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Person-fit measurement refers to statistical methods used to detect improbable item-score patterns.  This study 
investigates the detection effectiveness of the zl  statistic, which is one of the most popular and powerful 
person-fit statistics in the literature to date.  The contributions of the present study are three-fold.  First, the 
simulation results show that the detection power of the zl  statistic is largely hinged on test characteristics, 
particularly the test difficulty.  Therefore, the zl  statistic should be used with caution in an operational testing 
environment.  Second, this paper provides a clear explanation for the poor performance of the zl  statistic under 
certain situations.  The third objective is to present a summary of the patterns and conditions for which the zl  
statistic is not recommended for the detection of aberrancy.  This can be used as a checklist for implementation 
purposes. 

Person-fit or appropriateness measurement refers to 
statistical methods used to evaluate the fit of a response 
pattern to a particular test model.  A number of person-fit 
statistics have been proposed to identify item-score 
patterns that are not in agreement with the expected 
response pattern based on item response theory (IRT) 
model (for example, Drasgow, Levine, & Williams, 1985; 
Levine & Drasgow, 1988; Molenaar & Hoijtink, 1990, 
1996; Bracey & Rudner, 1992; Nering & Meijer, 1998; 
Rudner, 2001; and Childs, Elgie, Gadalla, Traub & Jaciw, 
2004).  Recently, Meijer & Sijtsma (2001) and Karabatsos 
(2003) presented extensive, excellent reviews of the 
methodological developments in evaluating person fit. 

This article discusses the likelihood-based person-fit 
statistic zl  (Drasgow, Levine, & Williams, 1985) due to the 
following reasons.  First, the zl  statistic has received a 
great deal of attention in more than forty person-fit 
statistics (Meijer & Sijtsma, 2001),and is one of the most 

popular person-fit statistics in educational measurement 
(see Drasgow, Levine & McLaughlin, 1991; Reise & Due, 
1991; Reise, 1995; Nering 1995, 1997; and Nering & 
Meijer, 1998).  Second, prior studies have found that the zl  
statistic performed better than other person-fit statistics in 
many cases and have recommended the zl  statistic as one 
of the most powerful person-fit statistics for the detection 
of aberrant behavior.  For example, Drasgow, Levine, & 
McLaughlin (1987) used the three-parameter logistic (3PL) 
model to compare the performance of the 

,zl ,ZU , ,ZW C  , / , 2zJK O E ECI  and 4zECI  person fit 
statistics, and concluded that zl  is among the most capable 
statistics for identifying both spuriously high-scoring and 
low-scoring examinees.  Li & Olejnik (1997) compared the 
distributions of ,zl  ,ZU  ,ZW  2 ,zECI  and 4zECI  
within the framework of  the Rasch model (MacCann & 
Stanley, 2006) and found that the zl  statistic was the most 
powerful statistic, as it identified two-third of the misfitting 
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item-score patterns.  Nering & Meijer (1998) compared the 
performance of the zl  statistic and the person response 
function (PRF) method, and found that the zl  statistic 
performed better than the PRF method in most cases.  

In view of these studies on the power of the zl  
statistic, its effectiveness under difference scenarios is still 
not clear.  To our best knowledge, the study of examining 
the effects of item characteristics on the detection power of 
person-fit statistics is limited and incomplete.  Using 
information-based methods, Reise & Due (1991) 
investigated the influence of the test length, the spread of 
the item difficulty parameter, and the value of the guessing 
parameter on the detection power of zl  statistic.  It was 
shown that the zl  statistic was most efficient for a long test 
with items of varied difficulty levels and small guessing 
parameters.  Meijer, Molenaar & Sijtsma (1994) extended 
Reise & Due (1991) to a nonparametric context.  
Specifically, they examined how the detection power of a 
nonparametric person-fit statistic, U3, was influenced by 
the test, person, and group characteristics.  They suggested 
that the detection rate is a function of the item 
discrimination parameter (reliability), the test length, the 
percentage of non-fitting response vectors (NRVs) in the 
group, and the types of NRVs.  In particular, different test 
parameters could work in a complimentary manner to 
achieve desirable rates of detection.  In a personality 
assessment context, Reise (1995) considered a 
two-parameter logistic (2PL) model to investigate the 
power of the zl  statistic in detecting non-model-fitting 
responses and examined how the detection power was 
affected by different scoring strategies.  It was found that 
the best detection rates were achieved when the difference 
between trait levels and item difficulty parameters was 
large.  The findings of this paper indicate that this is not 
always the case. 

The purpose of this paper is to further investigate the 
effects of item characteristics on the detection power of the 

zl  statistic in the parametric IRT context.  First, we show 
through Monte Carlo simulations that the detection power 
of zl  statistic is a function of test characteristics.  The 
detection rates could be low in various situations.  
Therefore, the zl  statistic should be used with caution in 
an operational testing environment.  The simulation 
methods in this study are based on the literature (Levine & 

Rubin, 1979; Drasgow, 1982; Drasgow, Levine, & 
McLaughlin, 1987; Nering & Meijer, 1998).  Second, the 
paper gives an explanation for the potentially poor 
performance of zl  statistic.  The third objective is to 
present a summary of the patterns and conditions for 
which the zl  statistic is not recommended for the 
detection of aberrancy.  This can be used as a checklist for 
application purposes.  Lastly, the summary provides the 
discussions of the implications for practitioners and points 
out possible adjustments that can be used to improve 
detection effectiveness.  

The lZ Person-Fit Statistic 

Suppose that an examinee with trait level θ  is 
administered a test form of n items.  Let the response of the 

thi  dichotomous (0 or 1) item score be represented by a 
Bernoulli random variable 

 with probability density function 
1( ; ( )) ( ) [1 ( )] ,   0, 1,i ix x

i i i i if x p p p xθ θ θ −= − =  

where )1()( θθ |XPp ii == , for i=1,2,…n. 

That is, )(θip  denotes the probability of a correct 
response to the t hi  item by an examinee with trait level θ.  
The value of θ is generally unknown in an operational 
testing environment, so an estimate of the θ  value is often 
used in practice.  

As one of the most popular person-fit statistics in 
the literature, the zl  statistic is the standardized version of 
the likelihood-based person-fit statistic 0l  (Levin & Rubin, 
1979).  Let   

0 ( ( )) (1 ) (1 ( ))i i i i il X ln p X ln pθ θ= + − −   

represent the natural logarithm of the probability for the 
observed response to item i.  An observed response 
pattern, (

1 2, , . . . , nx x x ), is used to calculate a value for the 
statistic.  The 0l  and zl  statistics are usually evaluated over 
all items on the test.  The 0l  and zl  statistics can be 
respectively expressed by  

 

1, if the response to item   is correct,
0, otherw ise,i

i
X

⎧
= ⎨

⎩
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where 0( ) /l E l n= .   

The expectation and variance of the 0l  statistic can be 
written as 

[ ]0
1

( ) ( ) ( ( )) (1 ( )) (1 ( ))
n

i i i i
i

E l p ln p p ln pθ θ θ θ
=

= + − −∑  (3)

and   
2

0
1

( )( ) ( )(1 ( ))
1 ( )

n
i

i i
i i

pVar l p p ln
p
θθ θ

θ=

⎧ ⎫⎡ ⎤⎪ ⎪= − ⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭
∑ (4)

Based on a generalization of the Central Limit 
Theorem, the asymptotic distribution of 0l  is normal (Box, 
Hunter & Hunter, 1978; pp 87-90).  A statistical test is 
associated with the zl  statistic and can be described by the 
hypotheses,  

H0: The response pattern is congruent with the 
specified response model,  

versus 

H1:  The response pattern is not congruent with the 
specified response model. 

This hypothesis test is structurally conducted as a 
lower one-sided test, even though over-achieving and 
under-achieving performances are signaled and can be 
detected.  Select situations, as will be shown, may benefit 
from a two-sided test.  However, most aberrant situations 
are best detected with a lower one-sided test.  Therefore, 
the null hypothesis will be rejected if the computed test 
statistic is less than a critical value specified so the test 
achieves a significance level α.  The following example 
illustrates the reasoning for a lower one-sided test.  

An Illustrative Example 

Assume that an examinee with a known latent trait value of 
θ  has taken a test and the average unconditional 
probability of a correct response to an item of the test is 

0.60.  Further, suppose that l =  −0.67 and 

0( ) 0.525Var l =  (these are some plausible values).  Now 
consider a single item where ( )ip θ  = 0.25.  This is the case 
of an examinee capable of answering correctly this test item 
25% of the time.  Aberrant behavior will be manifested by 
answering this item correctly.  

In equation (2) where the contribution to the zl  
statistic by a single item can be evaluated by considering the 
relationship between 0il  and l .  When ( )ip θ =0.25, 

(0 .25) 1 .39ln ≈ −  indicates that this response is aberrant 
(a correct response), since ( ( ))iln p lθ <  and the 
response further decreases the value of zl .  An incorrect 
response, in this case, has (0 .75) 0 .29ln ≈ −  (or 

(1 ( ))iln p lθ− > ), which increases the value of zl .  
Likewise, when ( )ip θ =0.75, an incorrect response 
contributes negatively to the zl  statistic, while a correct 
response gives a positive contribution.  In general, ix =1 
and ( ( ))iln p lθ <  indicate an aberrant behavior.  Then 
again, ix =0 and (1 ( ))iln p lθ− <  also indicate possible 
aberrant behavior.  

Caution is indeed required when utilizing the zl  
statistic.  Consider the same examinee and test described in 
the previous paragraph.  Now note a single item where 

( )ip θ =0.52.  The contribution to zl , given a correct 
response, is 0( ( ( )) ) / ( )iln p l Var lθ − ≈ +0.02218.  
That is, responding correctly repeatedly to items with 

( )ip θ  around 0.5 would never suggest aberrant behavior.   

To illustrate the performance of the zl  statistic under 
certain situations, a series of calculations show how the zl  
statistic fluctuates when the item responses from the 
examinee are (a) all correct, and (b) alternate between 
correct and incorrect responses (see Figure 1(a), and 1(b)).  
For purposes of exposition, it is assumed that the latent 
trait value of the examinee is known and is not affected by 
the response patterns.  The graphs are based on ten-item 
tests where the probability of a correct response increased 
by 0.01 for each item.  Multiple tests were created with the 
lowest probability of a correct response ranging from 0.2 (a 
difficult test item) to 0.9 (an easy test item).  The first graph 
plots average test difficulty versus the zl  statistic in the 
case where an examinee answers all items correctly 
regardless of the level of difficulty of the item.  These 
swings indicate that a one-tailed test decision rule may not 
be realistic in all situations.  
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To further the discussion on the lower one-tail test for 
the zl  statistic, consider the situation when the examinee 
answers every other item correctly.  The zl  value never 
becomes positive in this case.  The reason for this behavior 
is that when the “all or nothing” responses occur, the zl  
statistic follows a logarithmic curve.  On the other hand, 
when alternating correct responses are recorded, the zl  
statistic remains negative even when the probability of a 
correct response is around 0.5.        

Figure 1(a)  The zl  statistic when the examinee 
answers all items correctly. 

 

Figure 1(b).  The zl  statistic when the examinee 
answers every other item correctly. 

                       

Simulation Method 

Monte Carlo simulations were performed in the framework 
provided by a previous study of Nering & Meijer (1998).  
Their general purpose was to compare the detection rates 
of the zl  statistic against a person response function (PRF) 
method.  The IRT model is used to calculate ( )ip θ  as a 
function of an examinee’s trait level and a set of item 

parameters, a ,  b , and c .  The exact form of this model 
can be found in Lord (1980, page 12).  The value of c  is 
the probability of an infinitely unable examinee responding 
correctly to the item.  The quality of incorrect choices 
affects this parameter.  For example, a low-level examinee 
may eliminate incorrect choices, which will increase this 
value, or be drawn to attractive incorrect choices, which 
can lower the value.  The value of b  is a measure of the 
difficulty of the item and is on the same scale as θ .  That is, 
easier items have a lower b  value and more difficult items 
have a higher b  value. When bθ = , the probability of a 
correct response to any item by an examinee is (1+ c )/2.  
The value of a  measures the discrimination of the item, or 
how well the item can distinguish between lower-level and 
higher-level examinees.  The larger a  is, the steeper the 
curve is about θ = b . 

Benchmark  

A variant of the method given by Nering & Meijer 
(1998) for a moderate length test was used as a benchmark.  
This study deviated from their approach only in the way 
that critical values were obtained.  A 121 item test was 
created.  While 121 items may be longer than most tests in 
practice, the use of a large number of items here leads to 
more stable estimates of zl  and the proportions that will 
be reported later.  The in-control responses to all items 
followed a 3PL IRT model.  The parameters were a ~ 
N(1.0,0.1], b ~U(-2.7,2.7), and c ~N(0.20,0.10] (left 
bounded at 0.0).  The a  and c  values were randomly 
drawn from the stated normal distributions.  The 
distribution of the a  parameters is tighter than observed 
in practice and leads to better estimates of zl .  The b  
values were assigned evenly spaced across the interval 
(−2.7,+2.7).  Thus, the b  values were −2.7, −2.655, −2.61, 
…, −0.09, −0.045, 0, +0.045, +0.09, …, +2.61, +2.655, +2.7.  
In general, we use the notation b ~ U( , )L Ub b  to indicate a 
discrete uniform assignment of the difficulty parameter 
over the closed interval ( , )L Ub b .  

Obtaining Critical Values 

Let zCl  be a numerical value of the statistic zl , where 
( )z zCP l lα = ≤  conditional on a specified θ  value and 

no aberrant behavior.  The value zCl  is the probability of a 
Type I error, α, set at 0.05.  Since the zl  statistic does not 
have tabulated critical values, Monte Carlo simulations 
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were employed to obtain them.  These critical values were 
obtained by simulating 10,000 examinees on each of 61 
equally spaced θ  values ranging from −3.0 to +3.0 with an 
interval 0.1.  The zl  was computed for each simulated 
examinee, and at each θ  value, the 10,000 zl  values were 
sorted in ascending order and the critical value for that θ  
was taken to be the value in the 500th (or (10,000∗α)th) 
position.  This procedure created a critical value for each of 
the 61 points.  Linear extrapolation was used when the 
(estimated) θ  value of an examinee fell between those 
tabulated.  Any estimated θ  below -3.0 was brought back 
to -3.0 and any estimate above +3.0 was brought back to 
+3.0. 

Obtaining Aberrant Responses 

The responses to a single test, where the θ  value and 
the described IRT parameters were used to simulate the 
administration of a test, are referred to as the Fitting 
Response Vectors (FRVs).  In order to simulate non-FRVs 
(NRVs), Nering & Meijer (1998) applied a response 
manipulation method suggested by Levine & Rubin (1979) 

and Drasgow (1982).  Two types of NRVs were simulated 
taking an FRV and then randomly selecting a proportion of 
the items within this response vector to manipulate.  Every 
response on the FRV was given the same chance of being 
manipulated.  For examinees with 0θ ≥ , a spuriously low 
(SL) NRV was simulated by taking each of the selected 
items and making the responses correct with probability 
0.2 and incorrect with probability 0.8.  A spuriously high 
(SH) NRV was simulated for examinees with 0θ ≤  by 
rescoring all the selected items to be correct.  All the 
manipulations for both SL and SH NRVs were made 
regardless of the responses in the FRV; thus, the number of 
responses changed from correct to incorrect (or vice versa) 
differed from examinee to examinee.  The procedure was 
repeated as 18, 24 or 36 items were manipulated.   

Table 1 presents the average number of responses 
changed during the simulations.  The detection rates were 
defined as the proportion of NRVs that were correctly 
identified as aberrant by comparing the zl  values against 
the associated critical value zCl . 

 

Table 1.  Average number of responses changed during the simulation of the benchmark test 

#   
manipulated 

Spuriously High Simulation 
θ  Value 

Spuriously Low Simulation 
θ  Value  

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 
18 13.22 12.27 11.12 9.91 8.61 7.29 10.02 10.85 11.60 12.35 12.96 13.50
24 17.78 16.40 14.86 13.21 11.51 9.76 13.34 14.41 15.48 16.44 17.33 18.02
36 26.41 24.58 22.27 19.77 17.29 14.57 20.03 21.66 23.18 24.59 25.99 27.05

 

Simulation Results 

θ  Known 

Tables 2 and 3 provide a summary of the 
simulation results when the known θ  was used to calculate 
the zl  statistic.  In both Tables 2 and 3, the benchmark 
results were close to the detection rates reported by Nering 
& Meijer (1998).  The Group I columns report the 
detection rates under different assignments of the “level of 
difficulty” parameter b , while keeping the parameters a  
and c  unchanged.  As before, the b  values were given a 
discrete uniform assignment across the interval.  The effect 

of the b  change from the benchmark in the SL case was to 
make to test easier, and in the SH case, was to make it more 
difficult.  Thus, when simulating aberrant behavior, the 
responses of fewer items would be changed from the 
non-aberrant situation, and the detection of aberrant 
behavior should be reduced.  This anticipated result was 
observed.  More notable results occurred when the 
detection rate became biased.  That is, the detection rates 
when aberrant behavior was present fell below the Type I 
error rate α (Lehmann, 1986 and Efron, 1986).  The 
following describes why this occurred. 
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Table 2.  Detection Rates for a 121-Item Test under SH with θ  Known 
 

 
   θ  

Items 
manipulated Benchmark* 

Group I Group II Group III
b ~  

U(-2.7,0)
b ~  

U(-2.7,-1)
b ~  

U(-2.7,-2)
a ~ 

N(.5,.1)
a ~ 

N(1.5,.1) 
c ~ 

N(.1,.1) 
c ~ 

N(.25,.1)

-2.5 

18 95.21% 77.42% 45.29% 1.52% 80.66% 97.40% 99.91% 83.38%
24 99.62% 93.86% 64.93% 0.84% 95.81% 99.94% 100.00% 97.29%
36 100.00% 99.84% 92.53% 0.40% 100.00% 100.00% 100.00% 100.00%
0 4.98% 5.67% 4.60% 5.14% 5.03% 4.80% 5.09% 4.74%

-2.0 

18 86.02% 38.77% 5.81% 0.42% 65.41% 91.48% 99.39% 70.13%
24 97.65% 56.84% 5.42% 0.10% 85.54% 98.89% 99.99% 89.29%
36 99.97% 85.52% 5.44% 0.00% 99.19% 100.00% 100.00% 99.65%
0 4.92% 5.10% 4.89% 4.60% 4.50% 4.65% 4.86% 4.75%

-1.5 

18 71.98% 10.14% 0.92% 0.86% 45.96% 79.29% 96.33% 51.17%
24 90.04% 12.57% 0.59% 0.28% 65.43% 94.09% 99.68% 72.16%
36 99.55% 17.79% 0.11% 0.03% 92.15% 99.95% 100.00% 96.02%
0 5.31% 5.16% 4.85% 4.84% 5.07% 4.29% 4.90% 4.75%

-1.0 

18 52.39% 3.14% 0.91% 1.44% 27.09% 66.05% 86.65% 33.92%
24 72.16% 2.15% 0.46% 0.94% 39.25% 85.55% 97.18% 50.48%
36 95.88% 1.34% 0.07% 0.25% 65.33% 99.33% 99.98% 81.29%
0 5.08% 5.25% 4.90% 5.27% 4.86% 4.80% 5.07% 4.68%

-0.5 

18 34.77% 1.44% 1.47% 2.49% 12.40% 49.20% 68.02% 20.57%
24 51.77% 0.90% 0.70% 1.49% 15.29% 69.38% 86.19% 29.00%
36 81.55% 0.23% 0.27% 0.80% 25.04% 94.58% 98.92% 53.51%
0 5.31% 4.60% 5.27% 5.48% 4.73% 4.67% 4.33% 4.71%

0.0 

18 20.60% 1.18% 2.07% 2.55% 6.14% 35.47% 47.11% 12.91%

24 29.69% 0.97% 1.46% 2.18% 6.64% 51.50% 66.19% 17.04%

36 52.33% 0.16% 0.55% 1.28% 7.53% 81.87% 92.00% 27.97%

0 5.28% 5.34% 5.28% 4.86% 4.84% 4.21% 4.92% 4.88%

*  b ~ U(-2.7,2.7)   a ~N(1.0, 0.1)  c ~N(0.2, 0.1)  
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Table 3.  Detection Rates for a 121-Item Test under SL with θ  known 
 

 
   θ  

Items 
manipulated Benchmark* 

Group I Group II Group III 

b ~  
U(-2.7,0)

b ~  
U(-2.7,-1)

b ~  
U(-2.7,-2)

a ~ 
N(.5,.1) 

a ~ 
N(1.5,.1) 

c ~ 
N(.1,.1) 

c ~ 
N(.25,.1)

0.0 

18 83.90% 5.62% 6.51% 8.48% 50.10% 95.52% 80.94% 85.90%

24 94.96% 5.98% 7.45% 10.14% 69.31% 99.26% 94.04% 96.44%

36 99.79% 6.39% 7.59% 11.90% 92.40% 99.99% 99.65% 99.89%

0 5.08% 5.11% 5.13% 4.73% 4.90% 5.26% 5.33% 5.11%

0.5 

18 95.45% 9.51% 4.58% 6.70% 69.17% 99.41% 94.03% 96.66%

24 99.36% 10.77% 4.64% 7.22% 87.01% 99.98% 99.05% 99.57%

36 100.00% 14.97% 4.29% 8.57% 98.96% 100.00% 99.99% 100.00%

0 5.02% 6.01% 5.46% 5.39% 4.51% 4.99% 4.65% 4.79%

1.0 

18 99.26% 25.19% 4.22% 4.84% 84.29% 99.91% 98.90% 99.47%

24 99.96% 35.42% 4.19% 4.53% 95.78% 100.00% 99.90% 99.96%

36 100.00% 58.74% 3.92% 4.08% 99.87% 100.00% 100.00% 100.00%

0 4.95% 5.60% 5.04% 5.08% 4.85% 4.97% 4.57% 4.96%

1.5 

18 99.93% 60.08% 13.32% 2.36% 93.83% 100.00% 99.92% 99.98%

24 100.00% 79.80% 17.77% 1.89% 99.39% 100.00% 100.00% 100.00%

36 100.00% 97.23% 29.10% 1.33% 100.00% 100.00% 100.00% 100.00%

0 5.50% 5.08% 5.66% 5.22% 5.41% 4.96% 5.55% 5.78%

2.0 

18 99.99% 91.81% 51.99% 5.66% 98.10% 100.00% 100.00% 100.00%

24 100.00% 98.37% 71.33% 6.20% 99.94% 100.00% 100.00% 100.00%

36 100.00% 99.98% 94.53% 6.20% 100.00% 100.00% 100.00% 100.00%

0 4.61% 5.35% 5.59% 4.58% 5.11% 5.07% 5.22% 5.30%

2.5 

18 100.00% 99.11% 85.92% 4 5 . 0 9 % 99.46% 100.00% 100.00% 100.00%

24 100.00% 100.00% 96.95% 63.71% 99.99% 100.00% 100.00% 100.00%

36 100.00% 100.00% 100.00% 91.51% 100.00% 100.00% 100.00% 100.00%

0 5.69% 5.23% 4.83% 4.72% 5.44% 4.84% 4.66% 4.94%

*  b ~ U(-2.7,2.7)   a ~N(1.0, 0.1)  c ~N(0.2, 0.1)  
 

Again, consider equation (2) where the zl  statistic is 
defined.  Based on a correct response to item i, the thi  
term is negative when ( ( ))iln p lθ <  and positive when 

( ( ))iln p lθ > .  Figure 2 shows the plots of θ  versus the 
average of ( ( ))iln p θ  minus l  for a set of tests where the 
a  and c  parameters remained unchanged as the b  
parameter was changed.  Comparing each of the plots 

against the corresponding column from Table 2 gives a 
pattern which relates to the power of the statistic.  The 
values of θ  where the curves are the most negative give 
the best detection rates.  When the curve approaches the 
abscissa, the detection is approximately equal to the Type I 
error rate α.  When the curve becomes positive, the 
hypothesis test becomes biased. 
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Figure 2.  The θ  versus the average of ( ( ))iln p θ  minus l (SH case). 

 

Spuriously High (SH) Case 

Of concern here is the consistency of the zl  statistic in 
detecting response aberrancy.  As an example, consider the 
b ~U(−2.7,-1) column of Group I of Table 2 (SH case with 
θ  known).  The detection rate is summarized as follows: 

I. θ  = -2.5 the detection rate is well above the 
Type I error rate of 0.05 

II. θ = -2.0, the detection rate is at approximately 
0.05 

III. -1.5 ≤ θ ≤ 0.0, the detection rate is generally 
below 0.05.  The zl  statistic cannot identify 
the aberrant behavior. 

The results can be compared with the plot of θ  versus 
the average of ( ( ) )iln p θ  minus l  under b ~U(−2.7,-1) 
in Figure 2.  The lack of detection occurs when the curve 
crosses the axis, from negative to positive.  The detection 
rates are the poorest at θ = −1.0 (0.91%, 0.46%, 0.07%), 
where the curve (approximately) reaches a maximum.  The 
detection increases slightly for θ = -0.5  and θ =0.0.  The 
identification of aberrant behavior with rates less than 0.05 
corresponds directly to θ  values where the associated 

curve (Figure 2) is close to the axis or positive.  In fact, 
when the curve is positive, detection power was found in 
the upper tail of the distribution.  For example, with 
θ =-2.0 and b ~ U(-2.7,-2), an upper critical value was set 
by simulating 10,000 in-control administrations and taking 
the 95th percentile of the observed zl  values.  This 
provided 64.38% of the observations above the upper 
critical value in the SH case when 36 items were 
manipulated. 

Spuriously Low (SL) case 

The pattern for the SH case is similar to that of the SL 
case.  Figure 3 shows the plots of θ  versus the average of 

(1 .0 ( ) )iln p θ−  minus l  where the a  and c  
parameters remained unchanged as the b  parameter was 
assigned uniformly over the different ranges.  In this SL 
case, the (1 .0 ( ) )iln p θ−  minus l is applied, rather than 
the ( ( ) )iln p θ  minus l  since the aberrant incorrect 
responses were to be detected.  Hence, the plots are 
skewed on the reverse slopes of the SH case. 

Nonetheless, the results coincide with the same 
analysis as in the SL case when these plots are compared to 
the Group I values in Table 3 (SL Case with θ  known).  
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Out of the possible b  parameters reported, the detection 
rate of the zl statistic is at the poorest under b ~U(2,2.7) 
when θ =1.5 (2.36%, 1.89%, 1.33%).  The highest ability, 
θ =2.5, shows reasonable detection power.  The remaining 

values under b ~U(2,2.7) are around the Type I error rate 
of 0.05.  
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Figure 3.  The θ  versus the average of (1.0 ( ))iln p θ−  minus l (SL case). 

 
Referring to Figure 3, the poorest detection can be seen 
when θ is between 0.0 and 2.0.  The plot shows that the 
detection rate improves after θ =2.0 when it changes 
direction from positive to negative.  Other similarities of 
the pattern can be matched between the detection rate and 
the change in direction of the plot under b ~U(1,2.7) when 

1θ ≤  for both situations.  The study demonstrated that 
under certain values of θ , 0.0 ≤ θ ≤ 2.0, the zl  fails to 
give the signals for detection.  The plots of Figure 3 do not 
follow the detection rates of Table 3 as closely as observed 
when comparing Figure 2 and Table 2.  The reason has to 
do with the method of creating aberrant behavior in the 
simulation.  A manipulated item was made correct with 
probability 0.2; thus, incorrect responses in the FRV may 
have changed to correct responses in the NRV.  In some 
cases, this caused the value of zl  to be less than the critical 
value.  If all manipulated responses were made incorrect, 

the detection results mirrored the results for the SL case.  

Groups II and III (Different Normal Distributions) 

The results reported for Groups II and III were anticipated.  
Different normal distributions N(0.5,0.1) and N(1.5,0.1) 
were examined for the discrimination parameter a , while 
keeping the parameters b  and c  unchanged from the 
benchmark.  The detection rates increased when the 
distribution was shifted up and decreased when shifted 
down.  In Group III, the normal distributions N(0.1,0.1), 
and N(0.25,0.1) were examined for c , while keeping the 
parameters a  and b  as in the benchmark.  All the c  
values were left truncated at zero to ensure a non-negative 
value.  The detection rates increased for lower  c  values 
and decreased for higher ones.  These patterns stay 
consistent with the results reported by Reise & Due (1991) 
for the 2PL model where the parameter c  equals 0. 
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θ  Unknown and Estimated 

Prior knowledge of an examinee may allow use of a θ  
value not derived from the current test.  However, in many 
cases a θ  estimate based on responses to the current test 
must be used to compute the statistic.  Denote this estimate 
by θ̂ .  Several authors have observed the reduced 
detection power of the zl  statistic when θ̂  is used in place 
of θ .  Some of the reduced power comes from the bias 
present in the estimator (Snijders (2001)), but most of the 
reduction comes from the shift coming from the aberrant 
responses.  For example, if the θ  known value is −1.0 and 
aberrant correct responses occur, the θ̂  may be around 
0.0.  This, in turn, shifts the probabilities used in calculating 
the statistic and makes the results appear less aberrant.  The 
following analysis reveals additional problems with the use 
of θ̂  in certain situations. 

The same random seeds were used for the simulations 
when using θ  and θ̂  to calculate the zl  statistic.  Thus, 
the sequence of in control responses and the location of 
items that were manipulated are directly comparable across 
corresponding cells of tables. 

The simulations calculated the critical values as before 
using the true θ , but θ̂  was used in the calculation of the 
observed zl  statistic of equation (2).  The maximum 
likelihood estimate (MLE) was taken as θ̂ .  A reduction in 
detection power was noted when comparing Tables 4 and 5 
to Tables 2 and 3.  The function maximized when 
calculating the MLE is the same as the function providing 
the 0l  statistic (Equation (1)).  Since a lower one-sided 
hypothesis test was used, the reduction in the power of test 
when using the MLE is understandable.  Most of the 
detection percentages were under 5.0% when no items 
were manipulated. 

Spuriously High (SH) Case 

A comparison of Tables 2 and 4 shows a general 
improvement in detecting aberrant behavior using θ  
instead of θ̂  when computing the zl  statistic.  However, 
as θ  became closer to 0.0, several values in Table 4 are 
larger than the corresponding values in Table 2.  The 
improvement in detection when using θ̂  comes from the 
nature of the constructed test; that is, the range of the b  
values was spread evenly across the θ  scale and the items 
had high discrimination.  When responses were 

manipulated under the SH case, we had θ̂ θ>  but the true 
θ  was used to determine the non-manipulated response 
pattern.  Non-manipulated responses for items with low b  
were more likely to show aberrant behavior with θ̂  and 
the manipulated responses for items with high b  still 
showed almost as much aberrancy because of the high 
discrimination.  Incorrect responses to easy items reduce 

zl  more than correct responses to difficult items –because 
the 3PL allows an examinee at any ability level to guess a 
correct response with at least probability c .  However, the 
probability of a correct response can be arbitrarily close to 
1. 

The detection results where the difficulty ranges were 
narrowed show even more loss of power than when θ  was 
used to calculate zl .  The results for Groups II and III 
essentially mirror that discussed in the previous paragraph 
for the benchmark case. 

Spuriously Low (SL) Case 

A comparison of Tables 3 and 5 shows a consistent 
improvement in detecting aberrant behavior when using θ  
instead of θ̂  when computing the zl  statistic.  This was 
particularly true at the lower θ  where the detection power 
was sometimes more than doubled when using  θ  instead 
of θ̂ .   

The in-control (0 items manipulated) detection rates 
found in Table 4 and 5 were greater than the specified Type 
I error rate only for the SL case when b  values were 
assigned between +2.0 and +2.7 and θ  = 0.0, 0.5, and 1.0.  
Generally, the θ̂  during an in-control replication was close 
to θ .  However, when b  was between +2.0 and +2.7 and 
θ  = 0.0, 0.5, and 1.0, the test was so difficult for this 
group that the average θ̂  fell almost one unit below θ .  
This caused the detection rates of the in-control case to be 
slightly greater than the Type I error. 

Summary 

The zl  person-fit statistic is regarded as one of the most 
powerful person-fit statistics in the psychological 
measurement literature.  A number of previous studies 
have shown its effectiveness in detecting item-person 
misfitting patterns, which is partly manifested in our 
present study as well.  However, our simulation results also 
showed that the zl  statistic is likely to produce a biased 
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hypothesis test under certain conditions.  The purpose of 
this paper is not to destructively challenge the well 
established concept that the zl  statistic is one of the best 
person-fit statistics in the literature, but to point out when 

zl  provides unstable detection of aberrant behavior. 

In the spuriously high (SH) case where responses were 
manipulated to make them with probability 0.8 and 

incorrect with probability 0.2, the zl  statistic shows a 
consistently poor performance when the trail level of θ  is 
between −0.5 and 0.0.  In addition, under the level of 
difficulty b ~U(−2.7,−1) and b ~U(−2,−1) with θ  equal 
to −1.5, zl  fails to detect aberrant behavior.  Likewise, this 
pattern is observed in the same range of θ̂ , the maximum 
likelihood estimator (MLE) of θ . 

 

Table 4.  Detection Rates for a 121-Item Test under SH with θ  Estimated 

 
   θ  

Items 
manipulated Benchmark* 

Group I Group II Group III 

b ~  
U(-2.7,0) 

b ~  
U(-2.7,-1)

b ~  
U(-2.7,-2)

a ~ 
N(.5,.1) 

a ~ 
N(1.5,.1) 

c ~ 
N(.1,.1) 

c ~ 
N(.25,.1) 

-2.5 

18 87.87% 48.41% 20.56% 1.49% 51.37% 95.07% 98.89% 74.72%

24 97.26% 66.24% 28.19% 0.84% 70.00% 99.44% 99.92% 91.79%

36 99.98% 86.57% 35.97% 0.28% 89.40% 100% 100.00% 99.57%

0 4.17% 3.37% 3.52% 3.11% 3.34% 4.46% 3.51% 4.30%

-2.0 

18 80.89% 32.17% 7.18% 0.02% 44.55% 90.22% 96.94% 67.05%

24 94.39% 43.32% 7.69% 0.00% 60.25% 98.46% 99.62% 86.07%

36 99.70% 63.18% 8.44% 0.00% 81.57% 99.99% 100.00% 98.45%

0 4.34% 4.27% 3.18% 0.03% 3.72% 4.13% 4.21% 4.40%

-1.5 

18 69.47% 14.22% 0.73% 0.00% 34.99% 80.84% 92.14% 54.73%

24 87.34% 19.39% 0.72% 0.00% 48.41% 94.81% 98.56% 74.89%

36 98.76% 28.25% 0.68% 0.00% 67.81% 99.85% 99.97% 95.22%

0 4.66% 3.55% 0.78% 0.00% 4.68% 4.29% 4.54% 4.05%

-1.0 

18 56.05% 4.34% 0.02% 0.00% 25.98% 69.27% 83.21% 40.78%

24 75.12% 5.45% 0.00% 0.00% 35.04% 87.52% 94.33% 60.85%

36 94.99% 6.79% 0.00% 0.00% 51.34% 99.18% 99.65% 87.81%

0 3.75% 1.63% 0.02% 0.00% 3.91% 3.79% 4.05% 3.38%

-0.5 

18 41.59% 0.97% 0.00% 0.00% 16.88% 55.53% 67.34% 29.87%

24 59.70% 0.82% 0.00% 0.00% 22.88% 76.63% 83.46% 44.16%

36 85.43% 0.89% 0.00% 0.00% 32.99% 96.27% 97.10% 73.20%

0 3.44% 0.76% 0.00% 0.00% 3.58% 3.36% 4.23% 3.20%

0.0 

18 28.36% 0.12% 0.00% 0.00% 10.58% 41.67% 48.42% 19.56%

24 41.63% 0.06% 0.00% 0.00% 13.12% 60.83% 65.20% 29.67%

36 66.56% 0.09% 0.00% 0.00% 17.66% 88.23% 85.93% 51.42%

0 3.69% 0.2% 0.00% 0.00% 3.12% 3.65% 4.34% 2.85%
*  b ~ U(-2.7,2.7)   a ~N(1.0, 0.1)  c ~N(0.2, 0.1) 
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Table 5.  Detection Rates for a 121-Item Test under SL with θ  Estimated 

 
   θ  

Items 
manipulated Benchmark* 

Group I Group II Group III 

b ~  
U(0,2.7) 

b ~  
U(1,2.7)

b ~  
U(2,2.7)

a ~ 
N(.5,.1) 

a ~ 
N(1.5,.1) 

c ~ 
N(.1,.1) 

c ~ 
N(.25,.1) 

0.0 

18 52.81% 4.72% 1.00% 5.85% 19.80% 81.70% 63.42% 47.37% 

24 66.72% 5.55% 1.03% 5.82% 26.82% 91.70% 78.94% 59.99% 

36 83.11% 7.13% 1.23% 5.61% 40.40% 97.75% 93.34% 75.23% 

0 3.51% 3.31% 0.59% 6.28% 2.80% 3.57% 4.14% 2.67% 

0.5 

18 74.79% 8.55% 1.67% 8.10% 25.74% 94.92% 81.83% 70.90% 

24 87.61% 9.78% 1.75% 7.54% 36.71% 98.76% 92.87% 83.78% 

36 96.06% 13.23% 2.24% 7.40% 55.57% 99.86% 98.82% 92.65% 

0 2.93% 4.77% 1.29% 9.69% 2.13% 3.12% 3.98% 2.36% 

1.0 

18 90.33% 14.19% 3.55% 7.89% 34.51% 98.89% 92.94% 88.33% 

24 96.86% 18.25% 4.21% 8.27% 49.02% 99.83% 98.24% 95.57% 

36 99.39% 26.66% 5.25% 7.01% 70.39% 99.99% 99.88% 98.84% 

0 2.72% 4.46% 2.56% 9.07% 1.55% 3.02% 3.65% 1.95% 

1.5 

18 97.26% 22.81% 9.87% 1.20% 43.91% 99.94% 98.26% 96.29% 

24 99.42% 31.88% 12.32% 1.76% 61.54% 99.99% 99.70% 99.17% 

36 99.96% 49.64% 15.30% 2.59% 81.78% 100.00% 99.99% 99.87% 

0 2.27% 2.63% 5.08% 0.72% 0.93% 2.62% 3.16% 1.82% 

2.0 

18 99.38% 37.39% 12.05% 5.24% 53.18% 99.98% 99.59% 99.18% 

24 99.95% 53.56% 18.99% 5.31% 72.62% 100.00% 99.96% 99.91% 

36 100.00% 75.64% 31.08% 4.51% 90.48% 100.00% 100.00% 99.98% 

0 1.42% 0.83% 1.52% 4.21% 0.45% 2.03% 2.36% 1.12% 

2.5 

18 99.92% 52.40% 9.91% 4.78% 61.45% 100.00% 99.97% 99.81% 

24 100.00% 73.83% 17.62% 8.13% 80.49% 100.00% 100.00% 99.99% 

36 100.00% 92.66% 44.62% 17.94% 95.25% 100.00% 100.00% 100.00% 

0 5.69% 2.20% 3.50% 0.00% 0.05% 0.80% 1.05% 0.51% 
*  b ~ U(-2.7,2.7)   a ~N(1.0, 0.1)  c ~N(0.2, 0.1) 

 Many of the tests where the zl  statistic performed 
poorly over a θ  group are poorly designed tests for that 
group.  Nevertheless, the results indicate potential 
problems when using zl .  The results presented here are 
consistent with the final conclusion of Riese & Due (1991).  
The practical use of zl  requires items on the test to have a 
difficulty range covering the trait levels of the population 
trait.  In a further study of the zl  statistic, simulations were 
performed with tests assembled from an operational pool 

for the Law School Admission Test (LSAT) with all LSAT 
constraints satisfied.  The results were consistent with the 
results reported here for the benchmark test.  However, the 
reduction in detection power when using θ̂ was more 
pronounced because there were fewer items in the LSAT 
(101 vs. 121), the difficulty parameter values were not so 
evenly spread, and the discrimination parameters tended to 
be less.  We report the results based on the simulation 
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approach of Nering and Meijer (1998) to allow replication 
by other researchers. 

It is possible to improve the detection power of the zl  
statistic when an estimate of θ  has to be used.  The MLE 
θ̂  should be replaced with another estimate because θ̂  
maximizes the 0l  statistic.  In selected cases, an overall 
improvement in detection power was obtained by using an 
expectation of a Bayesian posterior with a standard normal 
prior.  More complicated procedures may also be 
considered.  For example, removing suspicious responses 
before computing an estimate for θ  or computing θ̂  over 
a certain portion of the test can be applied.  

The zl  statistic is usually calculated using all the items 
on a test.  As pointed by a referee, research on the zl  
statistic toward the detection of test responses from 
examinees that have an unfair prior knowledge of the test 
content may lead to aberrance in response patterns to 
indicate cheating and item theft.  The examinee can be 
expected to miss items where they did not cheat, but 
should have been easy items for the examinee given an 
artificially high θ̂ .  In this context, an upper-tailed test may 
be performed.  High index values indicate aberrance rates 
for high-score tests above and beyond the expected levels.  
These high values indicate elevated levels of cheating.  
Brain dumps provide many but not all items on the web.  
Cheaters with access to these sites will have unfair and 
undetectable advantage on these items.  There would be an 
inconsistent fit with the items they did not see in advance 
and (not surprisingly) responded incorrectly.  Exploring 
the zl  statistic over incorrect items has potential to identify 
cheating behavior. 
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