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The uses and methodology of factor analysis are widely debated and discussed, especially the issues 
of rotational use, methods of confirmatory factor analysis, and adequate sample size. The variety 
of perspectives and often conflicting opinions can lead to confusion among researchers about best 
practices for using factor analysis. The focus of the present review is to clarify terminology, 
identify key issues, and clarify areas of debate regarding best practices and functions of factor 
analytic procedures.  The conclusions and implications drawn should be useful to researchers in 
education, psychology, and cognate social fields who employ factor analytic procedures or evaluate 
research using factor analytic methods. 

Factor analytic procedures are statistical methods used 
for examining the relationships within a group of 
observed variables, as measured through questions or 
items. It is important to note that factor analysis is not 
a singular statistical method, but rather a group of 
statistical analyses that share similar methodology and 
functionality. The theoretical and mathematical 
variations among the processes allow the analyses to 
accommodate breadth of purpose and theory in 
research and result in the widespread use of the tool 
across disciplines and applications; however, it is the 
flexibility of the statistical methods that fuel ongoing 
debate about the appropriate applications of these 
methods. For over sixty years, researchers from varied 
social science disciplines have saturated the factor 
analysis literature with definitions, discussions, and 
debates concerning factor analysis approaches, 
applications, and recommendations for most 
appropriate usage (cf.,Garson, 2010; Loo, 1979;  Pett, 
Lackey & Sullivan, 2003; Tabachnick & Fidell, 2001; 
Velicer & Fava, 1990). 

Examination of factors, or dimensions, is most 
often applied in the development and validation of 
measures such as personality scales (Schonrock-Adema, 
Heijne-Penninga, Van Hell & Cohen-Schotanus, 2009); 
however, it can be used in a variety of measurement 

applications (Furr & Bacharach, 2008). Regardless of 
the setting, within each analysis there are a range of 
choices and decisions the researcher must make to 
improve the accuracy of the factor analysis they use and 
to enhance the quality of the resulting solution 
(Fabrigar, Wegener, MacCallum & Strahan, 1999). A 
commonly cited limitation of exploratory factor 
analysis (EFA) is its level of subjectivity stemming from 
the many methodological decisions a researcher must 
make to complete a single analysis, with the accuracy of 
the results largely dependent upon the quality of these 
decisions (Henson & Roberts, 2006; Tabachnick & 
Fidell, 2001).  

To further compound the complexity of the 
analysis, factor analysis is a cyclical process of 
continually refining and comparing solutions until the 
most meaningful solution is reached (Tabachnick & 
Fidell, 2001). This commonsense approach to 
interpreting the analysis in light of theory and 
conceptual foundation should be accompanied by a 
strong theoretical and mathematical justification for the 
methodological choices and decisions, yet because of 
the abundance of sources and opinions within the 
factor analysis literature, it is often difficult for a 
researcher to determine the most accurate use of this 
tool within a given research context. The purpose of 
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the present overview is to provide a step-by-step 
approach to factor analytic procedures and to offer an 
evaluation of the theoretical and practical merits 
associated with four common areas of debate. 
Recommendations are offered for best factor analytic 
practice for educational researchers as framed by the 
following three questions:  

1. How large should the sample be to know if the 
it is “large enough” to produce a reliable factor 
analytic solution? 

2. What is the difference between Component 
Analysis and Common Factor Analysis? 

3. Is it necessary to rotate the initial factor pattern 
matrix in order to achieve an interpretable and 
meaningful solution?  

In the journey to understand factor analysis so that 
responsible, methodologically-sound decisions could be 
made, approximately 45 manuscripts were reviewed. 
Initially, books and book chapters were consulted to 
provide a basic overview of the technique and its 
various components.  From these sources, a number of 
questions and controversies remained.  Academic 
Search Premier was used to identify peer-reviewed 
journal articles that included overviews, examinations, 
and/or applications of factor analytic methods and 
procedures.  This process allowed the authors to 
identify seminal articles as well as trace evidence-based 
decision making in factor analysis over time.  While this 
does not constitute a meta-analysis, it does provide a 
broad foundation to ground the recommendations 
made by the authors for best practices use in EFA. 
Review of these sources provided additional depth of 
understanding and allowed the authors to draw 
conclusions as to general rules-of-thumb for many 
decision-making controversies often encountered in 
data analysis of research problems.   These guidelines 
formed the basis for the present article.  Where 
apparent contradictions still existed in the literature, the 
authors based decisions regarding recommendations on 
the methodological soundness of the studies consulted 
and the mathematical foundations of the techniques 
employed. 

SAMPLE SIZE 

The first question comes during the planning 
stages: How large should the sample be to know if it is “large 

enough” to produce a reliable factor analytic solution? The 
literature contains copious amounts of information in 
response to this question; however, criteria provided 
for determining the sufficiency of a sample for factor 
analytic procedures vary greatly and include a plethora 
of differing criteria. Sample size requirements may 
generally be categorized in two ways; a minimum 
number of cases or a subjects-to-variables ratio (STV) 
required to achieve an adequate sample. For example, 
selected criterion suggests the sample size should have: 

 51 more cases than the number of variables 
(Lawley & Maxwell, 1971). 

 At least 10 cases for each item, and the 
subjects-to-variables [STV] ratio should be no 
lower than 5 (Bryant & Yarnold, 1995). 

 At least 100 cases and a STV ratio of no less 
than 5 (Suhr, 2006). 

 At least 150 - 300 cases (Hutcheson & 
Sofroniou, 1999).  

 At least 200 cases, regardless of STV (Gorsuch, 
1983).  

 At least 300 cases (Norušis, 2005).  

Similar guidelines are provided throughout the 
literature without clear consensus (Tabachnick & Fidell, 
2001; Zhao, 2009). There is, however, general 
agreement that an inadequate sample size can be 
detrimental to the factor analytic process and produce 
unreliable, and therefore, non-valid results (Osborne & 
Costello, 2004; Pett et al., 2003).  How, then, can 
anyone use factor analysis methods with confidence, 
assuming that a sample of insufficient size will 
undermine any meaning produced, without a realistic 
guide to what sample criteria is “best” or the “right” 
one? Initial review of the literature suggests that a base 
number of cases is required and that a ratio of cases to 
variables should be considered once the base number is 
met.  

Upon closer inspection of the literature, a general 
opinion has emerged, suggesting that ratio criteria do 
not provide  an accurate guide (Guadagnoli & Velicer, 
1988; Hogarty, Hines, Kromrey, Ferron & Mumford, 
2005; MacCallum, Widaman, Preacher & Hong, 2001; 
Osborne & Costello, 2004; Zhao, 2009). Guadagnoli 
and Velicer (1988) suggest, what has been largely 
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confirmed in the literature, that the needed sample size 
is conditional upon the strength of the factors and the 
items. They provide a new criterion operationalizing 
these relationships. If the factors have four or more 
items with loadings of .60 or higher, then the size of 
the sample is not relevant. If the factors have 10 to 12 
items that load moderately (.40 or higher), then a 
sample size of 150 or more is needed to be confident in 
the results. Finally, if factors are defined with few 
variables and have moderate to low loadings, a sample 
size of at least 300 is needed. Fabrigar et al. (1999) and 
MacCallum et al. (2001), further support that stable 
solutions can be reached with samples as low as 100 
when three to four strong items (loadings of .70 or 
greater) comprise a factor, suggesting that weaker 
relationships need a larger sample size.  

A strong solution, made up of stable factors, 
reduces the influence of the sample size; however, a 
larger sample size decreases sampling error resulting in 
more stable solutions (Hogarty et al., 2005). 
Determination of sample size sufficiency is dependent 
upon the stability of the solution; therefore, the 
adequacy of a sample cannot be fully determined until 
the analysis has been conducted. While the final factor 
solution can provide enough evidence to suggest that a 
sample is sufficient, one is still left with the question of 
how much is enough when collecting the original 
sample? Because the family of factor analysis 
procedures are multivariate tools, and multivariate 
methods require larger sample sizes than do univariate 
methods, one should plan for a sample of at least 150 
cases for initial structure exploration.  

CHECK ASSUMPTIONS OF DATA 

After the sample data has been obtained, the data 
used must satisfy the assumptions required of 
multivariate statistical techniques, including: large 
sample size, linearity, absence of outliers, continuous 
data, lack of extreme multicollinearity, and low 
percentage of missing data (Comrey, 1985; Pett et al., 
2003). Factor analysis differs from other multivariate 
procedures in that there is no separate identification of 
dependent or independent variables. The relationships 
between variables are examined without specification 
of one variables’ influence upon another. As a result, 
multivariate normality is not required within all 

methods of extraction in factor analysis (Tabachnick & 
Fidell, 2001).  

EVALUATE FACTORABILITY OF MATRICES 

Correlational Values 

In addition to meeting assumptions before the 
factorization of a set of variables, the strength of the 
relationships and linear relationships are evaluated by 
reviewing the correlation matrix produced from the 
data. Generally, correlations exceeding .30 provide 
enough evidence to indicate that there is enough 
commonality to justify comprising factors (Tabachnick 
& Fidell, 2001).  If intercorrelations are unexpectedly 
low, it may be a result of low variance. Samples that are 
too homogenous can exhibit low variance; 
consequently, the correlation will be low potentially 
failing to reveal a factor, or common relationship, that 
does exist (Fabrigar et al., 1999).  

 

Table 1 includes the correlation matrix for a 
sample of 5 items in a Teacher Satisfaction and Sense 
of Belonging Scale (TSSBS).  

Table 1. Example of a Correlation Matrix of Five 
Items in the TSSBS 

Item 1 2 3 4 5
1 1     
2 .642 1    
3 .542 .801 1   
4 .355 .539 .682 1  
5 .244 .355 .475 .510 1 

Note. Pearson’s r Correlational values are 
reported. 

With one exception, the intercorrelations exceed 
.30. The correlation between Item 1 and Item 5 is .244. 
While this value is below .30, the relationships with 
other items exceed .30. Therefore, this one correlation 
is not enough evidence to suggest that factoring would 
not be beneficial.  

Determinant of the Matrix 

An additional assessment of factorability of the 
data comes from the determinant of the correlation 
matrix. The determinant of a matrix is a single value 
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calculated using the values within a square matrix, 
revealing the presence or absence of possible linear 
combinations within the matrix. The determinant of a 2 

x 2 matrix  ቂܽ ܾ
ܿ ݀

ቃ is ad – cb. The determinant of the 2 

x 2 matrix ቂ4 1
3 5

ቃ is equal to 4(5) - 3(1), which equals 

17. When the determinant does not equal zero, the 
matrix can be explained by linear combinations; 
however, if the determinant of a matrix equals zero it is 
described as a singular matrix. A singular matrix has 
either an infinite number of linear combinations or 
there are no possible linear combinations within the 

matrix. For example, in the matrixቂ2 5
6 15

ቃ, the 

determinant equals 2(15) – 6(5) = 0. Row one, [2, 5], 
does not contribute any unique value to the solution 
and can be expressed entirely as a linear combination of 
other rows: 3(2x + 5y) = 6x + 15y.  

With the exception of cases where the determinant 
is zero, the values can be arranged into linear 
combinations. In factor analysis, these linear 
combinations are considered factors. A non-zero 
determinant indicates that a factor or component is 
mathematically possible; however, it does not offer any 
indication of the practical meaning or significance of 
the factors. Because the values of a correlation matrix 
are restricted to values between – 1 and 1, the values 
for the determinant of a correlation matrix range from 
0 to 1. The values seen most often are very small, 
suggesting that a few linear combinations exist (Pett et 
al., 2003). For example, Table 2 reports the measures of 
factorability for the TSSBS correlation matrix used 
previously (see Table 1).  

Table 2. Example of Measures for Assessing the 
Correlation Matrix 
Measure Value
Determinant 1.14 E -11
Bartlett’s Test of Sphericity p < .0001
Kaiser-Meyer-Olkin Test of 
Sampling Adequacy 

.889 

In addition to using the determinant of a matrix, 
Bartlett’s Test of Sphericity and the Kaiser-Meyer-
Olkin Test of Sampling Adequacy (KMO) are 
commonly used to provide more complex measures for 

assessing the strength of the relationships and 
suggesting factorability of the variables.  

Bartlett’s Test of Sphericity 

The determinant value in the TSSB example is 
very close to zero. To evaluate if this determinant value 
is statistically different from zero, Bartlett’s Test of 
Sphericity is used. The null hypothesis of Bartlett’s test 
states that the observed correlation matrix is equal to 
the identity matrix, suggesting that the observed matrix 
is not factorable (Pett et al., 2003). In the example used, 
Bartlett’s test produced a significant test result, 
rejecting the null hypothesis. Bartlett’s Test provides 
evidence that the observed correlation matrix is 
statistically different from a singular matrix, confirming 
that linear combinations exist.  

Kaiser-Meyer-Olkin Test of Sampling 
Adequacy 

The Kaiser-Meyer-Olkin Test of Sampling 
Adequacy (KMO) is a measure of the shared variance 
in the items. Kaiser, Meyer, and Olkin suggest the 
following guideline for assessing the measure (Friel, 
n.d.): 

Table 3. Interpretation Guidelines for the Kaiser-Meyer-Olin 
Test 

KMO Value Degree of Common Variance
0.90 to 1.00 Marvelous 

0.80 to 0.89 Meritorious 

0.70 to 0.79 Middling 

0.60 to 0.69 Mediocre 

0.50 to 0.59 Miserable 

0.00 to 0.49 Don’t Factor 

 

INITIAL EXTRACTION  

Factoring the matrix begins with the initial 
extraction of linear combinations. Matrix algebra is 
used to create linear combinations of items that explain 
the greatest amount of variance1 among the items. The 
initial extraction assumes that each combination is 
orthogonal (independent or uncorrelated) to the others. 

                                                 
1 The type of variance included varies by extraction method.  
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These linear combinations are called factors or 
components. The first factor extracted accounts for the 
greatest percentage of variance in the items. The next 
linear combination attempts to account for the 
maximum amount of remaining variance that is not 
included in the first factor. This process continues until 
all of the variance in the sample is explained (Suhr, 
2006). The two most common terms used to discuss 
the initial extraction are component analysis and common 
factor analysis. 

What is the difference between Component 
Analysis and Common Factor Analysis? It is 
commonly accepted practice to use factor analysis as a 
broad heading for two distinct statistical techniques: 
component analysis and common factor analysis 
(Tabachnick & Fidell, 2001). These terms, as well as 
other related terms such as component and factor, are 
often used interchangeably within the literature causing 
confusion for the reader (Garson, 2010; Furr & 
Bacharach, 2008; Tabachnick & Fidell, 2001). Both 
theoretical and mathematical differences exist between 
component analysis and common factor analysis. The 
failure to make these distinctions clear leads to 
difficulty interpreting the context and diminishes the 
researcher’s ability to make theoretically sound 
decisions.  

Component analysis serves as a means to 
accurately report and evaluate a large number of 
variables using fewer components, while still preserving 
the dimensions of the data. It is widely described as a 
data reduction method used to summarize a large set of 
variables (Costello & Osborne, 2005; Velicer & 
Jackson, 1990b). Theoretically, component analysis 
assumes that the component is a composite of the 
observed variables, or that the individual item scores 
cause or define the component (DeCoster, 1998). See 
Figure 1. A student’s score on a math test is an 
illustration of this causal relationship in component 
analysis. The student’s performance on each item 
comprises the overall test score.  

By contrast, common factor analysis allows the 
exploration of underlying constructs, which cannot be 
measured directly, through items thought to be 
reflective measures of the construct (Byrne, 2001). 
Common factor analysis assumes that individual item 

scores are a result of an underlying factor or construct 
(DeCoster, 1998). A measure to assess the student’s 
attitudes about math would be an illustration of this 
relationship. The student’s responses to the items are 
thought to reflect their underlying attitudes about math.  

Component Analysis Common Factor Analysis

 

Figure 1. Directional Relationships in Component 
Analysis and Common Factor Analysis. This figure 
illustrates the differences of the causal relationships in 
component analysis and common factor analysis 

Mathematically, component analysis and common 
factor analysis differ in the amount of variance included 
in the solution. There exist multiple types of variance: 
common (shared) variance, specific (unique) variance, and error 
variance (measurement error). Common variance is the 
variability present in an item that is shared with other 
items and factors. Specific variance is the variance 
resulting from the unique attributes of an item that 
cannot be explained by other variables or factors. Error 
variance is associated with the measurement process 
and is an indication of unreliability.  

Component analysis includes all three types of 
variance and does not partial out any variance from the 
items when examining the relationships. Because the 
total variance is included in components analysis, some 
argue that the estimates provided reflect inflated values 
(Costello & Osborne, 2005). By contrast, common 
factor analysis removes specific variance and error 
variance from the calculations, including only common 
variance to extract the factor solution.  

The literature contains a multitude of studies 
whose purpose is to determine if the mathematical 
difference between component analysis and common 
factor analysis result in a practically different solution 
(Osborne & Costello, 2004; Costello & Osborne, 2005; 
Fabrigar et al., 1999). In fact, a special issue of 
Multivariate Behavioral Research (1990) focuses entirely on 
this topic and suggests that the alignment of the 
solutions are dependent upon the strength and stability 
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of the items. Removing sources of unreliability suggests 
that common factor analysis would produce more 
accurate solutions; however, it is commonly reported 
that the results of both processes are similar (Fava & 
Velicer, 1992; Tabachnick & Fidell, 2001; Velicer & 
Jackson, 1990a). This proves to be true when the 
measures used are reliable. The mathematical proofs 
and research on both sides of this well-established 
debate are beyond the scope of this review.  

In a practical research context, the researcher 
should be aware that component analysis and common 
factor analysis function similarly and can produce 
comparable results. The mathematical and theoretical 
foundations of the two methods vary;  however, the 
practical sequencing of steps and processes are the 
same (Pett et al., 2003). Component analysis includes 
the total variance in the items and has no underlying 
structural assumptions. Common factor analysis only 
includes the common variance and hypothesizes that 
the item responses are a product of an underlying 
construct. Both component analysis and common 
factor analysis are mathematically able to reduce 
variables to a smaller number of components or 
factors; however, the precise interpretability and 
understanding of these values vary by the method used 
to extract these linear combinations.  

Methods of Initial Extraction  

Component analysis includes the total variance in 
the initial extraction. Principal Component Analysis (PCA) 
is the most widely used extraction method of 
component analysis and is most appropriate when the 
purpose is to reduce the number of items to a smaller 
number of representative components (Costello & 
Osborne, 2005; DeCoster, 1998), whereas common 
factor analysis only includes the common (shared) 
variance in the extraction. The two most commonly 
used extraction methods of common factor analysis are 
Principal Axis Factoring (PAF) and Maximum Likelihood 
Estimation (ML)2. PAF is appealing because it requires 
no distributional assumptions and may be used if data 
are not normally distributed (Fabrigar et al., 1999). ML 
requires multivariate normality (Pett et al., 2003); 
                                                 
2 Additional component and factor extraction methods include 
image, alpha, unweighted least squares and generalized least 
squares. 

however, the benefit of using ML is that in addition to 
the correlational estimates, it produces significance 
tests for each item as well as fit statistics for the 
structure.  

Example. To extract the initial factor solution of 
the example TSSB scale, Principal Axis Factoring 
(PAF) is used because the items are believed to reflect 
the underlying satisfaction and sense of belonging 
experienced by teachers. In Table 4, the PAF solution 
is compared to the Principal Component Analysis 
solution as a means to evaluate the difference between 
common factor analysis and component analysis in this 
data. The amount of variance in an item that can be 
explained by the factor is displayed in a factor pattern 
matrix. The columns of the factor loading matrix 
represent the factor (component) and the rows display 
each item or variable.   

Table 4. Example of Initial Extraction for Five Items in the TSSB 

Principal Axis Factoring  Principal Component 
Analysis 

Factors  Components

ITEM 1 2 3 4 5  1 2 3 4 5 

1 .498  .402  .510 .338 -.351 .404

2 .650 .346    .659 .383 -.374

3 .726 -.400    .729 -.407

4 .758  -.360  .760 -.404

5 .585 .365   .595 -.357 .437

Note. Loadings of less than |.32| were suppressed. 

Even though the results produced are similar, it is 
important to consider the best method that most 
accurately depicts the purpose and needs of the 
research hypotheses. Because more variance is 
included, the PCA solution on the right has more items 
with cross loadings, meaning an item’s variance can be 
explained by multiple factors. In the PAF solution, 
Item 1 only loads on factors one and five; whereas, in 
the PCA solution, Item 1 loads on components one, 
three and four. Pett et al. (2003) suggest that it is best 
to compare the PCA solution to the PAF solution, and 
then use the one that makes the most intuitive sense. 
This further reinforces the responsibility of the 
researcher to be thoughtful when making processual 
choices, having both theoretical and conceptual 
justification for those decisions. Regardless of choice, 
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attention must be given to the method in which the 
variance is accounted for and considered at each step in 
decision making and interpretation.  

Determine the Number of Factors to Retain 

Using the results from the initial extraction, the 
researcher must then determine how many factors 
should be retained in order to best represent the data 
and the existing relationships. The first factor accounts 
for the most variance. The amount of variance 
explained by each subsequent factor continually 
decreases (Tabachnick & Fidell, 2001). The objective is 
to choose enough factors to adequately represent the 
data, while eliminating factors that are not statistically 
or theoretically relevant (Fabrigar et al., 1999). The 
body of literature suggests that choosing to retain more 
factors than are needed is less detrimental to the 
analysis than eliminating factors that are needed; 
however, retaining too many factors can deplete the 
solution erroneously resulting in weak factor loadings 
(Pett et al., 2003). Additionally, the literature cautions 
against using a solution with only one or two factors, as 
it may not provide an accurate representation of the 
structure (Fava & Velicer, 1992; Pett et al., 2003).  

In addition to general recommendations, there are 
multiple criteria methods to further inform the factor 
selection using eigenvalues and extracted variance. The 
eigenvalue is a value associated with each factor 
describing the amount of variance in the items that can 
be explained by that factor (Pett et al., 2003). Every 
factor or component has an eigenvalue. This principle 
can be observed in mathematics when simplifying 
multinomial expressions.  For example, the binomial 6x 
+ 15y can be factored or simplified to 3(2x + 5y). A 
value of “3” is the maximum common amount that can 
be extracted, or explained. Although the process for 
determining the eigenvalue based on common variance 
is significantly more complex, the conceptual principle 
is the same.  

Kaiser Criterion 

How much variance does a factor have to explain 
in order to warrant the retention of a factor 
(component)? The most commonly used eigenvalue 
criteria is the Kaiser Criterion, which states that factors 
should be retained if their eigenvalues are greater than 

or equal to one (Costello & Osborne, 2005). In a 
component analysis extraction, such as PCA, where the 
total variance is accounted for, every item has one unit 
of variance. If a single component could explain 100% 
of the variance for all of the items, the eigenvalue for 
that component would be equal to the total number of 
items. The reasoning behind the Kaiser Criterion is that 
a component having an eigenvalue greater than one 
accounts for more variance than would a single item, 
thus suggesting merit for combining those items into a 
factor or component; however, this is only true if each 
item contributes one unit of variance. Pett et al. (2003) 
indicate that the Kaiser Criterion should only be used 
in PCA when the total variance is accounted for in the 
extraction. 

Eigenvalues can be useful if interpreted with an 
understanding of their conceptual meaning regardless 
of how much variance was extracted; however, the “cut 
value” should also reflect this consideration. In 
common factor analysis extractions, where only 
common (shared) variance is used, the variance 
included for each item is less than one. In this case, if a 
single factor could explain all of the variance in the 
items, the eigenvalue would still not equal the total 
number of items. If the Kaiser criterion was used, a 
factor could account for significant variance but not be 
retained because the eigenvalue was less than one, 
resulting in the underextraction of factors.  

Example. Using the all items of the TSSBS as an 
example, the factors were extracted using Principal 
Axis Factoring, a method that does not include all of 
the variance in the extraction. Table 5 represents a 
sample of the variance explained. 

Notice that the total initial eigenvalue estimates are 
different than the total extraction sums. The initial 
eigenvalue estimates include all of the variance. The 
PAF solution removes the shared and error variances 
in extraction, reducing the eigenvalues and percent of 
variance explained. In a PCA extraction where the total 
variance is included, no change occurs between the 
estimated values and the extracted values. For this 
example, using the Kaiser Criterion, five factors should 
be retained in order to sufficiently represent the TSSB 
scale; however, considering that not all the variance is 
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included, factors six and seven could also be viable 
linear combinations of the items.  

Table 5. Example of Total Variance Explained for a Principal 
Axis Factoring of the TSSBS	

Factor

Initial	Eigenvalues	
	 Extraction	Sums	of	

Squared	Loadings	

Total	
%	of	

Variance	
Cumulative

%	
	
Total	

%	of	
Variance

Cumulative	
%	

1	 13.107 46.810	 46.810 	 12.769 45.603 45.603

2	 2.057 7.347	 54.157 	 1.737 6.202 51.805

3	 1.808 	6.459	 60.616 	 1.491 5.326 57.131

4	 1.335 4.767	 65.383 	 1.020 3.644 60.774

5	 1.230 4.394	 69.777 	 .903 3.226 64.000

6	 .963 3.440	 73.217 	

7	 .859 3.069	 76.286 	

Note. The factors and initial eigenvalues continue until 100% of 
the variance is accounted for. The full results were not needed for 
the purposes of this discussion. 
 

The Kaiser Criterion method is often criticized 
and stated to be used beyond its capabilities resulting in 
inaccurate determination of factor retention (Costello 
& Osborne, 2005; Velicer & Jackson, 1990a). Many 
believe that the Kaiser Criterion tends to overextract 
factors and cite that it is also capable of underextracting 
factors as well (Fabrigar et al., 1999; Henson & 
Roberts, 2006; Schonrock-Adema et al., 2009). Fabrigar 
et al. (1999) criticizes that the criterion of identifying 
one as the cut is quite arbitrary. Based on an 
understanding that the eigenvalue represents the 
maximum variance that a single linear combination 
(factor or component) can statistically explain, using 
the eigenvalues as an indication of value for retaining 
the factor is conceptually sound; however, the Kaiser 
Criterion should only be used in component analysis.  

Scree Plot 

Cattell’s Scree Plot is a graphical representation of 
the factors and their corresponding eigenvalues. The x-
axis represents the factors (components) and the 
eigenvalues are along the y-axis. Because the first 
component accounts for the greatest amount of 
variance, it has the highest eigenvalue. The eigenvalues 
continually decrease resulting in a picture that is often 
called the “elbow” shape. The scree plot cutoff is quite 
subjective, requiring that the number of factors be 

limited to those occurring before the bend in the elbow 
(Fabrigar et al., 1999).  

Figure 2. SPSS Scree Plot. This figure demonstrates the 
scree plot of the eigenvalues and factors from the TSSB 
extraction seen in Table 5. 

This subjectivity is apparent when examining the 
scree plot of the eigenvalues of the TSSB extraction 
(See Figure 2). Where does the “bend” occur? Should 
the cutoff be at the third factor, the fourth, or even the 
sixth? The difficulty identifying the precise cut point 
most often leads to overextraction of factors (Henson 
& Roberts, 2006). 

Variance Extracted 

A third selection method based on similar 
conceptual structure is to retain the number of factors 
that account for a certain percent of variance extracted. 
The literature varies on how much variance should be 
explained before the number of factors is sufficient. 
The majority suggest that 75 – 90% of the variance 
should be accounted for (Garson, 2010; Pett et al., 
2003); however, some indicate as little as 50% of the 
variance explained is acceptable. As with any criteria 
method solely depending on variance, this seemingly 
broad standard must be viewed in relation to the 
foundational  differences between extraction methods. 
The amount of variance that was included for 
extraction must be considered when interpreting the 
value of percent of variance extracted. Component 
analysis includes more variance to be explained, 
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suggesting that higher percentages of explained 
variance are expected than would be required when 
only common variance is included.  

Practical Implications 

It is best to evaluate the initial extraction with 
multiple criterion methods and by comparing the 
factors suggested to retain (Costello & Osborne, 2005; 
Schonrock-Adema et al., 2009). Using the eigenvalues, 
the scree plot, and the percent of variance extracted, 
the TSSB example could require the retention of 
between two and eight factors (see Table 5). It is 
acceptable practice to vary the number of factors 
retained and compare the solutions. Ultimately, the 
decision of how many factors to retain should be made 
based on comprehensibility and interpretability in the 
context of the research (Suhr, 2006). Are the factors 
represented by multiple variables that share a 
conceptual meaning? This evaluation is more relevant 
after the matrix has been rotated; however, it should be 
considered when retaining factors as well. 

FACTOR ROTATION 

Factor rotation is readily accepted as a sequential 
step when conducting a factor analysis. As discussed 
previously, the factors, or components, and the factor 
loadings of each variable are linear combinations of 
these relationships. The mathematical purpose of factor 
analysis is to summarize the relationships among 
variables and the factors. These linear combinations do 
not have a single, unique solution (Fabrigar et al., 
1999). There exist an infinite number of rotations 
(alternative solutions) that all explain the same amount 
of variance (DeCoster, 1998; Tabachnick & Fidell, 
2001). After the number of factors to include has been 
determined, all other factors are discarded. The items 
are factored again, forced into a specified number of 
factors. That solution is then rotated. This is called 
factor rotation.  

Is it necessary to rotate the initial factor 
pattern matrix in order to achieve an interpretable 
and meaningful solution? The literature frequently 
suggests that rotating the initial factor solution is 
critical for interpretation of the factors and indicator 
variables. This stance is presented quite consistently, 
and is widely followed without much explanation: 

 Tabachnick and Fidell (2001) state that “none 
of the extraction techniques routinely provide 
an interpretable solution without rotation” (p. 
601).   

 Fabrigar, Wegener, MacCallum, & Strahan 
(1999) provide that it is “usually necessary for a 
researcher to select a method for rotating the 
initial factor analytic solution to a final solution 
that can be more readily interpreted” (p. 273). 

 Child (1990) explains, “Most factor analysts 
agree that direct solutions are not sufficient. 
Adjustment to the frames of reference by 
rotation methods improves the interpretation 
of factor loadings by reducing some of the 
ambiguities which accompany the preliminary 
analysis” (as cited in Suhr, 2006, p. 3) 

These comments are representative examples of 
the information found within the literature. The use of 
words that allow for exceptions, such as “routinely” in 
Tabachnick and Fidell (2001) and “usually” in Fabrigar 
et al. (1999) leave question as to whether is it ever 
appropriate to use only the initial factor pattern matrix. 
In his 1947 work, Thurstone (as cited in Fabrigar et al., 
1999) suggested that the most easily interpretable 
solution is the “simple structure” solution. He also 
indicated that, because there are an infinite number of 
solutions, the component matrix should be rotated in 
order to produce a solution with this simple structure.  

By understanding how the variance is removed, 
the initial solution can be interpreted and examined as a 
series of linear combinations. However, the initial 
solution may not be the most useful. Rotations create a 
statistically comparable solution that is usually more 
meaningful and easy to interpret. 

Simple Structure 

Simple structure is achieved when each factor is 
represented by several items that each load strongly on 
that factor only (Pett et al., 2003; Tabachnick & Fidell, 
2001). Practically, “several items” is generally 
considered to be at least three to five items with strong 
loadings (Guadagnoli & Velicer, 1988).  An item is 
considered to be a good identifier of the factor if the 
loading is .70 or higher and does not significantly cross 
load on another factor greater than .40 (Garson, 2010). 
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These guidelines vary slightly within the literature. 
Tabachnick & Fidell (2001) suggest that the secondary 
loading (or cross-loading) should be no greater than 
.32. Costello and Osborne (2005) suggest that a loading 
of .50 is enough to be considered “strong,” while 
Guadagnoli and Velicer (1988) state that the loading 
should be .60 or greater. Generally, a communality 
(loading) of .70 or greater is ideal because that suggests 
that approximately 50% of the variance of that item is 
accounted for by the factor.  

Rotations are very similar to many other more 
familiar mathematical concepts used more frequently in 
basic math and algebra. An infinite number of 
numerical combinations could represent the ratio 2:3, 
such as 4:6, 10:15, or even 160:240, without altering the 
meaning of the relationship. In algebra and 
trigonometry, this multiplicative property is often used 
to make the operation easier to solve. For example, the 
equation -1/3x – 2/5y = -7/15 may be solvable, but 
multiplying the equation by -15 will simplify the 
equation without altering the values: -15(-1/3x – 2/5y 
= -7/15) = 5x + 6y = 7.  Although it is much more 
intricate, the rotation of the initial factor solution is 
grounded in the same mathematical properties. Herein, 
the certain rotational techniques can serve to create a 
more interpretable solution without altering the 
structural relationships. Although the initial solution is 
capable of being interpreted, the factors and 
communalities are more easily identified through the 
use of rotational methods to reach a simple structure 
solution.  

Orthogonal and Oblique Rotations 

There are two main types of rotational methods: 
orthogonal and oblique. Orthogonal rotations (varimax, 
quartimax, and equimax) are appropriate when the 
purpose for the factor analysis is to generate factor 
scores (PCA) or when the theoretical hypotheses 
concern uncorrelated dimensions (Loo, 1979). Of the 
orthogonal types of rotations, varimax is generally 
regarded as best and is most widely used (Fabrigar et 
al., 1999; Loo, 1979). Loo (1979) cautions that 
orthogonal rotations are not always theoretically 
appropriate and do “not reflect interrelationships that 
probably exist in much clinical data, such relationships 

might be better described and interpreted in terms of 
oblique solutions” (p. 763). 

Oblique rotations account for the relationships 
between the factors, which often is more appropriate 
within social science research. Fabrigar et al. (1999) 
emphasize that oblique rotations can be used even 
when the factors are not significantly correlated. If the 
factors are not correlated, then the rotation will provide 
estimates of the factor correlations that are close to 
zero. Oblique rotational methods include direct 
oblimin, promax, orthoblique and procrustes. There is 
not a single best method recommended for oblique 
rotations and the method choice often depends on the 
options available through the software used (DeCoster, 
1998; Fabrigar et al., 1999).  

Example. To demonstrate the differences in an 
orthogonal and oblique rotation, the TSSB solution was 
rotated using an orthogonal rotation and an oblique 
rotation (See Table 6). The values in the orthogonal 
factor matrix on the left represent maximized 
relationships of each item with the factor. Each  
relationship is assessed independently. Conceptually 
interpreted, in the orthogonal solution, factor one can 
explain .391 of the variance associated with the 
responses in item 2, and factor two is able to explain 
.497 of the variance, suggesting that factor two is more 
representative of the item than factor one.  

The oblique rotation accounts for relationship 
between factors before determining an item’s 
relationship to the factor. This solution is presented 
using two matrices: the pattern matrix and the structure 
matrix. The pattern matrix values reflect the 
relationships between the item and the factor when the 
variance of the other factors are removed. In the 
oblique pattern matrix in Table 6, once the relationship 
between the factors is removed, factor two can 
additionally account for .429 of the variance associated 
with the responses for item 2. The factor structure does 
not factor out influences of other factors and provides 
the correlations between item and factor without 
controlling for shared variance. The structure matrix 
demonstrates that all of the items are related to both 
factors.  
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Table 6. Example of Rotational Comparison of 10 Items in the 
TSSBS 
Rota-
tion 

 Orthogonal: 
Varimax  Oblique: Direct Oblimin 

Matrix 
 Rotated Factor 

Matrix  Pattern Matrix 
Structure 
Matrix 

  Factor  Factor Factor

ITEM  1 2  1 2 1 2 

1   .571   .657 .367 .587 

2  .391 .497   .429 .556 .607 

3   .761   .818 .583 .820 

4  .350 .688   .699 .593 .768 

5   .731   .776 .578 .796 

6  .395 .660   .637 .624 .759 

7  .417 .404  .336  .543 .530 

8  .443 .374  .386  .555 .512 

9  .844   .960  .888 .580 

10  .740   .838  .782 .515 

Note. Maximum Likelihood Estimation used for Initial Extraction

The orthogonal rotation in Table 6 has more 
cross-loadings than the oblique solution. The oblique 
rotation controls for the shared variance between the 
factors. By first acknowledging that most all of the 
items and factors are related, as displayed in the 
structure matrix, oblique rotations allows more 
apparent differences to emerge in the pattern matrix.  
Because oblique solutions can incorporate the 
relationships between the factors, they usually fit the 
data better than the orthogonal solution (Henson & 
Roberts, 2006). In this case where the factors are 
strongly correlated (r = .709), the oblique solution is 
much more representative of the theoretical 
relationships.  

Determining whether an orthogonal or oblique 
rotation is most appropriate seems to be controversial 
simply for the fact that much of the literature supports 
use of oblique rotations, yet orthogonal rotations are 
still the most commonly used and reported in studies 
using factor analysis (Costello & Osborne, 2005). 
Darlington (n.d.) suggests that this may be a result of 
more complex interpretation of the oblique solutions. 
Tabachnick and Fidell (2001) recommend using 
orthogonal rotations if the correlations between factors 
are low; however, unless strong theoretical foundation 

exists to suggest the factors are not correlated, 
allowances should be made enabling the true 
relationships among factors to be reflected in the 
solution. Fabrigar et al. (1999) suggest that if the 
relationship among factors is unknown an oblique 
rotation should be used first. Then, if the correlations 
are low, opt to use an orthogonal rotation. Regardless 
of methodological choice, theoretical and mathematical 
limitations and meaning must be acknowledged. Just as 
decisions for extracting initial factors and determining 
the number of factors to retain, rotational type should 
be made based on theoretical purpose of the research. 
If the factors are conceptually independent, then 
orthogonal rotation is acceptable; however, oblique 
rotations are generally more appropriate for social 
science research where the factors are usually related.  

INTERPRETING THE FACTOR SOLUTION 

Because factor analytic processes are iterative, 
much of the evaluation has occurred throughout each 
subsequent step. The rotated factor solution is useful to 
examine and further refine the factors. Mathematical 
and conceptual examination is required for accurate 
interpretation of both the items and the factors. The 
items should possess a significant loading, indicating a 
statistically valued contribution; however, an item’s 
conceptual significance should be examined before an 
item is removed from the set. Theoretical knowledge is 
more relevant than a statistical measure. If an item is 
not significantly correlated to any of the factors 
(generally considered to be less than .30) and does not 
provide a conceptually vital dimension to the measure, 
the item should be removed.  Additionally, a complex 
variable, or a variable that loads on more than one 
factor, should be removed if the cross-loading is greater 
than .40 (Schonrock-Adema et al., 2009). Once the 
weak items have been removed, the data should be 
factored again without the presence of that item for a 
more refined solution (Pett et al., 2003).  Interpretation 
of the factor also requires that each factor be 
sufficiently identified. This means that a factor contain 
at least three to five items with significant loadings in 
order to be considered a stable and solid factor 
(Costello & Osborne, 2005). More importantly, the 
items and the factors should make sense conceptually.  
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FINAL THOUGHTS 

Every step of the process in a factor analysis 
requires the researcher to be firmly grounded in 
contextual theory and fundamental understanding of 
factor analysis methodology. The greatest difference in 
methods centers on how the technique accounts for 
variance and relationships between the factors. 
Regardless of choice, decisions should be supported by 
strong theoretical and mathematical justification, 
providing credibility to the final outcome.  

While factor analysis contains many variations, the 
process may be summarized as a series of mathematical 
iterations designed to create linear combinations in 
order to explain the data. Each iteration reveals new 
information, further expanding the reseacher’s 
understanding of the relationships. Based on the new 
perspective, the structure is refined until the solution 
reached is parsimonious, mathematically sound, and 
theoretically grounded. The factor structure should 
continue to be tested and refined to more fully 
understand the relationships in different contexts; 
however, just because more testing of the structure is 
desired, does not mean that the current solution is not 
useful. When evaluated in light of the strength of 
methodological purpose and use, the solution can be 
very meaningful and contribute significantly to relevant 
research. It is important to remember that factor 
analysis is a mathematical process. While the matrix 
relationships are not elementary, they are still simply an 
indication of how the responses provided for each item 
relate to others. Factor analysis should always be 
interpreted in light of theory and common sense.   
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