
group members are assigned sampling weights – 
propensity score estimates are used to weight the 
treatment and ALL control members when estimating 
the treatment effect.  Thus, there may be increased 
power to detect a treatment effect.  Despite its 
advantages, PSW has its own limitations. Simulation 
studies (Freedman & Berk, 2008; Kang & Schafer, 
2007) have shown that the PSW is sensitive to the 
misspecification of the propensity score model 
(variables and functional forms) particularly when some 
estimated propensity scores are small.  Also, Harder, 
Stuart, & Anthony (2010) discuss that very small 
propensity score estimates and in turn very large 
sampling weights can be “influential” and produce 
biased estimates of a treatment effect when using ATE-
based sampling weights. 

Methodology 

Using simulation methods, this study compared 
the effectiveness of different propensity scoring 
applications in balancing the measured covariates and 
recovering/detecting a simulated treatment effect 
under conditions which applied researchers face in 
studies evaluating instructional or educational 
programs.  The context of this study was small scale 
educational program evaluations (i.e., small treatment 
groups) that involve a set of predetermined or intact 
treatment group members and a change in achievement 
results for a treatment versus control group.   

Rather than simulate data for a population of 
treatment and control group members, a dataset from a 
state assessment program that included achievement 
results and commonly available covariates were used to 
match a set of predetermined treatment group 
members with members from a population of control 
group members.  The advantage of using a real dataset 
of covariates was that it allowed for determining 
whether a set of commonly available covariates to 

applied researchers can be used effectively in 
combination with different propensity scoring methods 
in educational program evaluations. 

 The data for the study were a set of middle 
school achievement results for all school districts (386 
districts) from a state assessment program.  The 
covariates used to estimate propensity scores included: 
proportion of economically disadvantaged students 
(Prop_Disadv), proportion of minority students 
(Prop_Minority), proportion of IEP students (Prop_IEP), 
overall attendance rate (Attendance), graduation rate 
(Graduation), and baseline test score performance (Reading and 
Math scale scores: SS_Math, SS_Read).  Correlations 
between the covariates were generally moderate, ~ | .3 
to .5 |, with the exception of correlations between the 
scale scores SS_Math and SS_Read (> .8) and the scale 
scores with Prop_Disadv (< -.7).  Note that this dataset 
reflects typical data that is publicly available to 
researchers evaluating educational interventions, that is, 
typical covariates and results at an aggregated level (e.g. 
school or district) rather than individual student results. 

Study Design Factors  

Sample Size of Treatment Group. Samples of 30 
and 60 were chosen to represent smaller treatment 
group sizes that are consistent with typical educational 
program evaluations. 

Selection of Treatment Group Members. Three 
conditions were manipulated: 1) random selection of 
treatment and control group members (“true” 
experiment as baseline condition); 2) non-random or 
predetermined selection of treatment group members 
with no hidden covariate; and 3) non-random or 
predetermined selection of treatment group members 
with a hidden covariate.  These latter two conditions 
(no-hidden vs. hidden covariate) were designed to 
manipulate the ignorability of treatment group 
assignment assumption within the treatment selection 
process. 

To implement the non-random selection of 
treatment group members, treatment group members 
were selected from a subset of the population of 
statewide school districts based on the covariate, 
Prop_Disadv.  Specifically, treatment group members 
were selected from members with a value greater than 
the median for the covariate Prop_Disadv.  This 
condition models non-equivalent groups and considers 
the case where an intervention is focused on 
disadvantaged populations.  While this is admittedly a 
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simplistic treatment assignment model, it does reflect a 
target population for many educational program 
evaluations.  Note that the unselected members from 
this subpopulation became part of the pool of potential 
control group members along with school districts 
below the median for the covariate Prop_Disadv, so that 
overlap in propensity score estimates between 
treatment and control group members was maintained. 

To implement the hidden versus no-hidden 
conditions, the covariate used to select treatment group 
members, Prop_Disadv, was included in the treatment 
group selection model for estimating propensity scores 
for the no-hidden covariate condition and excluded 
from the model for the hidden covariate condition.  
Note that the no-hidden covariate condition reflects an 
ideal condition for estimating propensity scores and 
therefore a condition that should meet the ignorability 
of treatment group assumption.   

Propensity Score Estimation Method. In the 
current study, logistic regression (LR), generalized 
boosted modeling (GBM) and a Bayesian propensity 
score analysis using logistic regression (BLR) were 
compared. LR models were estimated using SAS 9.2 
(SAS institute, 2008). The GBM algorithm was 
implemented using the R routine twang (McCaffrey et. 
al., 2004; Ridgeway, McCaffrey, Morral, Burgette, & 
Griffin 2012).  PROC MCMC in SAS was used to 
estimate BLR models with non-informative priors for 
all coefficients. 

Method for Constructing Comparison Groups. 
Three commonly used and/or researched methods for 
assigning control group members were compared: 1) 
Nearest neighbor or greedy matching; 2) Optimal 
matching; 3) Using propensity scores as sampling 
weights (estimating both ATT and ATE). The nearest 
neighbor matching was conducted using SAS macro 
%GREEDMTCH (Parsons, 2001). The SAS macro 
Proc Assign (Coca-Perraillon, 2007) was used for optimal 
matching (see Stuart’s website for other program 
options – 
http://www.biostat.jhsph.edu/~estuart/propensityscor
esoftware.html).  For the current study, propensity 
score stratification was not evaluated, since the number 
of stratifications and sample size suggested by 
Rosenbaum and Rubin (1984) limits the use of this 
method with smaller treatment groups.  Further, the 
matching methods involved paired matching, or 
matching a single treatment group member to a single 
control group member, rather than matching multiple 

control group members with a single treatment group 
member.  This approach is one of the basic and 
common matching methods used, and focusing on this 
method served to reduce the number of experimental 
conditions under study. 

It might be argued that ATT sampling weights are 
more consistent with the nature of the non-random 
selection of treatment group members used in the 
present study.  As Guo and Fraser (2010) suggested, 
when the focus is estimating an effect for those 
individuals who are assigned to treatment rather than 
an average effect for all individuals in the population, 
evaluating ATT is more appropriate.  However, since 
ATE sampling weights are commonly used both sets of 
weights were evaluated.  Also, while in principal 
propensity score estimates from twang can be used with 
propensity score matching (McCaffrey, personal 
communication, November, 2012), the twang program 
was specifically designed to be used with propensity 
score weighting.  

Data Generation and Analysis 

For each combination of conditions described in 
the Design Factors section, the data generation and 
analysis steps included: 

1) For one sample size condition (n=30 or 60), 
select a set of treatment group members without 
replacement from the population of districts in the 
state achievement dataset (386 school districts) using 
one of three methods (random or two nonrandom 
conditions).  All unselected school districts form the 
pool of potential control group members (360 - n).  

2) Simulate a random small standardized mean 
effect size (mean d = 0.2) as the program impact on 
achievement results for only the selected treatment 
group members (Cohen’s criteria, 1988).  

3) Estimate propensity scores for the treatment 
group members using each of the three methods (LR, 
GBM, and BLR).  Note that estimation of propensity 
scores was based on all included covariates as suggested 
by Rubin and Thomas (2000). 

 4) Create a comparison group from the pool of 
potential control group members using the propensity 
score estimates from Step 3 (matching methods, 
sampling weights). 

5) Estimate the treatment effect using analysis of 
covariance with baseline math scale scores as the 
covariate for each combination of propensity score 
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estimation methods and methods for constructing 
comparison groups from Steps 3 and 4 (propensity 
score estimation method crossed with methods for 
constructing comparison groups).  Note that this 
covariate was also included in the model used to 
estimate propensity scores since adjusting for pre-
treatment differences is important to the assessment of 
a treatment effect (Schafer & Kang, 2008).  For the 
BLR approach, the treatment effect was evaluated by 
sampling from the posterior distributions for 
propensity scores for each treatment group member, 
creating different samples of treatment and comparison 
groups, evaluating the treatment effect in each of the 
samples, and using SAS PROC MIANALYZE to 
combine results across samples (imputations) to obtain 
a valid hypothesis test for the treatment effect.  This 
approach isolates the impact of uncertainty in 
propensity score estimates (Kaplan & Chen, 2010). 

6) Repeat the experiment (Steps 1-5) to obtain 500 
replications or a distribution of balance check criterion 
statistics and estimated treatment effects.  Recovery of 
the simulated treatment effect was evaluated by 
examining the bias and root mean squared error 
(RMSD) of the simulated treatment effect across 
replications.  The balance check criterion was evaluated 
for each measured covariate by the standardized 
difference test – absolute difference in the sample 
means for the treatment and control groups divided by 
the pooled standard deviation for each measured 
covariate (Austin, 2007).  Finally, since a treatment 
effect was computed for each replication, the empirical 
power of the test (i.e., the number of times a treatment 
effect was significant across replications) could be 
computed and compared across conditions.  It should 
be noted that in a “real” application of propensity 
scoring methods, the propensity score model would be 
adjusted if inadequate balance in the measured 
covariates was attained.  However, such an approach is 
difficult to implement in a multiple replication 
simulation study.  As will be discussed, except for a few 
conditions, adequate balance in the measured 
covariates was attained. 

7) Repeat Steps 1to 6 for each combination of 
sample size and selection of treatment group 
conditions. 

Results 

The results describe the degree to which the 
various propensity scoring applications were able to: 1) 

balance pre-existing differences in the measured 
covariates (balance check criterion); 2) recover the 
simulated treatment effect (mean d=.2); and 3) detect a 
significant treatment effect (empirical power).  Results 
are reported separately for the two non-random 
treatment selection conditions (no-hidden covariate 
and hidden covariate conditions) across the two sample 
size conditions (30 and 60).  Results for the 
randomized design condition are embedded in the 
tables to provide direct comparison with results from 
the non-random treatment selection conditions. 

Balancing Pre-Existing Differences using 
Different Propensity Scoring Methods  

Checking balance in measure covariates across 
treatment and control groups is important since 
propensity scoring assumes cases with the same 
propensity score have the same distributions for 
observable and unobservable characteristics.  Table 1 
presents the average of standardized differences for the 
covariates across replications for the non-random 
treatment selection condition with the treatment 
selection covariate (Prop_Disadv) included in the 
propensity score model (no-hidden covariate 
condition).  Also included are differences associated 
with the randomized design condition as well as 
differences prior to propensity score adjustment.   

As can be seen, small standardized differences 
were observed for the randomized design condition 
with, as expected, smaller differences as sample size 
increased from 30 to 60.  As for pre-existing 
differences and the presence of non-equivalent groups, 
large standardized differences between the groups prior 
to the propensity score adjustment with the exception 
of the Prop_Minority and Prop_IEP covariates were 
found.  In particular, the largest differences were 
observed for the Prop_Disadv covariate which should 
not be surprising since this variable was used to select 
treatment group members. 

As for how well the different propensity score 
approach adjusted for pre-existing group differences in 
the covariates, it can be seen that the top performing 
method (smallest standardized differences) was GBM 
in combination with PSW and ATT sampling weights.  
It can also be seen that the matching methods (Nearest  
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Table 1. Covariate Balance for Non-Random Treatment Group Selection with Selection Covariate Included in the 
PS Model (Not-Hidden Covariate Condition) 
   

Randomize
d Design 

 

Pre-PS 
Adjust-
ment 

 
LR GBM  Bayesian LR 

N Covariates 

   Nearest 
Neigh-

bor 
Optimal ATE ATT

 Nearest 
Neigh-

bor 
Optimal ATE ATT 

 Nearest 
Neigh-

bor 
Optimal ATE ATT

30 

P_Disadv  .21  1.03  .13 .13 .63 .21 .35 .17 .85 .11  .26 .20 .61 .40 
P_Minority  .22  .18  .16 .15 .17 .04 .28 .16 .12 .06  .17 .17 .31 .20 
P_IEP  .22  .24  .14 .14 .14 .05 .28 .14 .15 .05  .19 .17 .24 .19 
SS_Read  .22  .70  .12 .12 .44 .11 .35 .16 .53 .09  .21 .18 .47 .27 
SS_Math  .21  .70  .13 .12 .44 .12 .36 .16 .52 .09  .21 .18 .47 .28 
Attendance  .22  .46  .14 .14 .27 .06 .32 .16 .32 .06  .19 .17 .32 .22 
Graduation  .21  .30  .15 .15 .18 .07 .29 .14 .19 .06  .18 .18 .26 .24 

                    

60 

P_Disadv  .15  1.09  .08 .07 .51 .47 .22 .09 .90 .09  .16 .13 .48 .58 
P_Minority  .15  .14  .11 .11 .23 .07 .18 .10 .08 .05  .13 .12 .30 .20 
P_IEP  .14  .24  .10 .09 .11 .10 .19 .09 .17 .05  .13 .12 .16 .18 
SS_Read  .15  .75  .08 .07 .38 .24 .22 .09 .59 .07  .12 .11 .36 .33 
SS_Math  .15  .74  .08 .07 .38 .27 .22 .09 .59 .07  .12 .11 .35 .36 
Attendance  .15  .50  .09 .09 .25 .12 .22 .09 .38 .05  .13 .12 .24 .21 
Graduation  .15  .32  .10 .09 .19 .14 .19 .09 .24 .05  .12 .12 .21 .25 

 

Neighbor and Optimal) preformed similarly and as well 
or better than the randomized design condition with 
the exception of the nearest neighbor method in 
combination with GBM estimation of propensity 
scores.  The poor performance of this one method was 
surprising but may be explained by the number of 
unmatched treatment group members.  For the 
combination of GBM and nearest neighbor matching, 
approximately half the selected treatment group 
members on average were not matched to potential 
control group members (i.e., a match to one significant 
digit could not be found).  On the other hand, when all 
treatment group members were matched using optimal 
matching and GBM propensity score estimates, results 
were similar to the matching methods using LR models 
to estimate propensity scores.  As to why the GBM 
methods yielded so many unmatched treatment group 
members in comparison with LR methods, more 
research is required.  One possibility may be related to 
the small sample sizes.  Luellen (2007) discussed that 
GBM may be a useful alternative to LR for large 
sample sizes.  Also, the finding that propensity scoring 
methods were able to balance pre-existing differences 
more than the randomized design may be due to the 
fact that differences among groups can still exist with 
randomized designs, particularly when there are smaller 
sample sizes. 

With regard to using Bayesian LR methods to 
estimate propensity scores, slightly higher standardized 

differences were observed in comparison with standard 
LR methods.  Although Bayesian approaches model 
additional sources of error, this error typically affects 
variances rather than means.  Rather, the higher 
standardized differences may be due to the non-
informative prior that was used, but this requires 
further study to explain this result. 

Finally, comparing the use of ATT versus ATE 
sampling weights with PSW in Table 1, results based on 
ATT were closer to results based on matching methods 
whereas results based on ATE exhibited markedly 
higher standardized differences.  This may be expected 
given research findings that ATT and ATE sampling 
weights yield different results under non-random 
treatment selection conditions (e.g., Harder, Stuart, & 
Anthony 2010; Imbens, 2004).    Further, these 
researchers discussed that ATT weighting was more 
consistent with matching methods, that is, ATT 
weighting and matching methods consider the 
treatment group the standard population (ATT); 
whereas ATE weighting considers the entire population 
of treatment and control group members the standard 
population.  Further, as discussed by Schaffer & Kang 
(2008), ATE weighting may underperform use of ATT 
weights when there are more extreme weights. 

The same analyses were conducted for the non-
random treatment selection condition when the 
selection covariate, Prop_Disadv, was excluded from the 
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propensity score model (hidden covariate condition).  
Although introduction of a hidden covariate condition 
violates the ignorability assumption, a similar pattern in 
the results for the no-hidden covariate condition (see 
Table 1) was observed with three exceptions: 1) the top 
performing method was use of LR propensity score 
estimates with PSW with ATT weights; 2) the ATE 
sampling weight condition exhibited smaller 
standardized differences than observed for the non-
hidden covariate condition; and 3) slightly smaller 
standardized differences were observed under all 
crossed methods of estimating propensity scores and 
constructing comparison groups.  Thus, for this study, 
absence of the treatment selection variable from the 
model used to estimate propensity scores did not affect 
their use in adjusting pre-existing differences. 

Recovery of the Simulated Treatment Effect and 
Empirical Power 

Table 2 presents the average treatment effect and 
root mean squared deviation (RMSD) or variability in 
the estimated effect sizes from the simulated effect 
(mean d = .2) across the 500 replications for the two 
non-random treatment selection conditions (no-hidden 
and hidden covariate).  Since the balance check failed 
for a few conditions (ATE weights and GBM with 
nearest neighbor matching), it could be argued that 
assessing recovery of a treatment effect for these 
conditions was not appropriate.  However, the recovery 
of a treatment effect was still evaluated for these 
conditions to determine the direction of any bias. 

Recovery of the simulated treatment effect was 
similar across the two non-random selection conditions 
which may not be surprising given the similarity in 
adjusting for pre-existing differences in the covariates 
for the two non-random conditions.  As for how well 
the different propensity score methods could be used 
to recover the simulated treatment effect, it can be seen 
that the GBM with ATT weighting method and 
matching methods (Nearest Neighbor and Optimal) 
again performed similarly to the randomized design 
condition with the exception of the nearest neighbor 
method in combination with GBM estimation of 
propensity scores.  Given this method exhibited poor 
performance in adjusting for pre-existing differences, it 
should not be surprising that this method also 
underperformed relative to recovering the simulated 
treatment effect.  As for results related to adjusting for 

pre-existing differences, the poor performance can be 
explained by the number of unmatched treatment 
group members. 

However, unlike the prior results, the Bayesian LR 
approach performed slightly better than the standard 
LR approach in recovering the simulated treatment 
effect, and the approaches using sampling weights to 
construct comparison groups (ATE and ATT) were 
less divergent from one another and more similar to 
using matching methods.  It is interesting to note that 
the use of ATE sampling weights tended to 
underestimate the simulated treatment effect whereas 
the ATT sampling weights tended to overestimate the 
simulated treatment effect when used in combination 
with LR estimated propensity scores.  As for the 
variability in recovering the simulated treatment effect, 
not surprisingly, as sample size increased RMSD 
decreased. 

Table 3 presents the empirical power rates or the 
proportion of times a statistically significant treatment 
effect was found across replications.  As for the 
recovery of the simulated treatment effect, empirical 
power rates were similar across the two non-random 
selection conditions.  As was found above, the 
matching methods (Nearest Neighbor and Optimal) 
also performed similarly to the randomized design 
condition with the exception of the nearest neighbor 
method in combination with boosted regression 
estimation of propensity scores.  This result can again 
be explained by the number of unmatched treatment 
group members for this condition.  However, the 
propensity score weighting methods (ATE and ATT) 
both exhibited greater empirical power over the 
matching methods and the randomized design.  This 
result can be explained by recalling that propensity 
score weighting utilizes the entire control group 
population for the comparison group (386 minus the 
number of treatment group members), whereas 
matching methods use a control group sample size 
equivalent to the size of the treatment group (30 or 60).  
Thus, increase in the sample size for the control group 
would be expected to increase the power of a statistical 
test for a treatment effect.  There was also a slight 
increase in power associated with using weights based 
on ATT versus ATE. 
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 Table 2. Recovery of Simulated Treatment Effect - Average Effect Size and RMSD  
   Random-

ized 
Design 

  LR GBM  Bayesian LR 

N N    Nearest  
Neighbor 

Optimal ATE ATT  Nearest 
Neighbor

Optimal ATE ATT  Nearest  
Neighbor 

Optimal ATE ATT

 
No Hidden Covariate 

               

Average 
Effect Size 

30  .27   .23 .25 .17 .27 .50 .31 .16 .18  .21 .22 .21 .34 
60  .21   .22 .21 .13 .35 .37 .22 .20 .18  .19 .19 .15 .40 

                   

RMSD 30  .21   .17 .18 .13 .15 .43 .21 .13 .12  .17 .16 .18 .27 
60  .15   .13 .13 .11 .20 .27 .13 .11 .11  .13 .13 .13 .29 

 
Hidden Covariate 

               

Average 
Effect Size 

30  .27   .23 .27 .12 .25 .57 .40 .12 .14  .20 .22 .16 .31 
60  .21   .21 .22 .08 .28 .49 .33 .11 .13  .17 .17 .11 .31 

                   

RMSD 
30  .21   .16 .18 .12 .13 .47 .28 .12 .12  .16 .16 .14 .24 
60  .15   .12 .12 .13 .13 .34 .19 .12 .11  .12 .12 .12 .20 

 

Table 3. Empirical Power to Detect Treatment Effect 
   Random-

ized 
Design 

 LR GBM Bayesian LR 

  N   Nearest  
Neighbor 

Optimal ATE ATT Nearest  
Neighbor

Optimal ATE ATT  Nearest  
Neighbor 

Optimal ATE ATT

 
No Hidden Covariate 

             

 30  .19  .17 .24 .63 .69 .14 .24 .74 .80 .21 .22 .60 .80 
 60  .40  .42 .44 .59 .68 .28 .44 .76 .77 .32 .34 .52 .90 

 
Hidden Covariate              

 30  .19  .26 .26 .65 .80 .09 .18 .71 .74 .18 .22 .49 .78 
 60  .40  .45 .43 .69 .86 .22 .35 .68 .76 .25 .30 .38 .84 

 

 The increase in power to detect a significant 
effect may be viewed as an apparent advantage to using 
sampling weight methods over matching methods.  
However, it is also possible that the increase in power 
to detect an effect comes at the expense of an increase 
in Type I error, or in other words, an increase in the 
probability of rejecting a null hypothesis of no 
difference when there is no true difference.  In order to 
evaluate this threat to validity, the simulation study was 
rerun but with no simulated treatment effect (d=0).  
For no simulated treatment effect, the empirical power 
rates approximated the Type I error rate (=.05) for 
the randomized design and the various combinations of 
approaches using matching methods for constructing 
comparison groups.  However, for combinations of 
approaches using sampling weight methods for 
constructing comparison groups, the empirical power 
rates varied from .25 to .35 which is considerably 
higher than the nominal Type I error rate ( =.05).  
Thus, although propensity score weighting increases 
the power to detect a significant effect, it may do so at 
the expense of increasing the probability of identifying 
a non-significant treatment effect as significant (false 

positive).  As to whether false positives versus false 
negatives would be preferred, the context of the 
intervention or educational program would need to be 
considered. 

Other covariates were also used to model a non-
random treatment group selection process (Graduation 
Rate and Math Scale Score) in order to evaluate 
whether results were affected by the particular covariate 
that was chosen to model the selection process.  For 
example, the simulation study was also run with 
treatment group members being assigned only from 
districts with below average graduation rates.  Results 
for these additional non-random treatment group 
selection conditions were very similar to results 
presented above, and are therefore not included or 
discussed further. 

Discussion and Recommendations 

In educational program evaluation research, quasi-
experimental designs using propensity score 
approaches are often used with a relatively small intact 
or predetermined treatment group to evaluate program 
impact.  However, there are various options that are 
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available to implement these methods.  The present 
study used a real dataset with commonly available 
achievement results and covariates to compare the 
ability of different propensity scoring approaches to 
balance pre-existing differences between treatment and 
control groups and to recover a simulated treatment 
effect.  In addition, a randomized design was included 
to provide a baseline comparison with the propensity 
scoring applications. 

Based on this study, applied researchers using a 
propensity scoring approach to evaluate program 
impact on student achievement with small intact 
samples should consider the following: 

1. Use of standard LR methods with either 
nearest-neighbor or optimal matching to construct 
comparison groups or GBM in combination with 
propensity score weighting with ATT weights assuming 
ATT weights are consistent with the design.  These 
types of propensity scoring applications closely 
approximated a randomized design in terms of 
adjusting for pre-existing differences (balance criteria 
check) and recovering the simulated treatment effect.  
However, standard LR methods in combination with 
matching algorithms may be more accessible to 
researchers than approaches based on data mining 
methods (e.g., GBM) or Bayesian-based methods 
(BLR).  Results also indicate that the propensity scoring 
applications are effective even in relatively small 
treatment group samples.  While some applications 
involving propensity score weighting methods 
performed well, performance was more unpredictable 
and use of weighting methods increased empirical 
power at the expense of a possible increase in detecting 
an insignificant treatment effect. 

2. In order to mitigate the potential effects of 
“hidden selection bias” or inadequate modeling of the 
treatment selection process with propensity scoring 
applications, use a set of covariates that are interrelated, 
diverse, and can account for any potential hidden 
covariates when adjusting for pre-existing differences 
(Steiner, Shadish, Cook, & Clark, 2010).  In the present 
study, a hidden covariate was introduced into the 
propensity scoring process, that is, a covariate 
(Prop_Disadv) was used for treatment selection but 
excluded from the model for estimating propensity 
scores.  Although introduction of a hidden covariate 
violates the ignorability assumption, a similar pattern in 
results for the no-hidden covariate condition and 
hidden covariate condition were found.  Since available 

covariates (e.g, Prop_Minority) were related to the 
treatment selection variable (Prop_Disady) in the present 
study, any negative impact of excluding the treatment 
selection variable from the models used to estimate 
propensity scores was averted. 

3. Consider carefully the true treatment group 
population, the treatment group selection process, and 
the type of weights that are used if propensity score 
weighting is used.  The present study would support 
use of ATT weights (i.e., evaluate treatment for treated 
population) over the more commonly used ATE 
weights when treatment group members are not 
selected at random.  In particular, use of GBM in 
combination with optimal matching was effective both 
in terms of balancing covariates and recovering a 
simulated treatment effect.   Although the GBM 
algorithm implemented in twang was designed for PSW, 
use of twang propensity score estimates yielded similar 
results when combined with optimal matching or ATT 
weighting. 

Limitations of the Study 

One of the advantages of the GBM method over 
LR methods is that the correct functional forms for 
each covariate and interactions between covariates do 
not need to be specified.   It might be argued that, in 
the present study, the specific non-random treatment 
selection condition that was modeled did not 
completely capitalize on this advantage.  In order to 
obtain a more complete comparison of the GBM and 
LR methods for estimating propensity scores, the LR 
and GBM methods were rerun under a non-random 
treatment selection condition that modeled an 
interaction between two covariates: proportion of 
economically disadvantaged students (P_Disadv) and baseline 
Math scale score performance (SS_Math).  For this non-
random condition, treatment group members were 
randomly selected from members with a value greater 
than the median for the covariate proportion of economically 
disadvantaged students and from members with a value 
less than the median for baseline Math scale score 
performance.  Thus, all selected treatment group members 
(school districts) had higher than average numbers of 
disadvantaged students and below average Math scale 
score performance.  Note that in the LR model, only 
the main effect variables were included (P_Disadv and 
SS_Math).  Despite the apparent advantage to modeling 
the covariates under the GBM approach, similar results 
comparing the GBM and LR applications were 
obtained.   
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While use of the boosted regression method 
(GBM) for estimating propensity scores and other 
methods using regression trees have received a good 
deal of attention in the literature, this method 
performed poorly when combined with the nearest 
neighbor matching method.  Though this result could 
be explained by the large number of unmatched 
treatment group members, the reason for the number 
of unmatched treatment group members requires 
additional research.   

Finally, inferences and findings from any 
simulation study are inherently limited by the design.  
The context of the present study was relatively small 
sample educational program evaluations of student 
achievement outcomes.  Therefore any 
recommendations are limited to this context and more 
research is required to generalize findings.  In 
particular, although the non-random treatment group 
assignment model reflected a common target 
population for educational evaluations (i.e., 
disadvantaged populations), it would be useful to 
examine the effectiveness of the different methods with 
a complex multivariate treatment group assignment 
model.  In addition, while use of a real dataset from a 
state assessment program with a set of commonly 
available covariates enhances the context of the study, 
future studies could evaluate which types of covariates 
are most relevant for propensity scoring applications in 
studies of impact of educational programs on student 
achievement: school-, student-, and/or teacher-level 
covariates.   
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