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Measurement invariance (MI) has been developed in a very technical language and manner that is 
generally not widely accessible to social and behavioral researchers and applied measurement 
specialists.  Primarily relying on the widely known concepts in regression and linear statistical 
modeling, this paper decoded the concept of MI in the context of factor analysis. The paper began by 
describing what is MI (and lack of MI) and how the concept can be realized in the context of factor 
analysis. Next, we explained the need for modeling the mean and covariance structure (MACS), 
instead of the traditionally applied covariance structure, in detecting factorial invariance. Along the 
way, we addressed the related matter of statistically testing for MI using the Chi-squared likelihood 
ratio test and fit indices in multi-group MACS confirmatory factor analysis. Bringing to bear current 
developments by Cheung and Rensvold (2002) and others, we provided an update on the practice of 
using change in fit statistics to test for MI. Throughout the paper we concretized our discussion, 
without lack of generality to other constructs and research settings, with an example of 21 cross-
country MI comparisons of the 1999 TIMSS mathematics scores. 

The validity of cross-country (or cross-cultural) 
score comparisons is vital to many practices in 
applied psychological and educational research. The 
premise of validity in cross-country comparison is 
construct comparability, which necessitates that test1 
scores from different countries (or cultures) 
measure the same construct of interest on the same 
metric. Only then can score differences across 
countries be the true representation of the 
                                                 
1 Throughout the paper, the terms “test” and “scale” are used 
interchangeably.  If one is concerned with Psychological 
measures, for example, one may speak of scales, whereas in 
the Educational or certification settings one speaks of “tests”. 

discrepancy in the performance/attribute, and the 
exercise of explaining variation by group 
membership be meaningful. In reality, however, 
difference in scores may be clouded with many 
confounding variables such as test adaptation (e.g., 
translation), curriculum differences, familiarity with 
item response formats, and many other socio-
cultural factors. Unless evidence is demonstrated, 
construct comparability should never be naively 
assumed. Throughout this paper we will discuss 
cross-country comparisons but our 
recommendations apply to any groups of 
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respondents (e.g., groups based on gender, race, 
interventions, or the same respondents across time). 

The paper is organized into three sections – 
reflecting the purposes of the paper. First, we 
decoded the meaning of measurement invariance 
(MI). Using the concept and framework of 
regression, we explained the meaning of strict 
invariance (Meredith, 1993), a necessary condition for 
construct comparability, and why a multi-group 
confirmatory factory analysis (MG-CFA) based on 
mean and covariance structure (MACS) is crucial 
for an investigation of strict MI. Second, we 
reviewed the controversy surrounding the use of the 
Chi-squared likelihood ratio test and fit indices as 
the decision rule for MI, which are traditionally 
used in MG-CFA, and provided updated criteria for 
making the statistical decision of MI. Third, we 
resolved the disagreement surrounding the necessity 
for testing for strict invariance by showing the 
impact that lack of strict invariance has on construct 
comparability.  Along the way, we demonstrated the 
four complete steps for investigating strict MI using 
the TIMSS mathematics example. Throughout this 
paper, our notation remains as consistent as 
possible with those of Jöreskog & Sörbom (1999). 

Before we move to our discussion on what MI 
actually means and its impact on construct 
comparability, it is crucial to point out the 
distinction between a latent variable and a 
construct. As Zumbo (2007) reminds us, although it 
is often confused even in the technical 
measurement literature, the construct is not the 
same as the true score or latent variable, which, in 
practical settings, is not the same as the observed 
item or task score.  The essential difference being 
that a latent variable is a statistical and mathematical 
variable created by the data analyst and statistical 
modeler for which respondents (or examinees) 
could receive a predicted score based on their item 
responses. A construct, on the other hand, is an 
abstract or theoretical entity that has meaning 
because of its relation to other abstract variables, 
and a theory of the concept being studied. In short, 
one cannot get an empirically realized score on a 
construct, as they can on a latent variable.  Test 
validity then involves an inference from the item 
responses to the construct via the latent variable; 
please see Zumbo (2007) for more details. 

In settings such as cross-cultural comparison, an 
obvious and popular distortion of these concepts of 
construct and latent variable is nearly ubiquitous in 
the use of the term “construct comparability”.  In 
these studies what is, at best, often being 
demonstrated is the equivalence of latent variables. 
This remark is to inform readers that that even 
though we are following the literature and using the 
term “construct comparability”, we want to 
acknowledge that construct comparability (as used 
in various domains of study to include, for example, 
cross-cultural differences, gender differences) is 
more than the equivalence of latent variables, or 
measurement invariance. 

 
What Constitutes MI? 

 
Mellenburgh (1989), Meredith (1993), and 

Meredith and Millsap (1992) provided a statistical 
definition of MI. Namely, an observed score is said 
to be measurement invariant if a person’s 
probability of an observed score does not depend 
on his/her group membership, conditional on the 
true score.  That is, respondents from different 
groups, but with the same true score, will have the 
same observed score.   

More formally, given a person’s true score, 
knowing a person’s group membership does not 
alter the person’s probability of getting a specific 
observed score. That is, the statistical definition of 
MI is: 

Definition. The observed random variable Y 
is said to be measurement invariant with 
respect to selection on G, if F(y| η, g)= F 
(y| η) for all (y, η, g) in the sample space, 
where Y denotes an observed random 
variable with realization y; H denotes the 
latent variable (i.e., factor) with realization 
η that is measured by Y, or underlies Y; G 
denotes a random variable with realization 
g that functions as a selection of a 
subpopulation from the parent population 
by application of a selection function s(g), 
0<= s(g)<= 1 (see Meredith, 1993, p. 528). 

 
Therefore, MI holds if and only if the 

probability of an observed score, given the true 
score and the group membership, is equal to the 
probability of that given only the true score.  To 
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this point, the definition of MI can apply to any 
observed variables at either the item or test level 
and hence is broad enough to provide the statistical 
basis for psychometric techniques such as 
differential item functioning (DIF) or item response 
theory methods, as well as factor analytic invariance.  

This definition of MI, however, fits nicely into 
the framework of factor analysis wherein a factor 
score (i.e., the score on the latent variable) can be 
seen as the proxy for a person’s true score, and the 
items are the observed random variables. Because a 
factor, in the context of factor analysis, can be 
construed as a type of latent variable, throughout 
this paper we will use the terms “latent variable” 
and “factor” interchangeably.  The factor analysis 
framework allows one to empirically test for MI. To 
translate Meredith’s (1993) notion of MI into factor 
analytic language, MI necessitates that the same 
latent variable is measured, and is measured on the 
same metric, so that cross-group factor scores are 
comparable. That is, factorial invariance requires 
that the measurement model linking the observed 
indicators to the unobserved factor(s) be identical 
across subgroups.  

In research practice, cross-group factorial 
invariance is widely tested by multi-group 
confirmatory factor analysis (MG-CFA). It is 
important, at this point, to distinguish covariance 
structure (CS) modeling from means and covariance 
structure (MACS) modeling because MG-CFA can be 
applied to either CS or MACS data. The essential 
difference between MACS and CS is that MACS 
not only models covariances and variances but also 
the means of the observed variables – hence, in 
practice, resulting in intercepts being incorporated 
in the factor analytic model. Modeling factorial 
invariance based on MACS, instead of the more 
commonly used CS, is necessary for understanding 
and empirically testing Meredith’s definition of MI. 
Throughout the remainder of this paper we use 
“MG-CFA” as a short-hand for “MG-CFA on 
MACS data”.   

To address the question “what constitutes MI?” 
a factor analysis model incorporating MACS is 
represented with a regression equation,  

yij = τj + λj1η1i + λj2η2i +… λjpηpi + rij,   (1) 

where yij denotes the ith person’s score (i= 1…N) 
on the jth manifest variable (j= 1…J). Each response 

is assumed to be a linear combination of the 
intercept, τj, one or more factors, ηpi (p= 1…P), and 
a normally distributed random residual term, rij due 
to unpredictable fluctuation in the response 
process. The regression coefficients, λjp (i.e., slopes), 
are the loadings for item j on factor p, and the 
intercept, τj, is the yij score at which the factor(s) 
score is 0. The right-hand side of Equation (1) can 
be dissected into seven elements: 

 
1. the model specification (number of  factors 

and loading pattern), 
2. the regression coefficient, 
3. the regression intercept term, 
4. the regression residual variance, 
5. the means of the common factors, 
6. the variances of the common factors, and 
7. the covariances among the common factors. 
 
The first four elements are related to the 

measurement model, which specifies how the 
observed indicators are related to the latent 
common factors. The last three elements are related 
to the structural model, which specifies the 
distribution of and the relationships among the 
latent variables. There is agreement in the research 
literature that cross-group equality in the last three 
structural elements is not a necessary condition for 
MI because equality in these elements is not 
involved in defining the relationship between the 
items and the factors (Little, 1999; Meredith & 
Millsap, 1992; Millsap, 1998; Widaman & Reise, 
1997). In fact, explaining or predicting group 
differences in the mean of, the variance of, and the 
interrelationships among the true scores are often 
the fruit of much substantive research, and are 
widely analyzed statistically using a t-test, ANOVA, 
or ordinary least squares regression. Nonetheless, 
support for equality in the last three elements may 
suggest that the two groups may, in fact, belong to 
the same population regarding the construct of 
interest. 

Unfortunately, the same agreement has not 
been reached regarding the necessity of the equality 
in the first four measurement elements, especially 
the regression residual variance (Cheung & 
Rensvold, 2002; Deshon, 2004; Lubke & Dolan, 
2003; Little, 1999; Vandenberg & Lance, 2000). 
Equality in the first three elements ensures the 
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observed indicators have identical quantitative 
relationships with the latent variable(s) for each 
population of interest. Namely, the regression lines 
in (1) should be identical across groups for MI to 
hold. Figure 1 shows this ideal condition that MI 
holds. The two regression lines for, for example, 
U.S. and Japan, are identical in depicting the item-
factor relationship. In order to achieve this ideal 

condition, it is necessary to examine whether the 
item-factor score scalings are equal across groups. 
The fourth element ensures that the MI established 
by the first three elements is not obfuscated by the 
non-random residuals so that the cross-group item-
factor relationships remain identical when the 
effects of regression residuals are brought into the 
picture.   

 
Figure 1: Item-Factor Regression Condition for MI 

 
 

Four levels of nested hierarchy of factorial 
invariance have been formulated in the 
psychometrics literature, in correspondence to the 
increasing equality constraints on the four 
measurement elements in equation (1). The four 
levels of factorial tests are i) configural invariance, 
ii) weak invariance,,  iii) strong invariance, and iv) 
strict invariance (Meredith, 1993). Configural 
invariance requires that the same factor model 
specification holds across groups. In addition to 
configural invariance’s equality constraints, weak 
invariance requires the cross-group equality in the 
loadings, strong invariance requires the cross-group 
equality in the loadings and intercepts, and strict 
invariance requires the cross-group equality in the 
loadings, intercepts, and residual variances. 
Meredith argued that strict invariance is a necessary 
condition for a fair and equitable comparison. 
However, in the 1990s to date, the governing belief 
reflected in research practice is that weak invariance, 
or strong invariance at best, would constitute 

sufficient evidence for MI (Little, 1997; Marsh, 
1994; McArdle, 1998; Vanderberg & Lance, 2000). 
Not until recently, in support of Meredith’s long-
neglected argument, Deshon (2004) and Lubke and 
Dolan (2003) revisited the legitimacy of strict 
invariance for MI and affirmed the necessity for 
testing equality in the residual variances, in addition 
to loadings and intercepts. 

However, this periodic advocacy for strict 
invariance has been largely neglected in applied 
measurement practice. A thorough review of 
empirical tests of MI in applied psychology by 
Vandenberg and Lance (2000) revealed that 
although 99% of the studies that they had reviewed 
investigated loading invariance, only 12% 
investigated intercept equality and 49% investigated 
residual variance equality. Our position is that cross-
group equality in all four measurement-elements is 
a necessary condition for MI.  
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We believe that the inconsistency between the 
call for testing strict invariance and the day-to-day 
MI practices may be partially due to the lack of 
awareness of the (a) meaning of intercept and 
residual variance inequality and (b) impact of such 
inequality on MI. For this reason, the notion of 
factorial invariance, the necessity for strict 
invariance as well as the impact of lack of strict 
invariance will be described and demonstrated in 
more detail in the third section in the TIMSS 
example. Before we can proceed, however, to our 
TIMSS demonstration, we need to address the 
matter of the criterion for empirically testing MI 
using MG-CFA – i.e., what fit statistics and cut-offs 
should be used in applying MG-CFA? 

 

Current Thinking About MG-CFA  
Decision Rules 

Statistically, MG-CFA (Jöreskog & Sörbom, 
1999) has become the most widely used method for 
investigating factorial invariance because of its 
reliance on formal hypothesis testing using the 
likelihood ratio test to support a decision about MI. 
(Byrne, Shavelson, & Muthén, 1989; Jöreskog & 
Sörbom, 1999; Zumbo, Sireci, & Hambleton, 2003). 
MG-CFA involves a sequence of hypothesis tests of 
nested models beginning with the least constrained 
model, often the configural model (Horn & 
McArdle, 1992), and then progressively placing 
equality constraints on the parameters across 
groups2. Hence, the subsequent test of MI is an 
augmentation of the parameter constraints of each 
proceeding hypothesis test. More demanding tests 
of MI will proceed only if the less demanding level 
of invariance is demonstrated.  

Conventionally, the two-point decision about 
whether MG-CFA supports or rejects MI has solely 
relied upon the test of Chi-squared difference 
between two nested models (∆χ2), which itself also 
follows a Chi-squared distribution with degree of 
freedom equal to the difference between those of 
the two nested models. The decision rule for 
whether MI holds relies upon whether the added 
constraints make a significant improvement to the 
model fit. A non-significant improvement in fit is 

 

                                                

2 Some authors have suggested a hypothesis testing strategy 
that involves beginning with the most constrained model and 
hence testing invariance involves relaxing equality constraints. 

considered as evidence for MI (see comprehensive 
reviews in Cheung & Rensvold, 2002; Vandenberg 
& Lance, 2000) 3. However, the practical usefulness 
of the ∆χ2 test in MG-CFA has been questioned 
(Brannick, 1995; Kelloway, 1995). The concern with 
the ∆χ2 test as a decision rule for MI can be 
understood first by focusing on single group CFA. 
In a single group CFA, the χ2 fit statistic quantifies 
the magnitude of discrepancy between the sample 
and the fitted covariance matrices, and is calculated 
as χ2 = (N-1)*(Minimum Fitting Function). 

The χ2 is, therefore, clearly a function of the 
sample size, N. For this reason, the χ2 test is 
susceptible to sample size in the sense that it rejects 
the null hypothesis with too much power if the 
sample size is large. In other words, the χ2 test may 
reject trivial model-data differences and tends 
therefore to lose practical usefulness when used as 
the sole decision rule.  

A variety of fit indexes were developed to 
accommodate the problems with sample size and 
model complexity, such as the Comparative Fit 
Index (CFI, Bentler, 1990) and RMSEA (Steiger, 
1989). However, the sampling distributions of many 
of these fit indexes are unknown, hence, the formal 
hypothesis testing of the fit statistics cannot be 
conducted. For this reason, numerous cut-off 
criteria such as CFI ≥ 0.90 or 0.95 and RMSEA ≤ 
0.06 or 0.08 were proposed to assist in determining 
model fit (see Fan & Sivo, 2005; Hu & Bentler, 
1998; 1999; Marsh, Hau, & Wen, 2004; 
Schermelleh-Engel, Moonsbrugger, & Müller, 2003; 
Vandenberg & Lance, 2000). In an important sense, 
these fit statistics became the descriptive effect size 
indices for the χ2 test of fit. However, the move 
toward descriptive fit indices for indication of 
model fit did not turn out to be a panacea, either. 
Despite the fit indices’ efforts in adjusting model 
complexity (i.e., number of items and number of 
factors and the ratio of the two), most fit indices 
were still shown to be sensitive to model complexity 

 
3 Strictly speaking, a non-significant improvement in fit 
indicates that the null hypothesis is retained. Like any 
hypothesis testing, it does not prove that the parameters 
constrained to equality are, in fact, equal in the population. At 
best, a non-significant improvement in fit only provides a 
weak form of evidence that cross-group parameters are likely 
to be equal in the population. 
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(Cheung & Rensvold, 2002; Marsh et. al., 2004) in 
such a manner that a relatively less stringent cut-off 
is appropriate for a more complex model, and a 
relatively more stringent cut-off is appropriate for a 
simpler model. In other words, the idea that the 
same cut-off value applies to all models is 
inappropriate (Cheung & Rensvold, 2002; Marsh et. 
al., 2004). 

Despite the warning that χ2-related and the 
unequivocal cut-offs for fit indices were 
inappropriate for indicating model fit, they are still 
being used alone or in a combined manner as a 
decision rule for MI for multi-group nested models. 
Cheung and Rensvold (2002) reminded researchers 
that, like the χ2 test, ∆χ2 test is also susceptible to 
sample size and/or model complexity and has less 
value in making practical decisions about MI. Their 
argument can be illustrated by the formula for 
obtaining the ∆χ2, 

∆χ2  = (N-1)[Min Fitting Function (aug) - Min 
Fitting Function (com)] 

where “aug” denoted the augmented model such as 
configural invariance and “com” denoted the more 
compact model such as weak, strong or strict MI 
models.  

One can see that ∆χ2 is also a function of 
sample size, and should not be used solely for 
practical decisions on MI (Cheung & Rensvold, 
2002; Brannick, 1995; Kelloway, 1995; Vandenberg 
& Lance, 2000). In a Monte Carlo study, Cheung 
and Rensvold also showed that most of the fit 
indices were susceptible to model complexity for 
the MG-CFA nested models and should not be 
trusted as the sole criterion in making decisions 
about MI. 

For reasons stated above, early literature 
advocated the use of change in fit indices such as ∆TLI 
≤ 0.05 (Tucker & Lewis, 1973) and ∆Rho ≤ 0.022 
(McGaw & Jöreskog, 1971) as descriptive indices 
for nested models such as those in MG-CFA. 
However, these early recommendations have not 
been widely applied. Recently, however, Cheung 
and Rensvold (2002) recommended the revival of 
change in fit indices. In a Monte Carlo study of 20 
different fit indices, Cheung and Rensvold showed 
that, as expected, ∆χ2 was sensitive to sample size 
and model complexity. They also showed that 
despite many fit indices’ efforts in adjusting for 

model complexity, only RMSEA is not affected by 
model complexity and RMSEA≤ 0.05 was 
recommended for indicating the configural model 
fit. They also examined the appropriate cut-offs for 
change in fit indices to determine MI for nested 
models and suggested that ∆CFI (Hu & Bentler, 
1990) ≤ -0.01, ∆Gamma Hat (Steiger, 1989) ≤ -
0.001, or ∆Mcdonald’s (1989) Non-Centrality Index 
≤ -.02 were the best indication of support of MI. 
Although more research like Cheung and 
Rensvold’s is needed to validate their findings in 
other settings, their suggestions have been the most 
justifiable theoretically or empirically to date. 
Hence, we adopted their decision rules for our 
TIMSS construct comparability example.  

 
Why Should We Concern Ourselves 

With Strict Invariance? 
 

The following section discusses the meaning of 
strict invariance and the impact that lack of strict 
invariance has on construct comparability, with an 
eye toward making a case for why we should 
concern ourselves with testing strict invariance.  
The discussion is set in the context of an example 
with real data and the demonstration of the four 
complete steps for investigating whether strict 
factorial invariance holds. It should be noted that 
although our demonstration is with international 
comparative educational achievement data, our 
conclusions about invariance testing apply more 
broadly to other constructs and other grouping 
variables (e.g., over time, or across genders).   

The example data were retrieved from the first 
booklets of TIMSS 1999 grade 8 mathematics tests. 
The factor model is based on the 1999 TIMSS test 
blueprint, where the construct, mathematics 
proficiency, is measured by five content domains 
(indicators), each consisting of a pre-specified 
observed set of items (i.e., item parcel or item 
bundle). The use of item parcelling was justified for 
three reasons. First, the parcelling of the items was 
based on the item-content domain specification 
developed by TIMSS 1999. Second, items in each 
domain were tested for unidimensionality, which is 
the empirical prerequisite for item parcelling 
(Bandalos, 2002). Finally, the focus of this MI study 
was on the construct level, which, according to the 
TIMSS test blueprint, could be better represented 
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theoretically by the content domains rather than the 
individual items. The readers should note that by 
using homogeneous parcels (i.e., clusters or 
bundles, testlets) the techniques are applicable to 
computer adaptive tests.  The score range for the 
five domains are: 0-16 for Fraction and Number 
Sense, 0-9 for Measurement, 0-5 for Geometry, 0-5 
for Algebra, and 0-5 for Data Representation. 
Because the data are continuous, MG-CFA analyses 
were conducted using maximum likelihood 
estimation in LISREL/SIMPLIS on Pearson 
correlation matrices. Other popular statistical 
software packages such as SPSS cannot perform 
such analysis because they do not allow 
specification of free and fixed loadings in the same 
manner as confirmatory factor analysis software like 
LISREL, Mplus, or EQS. In addition, neither SPSS 
nor SAS allow one to conduct simultaneous multi-
group factor analyses. 

Data from seven countries, Australia (AUS), 
New Zealand (NZL), USA, Canada (CAN), Korea 
(KOR), Japan (JPN), and Taiwan (TWN) were 
examined. All the possible pairs of comparisons 
among the seven countries were investigated. By 
choosing these multiple countries, we intend to 
investigate the prevalence with which strict MI 
holds. Also, we intend to examine how sensitive the 
existing MG-CFA decision rules are to detect the 
possible MI distinction due to cultural similarities 
and discrepancies. For example, NZL, AUS, CAN, 
and US were considered countries that shared 
similar cultural paradigms, as were JPN, KOR, and 
TWN. In contrast, NZL and JPN, for instance, 
were considered countries that shared different 
cultural paradigms. For convenience, we termed 
paired comparisons between similar cultures as 
“within-culture” comparison, and paired 
comparisons between different cultures as “cross-
culture” comparisons. This broad-stroke 
terminology does not imply that there are no 
cultural differences among the “within-culture” 
countries, or there are no similarities among the 
“cross-culture” countries. In total, the seven 

countries constituted 21 planned-comparisons 
where nine were within-culture and 12 were cross-
culture comparisons. Note that, for comparative 
purpose, five fit indices reported in LISREL were 
listed, when applicable, in our following MI 
investigation: χ2, ∆χ2, RMSEA, and CFI, and ∆CFI. 

Test of Configural Invariance 

Configural invariance investigates whether 
examinees from different groups employ the same 
conceptual framework to answer the test items 
(Cheung & Rensvold, 2002; Horn & McArdle, 
1992; Vandenberg & Lance, 2000). In MG-CFA, 
constraining the number of factor(s) and the pattern 
of the free and fixed loadings to be the same across 
groups tests configural invariance. Failure to 
demonstrate configural invariance indicates that 
different constructs were measured across groups. 
Hence, evidence of configural invariance is a 
prerequisite for MI and further testing is not 
appropriate if configural invariance does not hold 
(Cheung & Rensvold, 2002; Horn & McArdle, 
1992; Little, 1997; Vandenberg & Lance, 2000). 
Figure 2 shows the configural model for our TIMSS 
example. To test configural invariance, this one-
factor five-indicator model is constrained to be the 
same for two countries.  

Following Cheung and Rensvold’s (2002) 
recommendation, RMSEA≤ 0.05 was used to 
evaluate configural model fit. Because model 
complexity was not a concern (i.e., a simple one-
factor five indicator model), CFI was also reported 
to compliment RMSEA. To distinguish the possible 
MI difference between “cross-”and “within-”culture 
comparisons, Table 1 and subsequent tables were 
organized in a manner that the top nine 
comparisons were within-culture comparisons and 
were separated with a line from the bottom part, the 
12 cross-culture comparisons. Sample sizes for the 
21 comparisons were also reported in Table 1. 
Appendix A provides the LISREL/SIMPLIS syntax 
for testing configural invariance with the MACS 
model. 
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Figure 2: One-factor Five-indicator Configural Invariance Model for TIMSS 

 
 

The results showed that all 21 configural models 
fit the data well; RMSEA ranged from 0.00 (e.g., 
AUS vs. CAN) to 0.05 (NZL vs. KOR). This good 
model fit was also supported by the CFI values 
equal to one for all comparisons. Hence, all 21 
comparisons were eligible for further tests of 
stricter MI. Note that despite indication of good 
model fit by RMSEA and CFI, χ2 rejected nine of 
the configural models including four out of nine 
within-culture comparisons. If the decision rule had 
been based on χ2, it would have suggested 
termination for further examinations for these 
comparisons. Rejections of configural invariance by 
χ2 were highlighted in bold.  

 

Test of Weak Invariance 

Weak invariance postulates that, for all items, 
one unit change in the item score is scaled to an 
equal unit change in the factor score across groups. 
Often, a substantive researcher’s interest is to 

compare or explain the variation of a construct due 
to group membership. For such cross-group study 
to be meaningful, the scale (unit of measurement) 
of the latent variable should be identical across 
groups so that the variances derived are on the 
same metric regardless of group membership. 
Variance obtained from different units of 
measurement is not explainable or comparable. In 
addition to configural constraints, investigating 
whether the factor loadings are identical across 
groups tests the equality in item-factor score scaling 
(see Figure 3). Lack of weak invariance is 
problematic because the test items are calibrated to 
the factor scores with different units of 
measurement across groups. If one unit change in 
the item score does not result in equal unit change 
in the factor score across groups, the regression 
lines are not identical because the slopes are 
unequal; hence the regression lines are not identical 
for the groups. 
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Table 1: Fit Indices for Configural Model 
Comparison N χ2 p RMSEA CFI 
AUS vs. NZL 945 11.18 0.34 0.02 1.00 
CAN vs. USA 1887 23.17 0.01 0.04 1.00 
AUS vs. CAN 1278 9.65 0.47 0.00 1.00 
AUS vs. USA 1599 16.85 0.08 0.03 1.00 
USA vs. NZL 1554 24.70 0.01 0.04 1.00 
CAN vs. NZL 1233 17.49 0.06 0.04 1.00 
JPN vs. KOR 1342 19.78 0.03 0.04 1.00 
JPN vs. TWN 1309 7.19 0.71 0.00 1.00 
TWN vs. KOR 1483 22.50 0.01 0.04 1.00 
AUS vs. JPN 1079 3.91 0.95 0.00 1.00 
AUS vs. KOR 1253 19.21 0.04 0.04 1.00 
AUS vs. TWN 1220 6.62 0.76 0.00 1.00 
USA vs. TWN 1829 20.14 0.03 0.03 1.00 
USA vs. KOR 1862 32.73 0.00 0.05 1.00 
USA vs. JPN 1688 17.42 0.07 0.03 1.00 
CAN vs. JPN 1367 10.22 0.42 0.01 1.00 
CAN vs. KOR 1541 25.52 0.00 0.04 1.00 
CAN vs. TWN 1508 12.93 0.23 0.02 1.00 
TWN vs. NZL 1175 14.46 0.15 0.03 1.00 
NZL vs. JPN 1034 11.75 0.30 0.02 1.00 
NZL vs. KOR 1208 27.05 0.00 0.05 1.00 
Note. χ2 rejection of configural invariance, p< .05, were highlighted in bold. 

 
 

Figure 3: One-factor Five-indicator Weak Invariance Model for 
TIMSS 

 
Note. λalg,  λdat,  λnum,  λgeo, and λmea represent the factor loadings for Algebra, 
Data, Number, Geometry, and Measurement. 
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To help us illustrate this concept, imagine a 
mathematics test is administered to the US and 
Japanese students. For simplicity, let us focus on the 
equation for one-factor and one-item. Equation (1) 
then becomes,   

  yij = τj + λjηi  + rij  (2) 

Rearrange (2) to solve for ηi, assuming rij= 0, 
namely, no measurement error (we will return to the 
possible effect of measurement residual in the 
section on the testing of strict invariance), we get 

  
j

jij
i

y
λ

τ−
=η ,                    (3)           

That is, equation (3) shows that an examinee’s 
factor score is equal to the ratio of the difference 
between the examinee’s item score and the item 
intercept to the item loading. Figure 4 demonstrates 
the scenario where weak invariance is violated. The 
example item is hypothesized to be measured on a 0 
to 6 scale and the factor is hypothesized to have a 
location of 0 and scale of 1 (note that the metric of  

a latent variable is arbitrary). Unequal slopes 
between the U.S. and Japan are hypothesized to be 
1.0 and 0.5 respectively. Illustrated by the bold lines, 
one can see that one unit of item score is scaled to 
be one unit of the factor score for the US, whereas 
for Japan, only 0.5 units of the item score is scaled 
to be one unit of the factor score. As a result, 
shown by the dashed lines, for the US students, a 
score of 2 (with an intercept of 0) is calibrated to 
have a factor score of 2, however, the same item 
score is calibrated to have a factor score of 4 for the 
Japanese students. This unequal factor score 
calibration with regard to factor loading can be 
verified by equation (3). Using equation (3), an item 
score of 2 would be calibrated to a factor score 
equal to (2-0)/1= 2 for the US students but (2-
0)/0.5 = 4 for the Japanese students. Such unequal 
calibration is, hence, biased against the US students. 
In this sense, cross-group inequality of factor 
loadings can be understood as the difference in 
factor score calibration with regard to the unit of 
measurement.  

 

 

Figure 4: Impact of Lack of Loading Equality on MI 

 
 

 
Appendix B provides the LISREL/SIMPLIS 

syntax for testing weak invariance with a MACS 
model. Note that as discussed earlier, the ∆CFI ≤ -
0.01 rule was used to make final decisions about 

whether weak, strong, and strict MI models hold. 
To calculate ∆CFI, the CFI of the MI model being 
tested was compared to that of a one-level less 
constrained model. For example, the ∆CFI for the 
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weak MI model was calculated by subtracting the 
CFI of the configural invariance model from that of 
the weak invariance model. The results for the 21 
weak MI tests were shown in Table 2. Rejections 
for weak invariance were highlighted in bold. 
Results showed that all nine within-culture 
comparisons passed the weak invariance test, and 
only two (out of nine) cross-culture comparisons 
were rejected. Note that if χ2 had been the decision 
rule for configural invariance instead of RMSEA, 
many of the comparisons shown to be weak 
invariant would not have been detected because the 
investigation on these configure-rejected 
comparisons had not been allowed to proceed to 
the weak invariance phase. Similarly, if Δχ2 had 
been employed for decision-making for weak 
invariance, it would have rejected almost all the 

comparisons, 19 of the 21 comparisons including 
seven out of nine of the within-culture comparisons 
(Table 2). On the contrary, if the CFI ≥ .90 rule had 
been employed for decision making for weak 
invariance, CFI would have confirmed all 21 
comparisons (CFI ranged from 0.98 to 1.00). These 
nearly contradictory conclusions reached by the Δχ2 
p-value and CFI ≥ .90 demonstrated that they could 
be problematic in determining whether weak 
invariance holds, suggesting that Δχ2 is too strict 
and CFI is too lenient. Note that although we do 
not generally recommend this criterion for MI 
testing, we are referring to CFI ≥ .90 (in this and 
forthcoming comparisons of Δχ2 and CFI in later 
sections of this paper) because this is the cut-off 
commonly referred to in the literature. 

 
 
 
Table 2: Fit Indices for Weak Invariance Models 
 
Comparison χ2 p RMSEA CFI Δχ2 ΔCFI 
AUS vs. NZL 21.96 0.11 0.03 1.00 10.78 0.00 
CAN vs. USA 49.65 0.00 0.05 0.99 26.48 -0.01 
AUS vs. CAN 16.07 0.38 0.01 1.00 6.42 0.00 
AUS vs. USA 49.13 0.00 0.05 0.99 32.28 -0.01 
USA vs. NZL 35.96 0.00 0.04 1.00 11.26 0.00 
CAN vs. NZL 29.97 0.01 0.04 1.00 12.48 0.00 
JPN vs. KOR 37.87 0.00 0.05 1.00 18.09 0.00 
JPN vs. TWN 94.81 0.00 0.09 0.99 87.62 -0.01 
TWN vs. KOR 64.60 0.00 0.07 0.99 42.10 -0.01 
AUS vs. JPN 44.97 0.00 0.06 0.99 41.06 -0.01 
AUS vs. KOR 37.83 0.00 0.05 0.99 18.62 -0.01 
AUS vs. TWN 36.58 0.00 0.05 1.00 29.96 0.00 
USA vs. TWN 83.76 0.00 0.07 0.99 63.62 -0.01 
USA vs. KOR 87.31 0.00 0.07 0.99 54.58 -0.01 
USA vs. JPN 139.37 0.00 0.10 0.98 121.95 -0.02 
CAN vs. JPN 79.45 0.00 0.08 0.99 69.23 -0.01 
CAN vs. KOR 51.55 0.00 0.06 0.99 26.03 -0.01 
CAN vs. TWN 66.40 0.00 0.07 0.99 53.47 -0.01 
TWN vs. NZL 29.69 0.01 0.04 1.00 15.23 0.00 
NZL vs. JPN 79.46 0.00 0.09 0.98 67.71 -0.02 
NZL vs. KOR 55.55 0.00 0.07 0.99 28.50 -0.01 
Note. Δdf = 5, χ2 0.05 (5, N) = 11.07 
Note. Rejections of weak invariance were highlighted in bold. 
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Test of Strong Invariance 
 

Strong invariance postulates that, for all items, 
not only the cross-group loadings but also the 
intercepts are equal. If the score comparison is to be 
on the group means of the latent variable, it is 
necessary to make sure that the centers of the latent 
variable are scaled identically across groups (Millsap, 

1998). This is tested by the equality in the 
calibration of the mean structure in addition to the 
variance/covariance structure (i.e., MACS) of the 
observed variables, which are nonetheless, widely 
neglected in the MI research practice as discussed 
earlier. (see Figure 5). 

 

 
Figure 5: One-factor Five-indicator Strong Invariance Model for 
TIMSS 

 
Note. τalg, τdat, τnum, τgeo, and τmea represent the intercepts and  λalg,  λdat,  
λnum, λgeo, and λmea represent the factor loadings for Algebra, Data, 
Number, Geometry, and Measurement. 

 
 

Unequal calibration with regard to the intercept 
is illustrated in Figure 6, where the hypothetical 
density functions of factor scores for the US and 
Japan are intentionally placed on the item scale. For 
the US, the location of the density function is at 2 
on the item scale but at 4 for Japan. Because the 
location is also the point where the factor score is 
zero, it is also the intercept of the regression line as 
shown in Figure 7. Thus, unequal cross-group 
intercept represents the unequal scaling of factor 
scores with regard to the location. The impact on 
factor score comparability resulting from unequal 

intercepts is shown in Figure 7. For Japanese 
students, a score of 5 (with a slope/loading of 1.0) 
is calibrated to have a factor of 1. However, the 
same item score is calibrated to have a factor score 
of 3 for the US students. This unequal factor score 
calibration with regard to the intercept can be 
verified by equation (3). Using equation (3), an item 
score of 5 would be calibrated to be factor score 
equal to (5-2)/1= 3 for the US students but only (5-
4)/1 = 1 for the Japanese students. Such unequal 
calibration is, hence, biased against Japanese 
students.  
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Figure 6: Hypothetical Density Function of Factor Score 

 
Note. The US and Japan’s factor score densities were put on item scale to show 
that the centers of the factor scale are not located at the identical position on 
the item scale. 

 
Figure 7: Impact of Lack of Intercept Equality on MI 

 
 

Figure 8 demonstrates the joint impact of both 
loading and intercept inequality on the factor score 
calibration (i.e., strong invariance violation). 
Following the hypothetical specification in Figures 
4 and 7, it can be seen that both the intercepts and 
the slopes are unequal for the U.S. (slope= 1 and 
intercept = 2) and Japan (slope= 0.5 and intercept= 
4). A score of 5 on the item score is calibrated to 
have a factor score of 2 for the Japanese students, 

but a factor score of 3 for the US students. This 
unequal factor score calibration with regard to the 
intercept and loading can be verified by equation 
(3). Using equation (3), an item score of 5 would be 
calibrated to be factor score equal to (5-2)/1= 3 for 
the US students but only (5-4)/0.5 = 2 for the 
Japanese students. Such unequal calibration is, 
hence, biased against the Japanese students. This 
differential item-factor calibration can also be 
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understood from an “interaction” perspective 
shown by the non-parallel regression lines in Figure 
8. That is, the item-factor relationship is dependent 
on the group membership. In this sense, an item 
score of, say, “5” might mean something quite 
different with regard to the factor score across 
groups. In summary, cross-group inequality in the 
loading or/and intercept implies that, conditional 
on the factor scores (true score), a student’s item 
score will depend on his/her group membership – 
i.e., DIF, a consequence that violates Meredith’s 
(1993) definition of MI. 
 

Appendix C provides the LISREL/SIMPLIS 
syntax for testing strong invariance. Table 3 shows 

the results for the strong invariance test with the 
MACS model. Note that strong invariance was not 
tested for two of the cross-culture comparisons: 
USA vs. JPN and NZL vs. JPN as indicated by the 
“--” sign in Table 3 because weak invariance was 
rejected by ∆CFI ≤ -0.01 for these two 
comparisons in the previous examination, hence MI 
investigations were terminated at the weak 
invariance level. Adopting the ∆CFI ≤ -0.01 
decision rule, seven out of the nine within-culture 
comparisons passed the strong invariance test; the 
two exceptions were AUS vs. USA and JPN vs. 
TWN. However, all the cross-culture comparisons 
failed the strong invariance test.  

 
 

Figure 8: Joint Impact of Loading and Intercept Inequality on MI 

 
 
 

The large drop in the number of confirmations 
from weak invariance test (19) to strong invariance 
test (7) indicated that despite the similarities in the 
factor loadings, inequality in the regression 
intercepts was prevalent among the paired 
comparisons. This indicated that the test was 
consistently biased against one of the countries in 
the planned pairs, and this phenomenon was 
universal for all cross-culture comparisons. If MI 
had been defined as loading or loading/error 
equality excluding the examination of intercept 
equality (i.e., MG-CFA on covariance structure 
only), biases in the factor score comparison due to 

unequal calibration in the location (as shown in 
Figures 7 and 8) would not have been detected; as 
highlighted in the literature by Zumbo (2003) and 
Zumbo and Koh (2005). Also note that, as found 
earlier, Δχ2 and CFI ≥ .90 rules were problematic in 
determining strong invariance models; this 
observation was demonstrated by the findings that 
almost contradictory conclusions were reached by 
Δχ2 and CFI ≥ .90. That is, Δχ2 rejected all 21 
comparisons for strong invariance whereas CFI ≥ 
0.90 rule confirmed 19 comparisons. 
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Test of Strict Invariance 
 

 In regression language, strict invariance dictates 
that, in addition to intercepts and the slopes, the 
regression residual variances for all the items are 
equal across groups (see Figure 9).  

The residual variance is the portion of item 
variance not attributable to the factor(s). Until 
recently, it was believed that fixing the residual 
variances to be equal subsequent to a support for 
strong invariance is an unnecessarily rigorous 
requirement for MI (Little, 1997; Steenkamp & 
Baumgartner, 1998; Vandenberg & Lance, 2000; 
Widaman, & Reise, 1997). For example, after 

reviewing the inconsistencies in the literature 
regarding constraints on the residuals, Vandenberg 
and Lance (2000) recommended that the evaluation 
of the residual variance equality be left to the 
researcher’s discretion. The rationale behind this 
thinking is that, if strong invariance holds, group 
difference in the residual variances is indicative of 
only the difference in reliabilities of the observed 
scores; thus, group difference is compensated if 
comparison is to be made on the latent variable 
level. Following this rationale, significant 
improvement in fit is interpreted as difference in 
measurement reliability (i.e., random noise) rather 
than evidence of bias. 

 
 
Table 3: Fit Indices for Strong Invariance Models 
Comparison χ2 p RMSEA CFI Δ χ2 ΔCFI 
AUS vs. NZL 65.64 0.00 0.07 0.99 43.68 -0.01 
CAN vs. USA 129.83 0.00 0.08 0.98 80.18 -0.01 
AUS vs. CAN 32.10 0.04 0.03 1.00 16.03 0.00 
AUS vs. USA 185.41 0.00 0.10 0.97 136.28 -0.02 
USA vs. NZL 80.94 0.00 0.06 0.99 44.98 -0.01 
CAN vs. NZL 61.62 0.00 0.06 0.99 31.65 -0.01 
JPN vs. KOR 71.66 0.00 0.06 0.99 33.79 -0.01 
JPN vs. TWN 175.09 0.00 0.01 0.97 80.28 -0.02 
TWN vs. KOR 87.90 0.00 0.07 0.99 23.30 0.00 
AUS vs. JPN 201.15 0.00 0.13 0.95 156.18 -0.04 
AUS vs. KOR 207.00 0.00 0.12 0.96 169.17 -0.03 
AUS vs. TWN 170.88 0.00 0.11 0.97 134.30 -0.03 
USA vs. TWN 661.20 0.00 0.18 0.91 577.44 -0.08 
USA vs. KOR 766.33 0.00 0.19 0.89 679.02 -0.10 
USA vs. JPN 710.71 0.00 0.19 0.88 571.34 -- 
CAN vs. JPN 360.62 0.00 0.15 0.92 281.17 -0.07 
CAN vs. KOR 366.37 0.00 0.14 0.93 314.82 -0.06 
CAN vs. TWN 319.32 0.00 0.13 0.95 252.92 -0.04 
TWN vs. NZL 319.69 0.00 0.15 0.95 290.00 -0.05 
NZL vs. JPN 400.08 0.00 0.18 0.90 320.62 -- 
NZL vs. KOR 420.80 0.00 0.18 0.91 365.25 -0.08 
Note. Δdf = 5, χ2 0.05 (5, N) = 11.07 
Note. Rejections of strong invariance were highlighted in bold. 
Note. “--” indicates that the strong invariance test was not legitimate, because the weak MI 
did not hold. 
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Figure 9: One-factor Five-indicator Strict Invariance Model for TIMSS 

 
Note. τalg, τdat, τnum, τgeo, and τmea represent the intercepts, rvalg, rvdat, rvnum, rvgeo, and rvmea 
represent the residual variances, and  λalg,  λdat,  λnum,  λgeo, and λmea represent the factor 
loadings for Algebra, Data, Number, Geometry, and Measurement. 
 

However, Deshon (2004) and Lubke and Dolan 
(2003) maintained that the above statement against 
the necessity for strict invariance is true if, and only 
if, the assumption of conditional independence 
holds. That is, there are no inter-correlations among 
the item residuals after accounting for the factor 
scores. Theoretically, the residuals are “assumed” to 
be conditional independent and are simply the 
results of unpredictable fluctuations in the 
measurement process, namely, random errors. Or, 
more precisely, “IF” the conditional independence 
assumption holds, an item’s residual is neither 
correlated with those of the other items, nor with 
the common factors, after conditioning on the 
factor score. Deshon (2004) and Lubke and Dolan 
(2003), like earlier psychometricians such as 
Rozeboom (1966), argued that, in practice, 
however, it is not uncommon to observe the 
violation of conditional independence, even to a 
small degree. They argued that residuals might be 
the results of both the unpredictable fluctuations 
and the systematic effects of “unintentionally 
measured yet un-modeled variable(s)” of one or 
some particular items (e.g., method effect or minor 
secondary dimensions). Hence, residual variance of 
an item consists of not only the random variation, 
but also the variation due to the effect of 

unmodeled sources of systematic effects that 
influence people’s item responses (i.e., extraneous 
variables, for example, difference in the coverage of 
curriculum or translation effect). Based on 
Cronbach’s (1947) statement on error, Deshon 
(2004, p. 144) stated that “if the error variances are 
different across groups, then there are either 
different variables operating on the measures across 
groups or the same set of variables operates 
differently across groups”.  

Deshon (2004) further argued that common 
factor analysis does not eliminate or partial out the 
effects of unmodeled extraneous variable(s). He 
contended that the belief that systematic item-
specific sources of variance are removed from the 
estimation of the latent variable is based on the 
ideal assumption that the residuals of items are 
uncorrelated with each other or the latent variable. 
Deshon (2003, p.146) stated: 

These two innocent sounding assumptions of the 
common factor model are the source of much 
interpretational ambiguity concerning the meaning of 
the latent variables. If one believes that the variance in 
an item response that is not due to the latent variable 
is completely random noise, then the argument that 
error variance MI is unnecessary is valid. However, if 
one adopts Cronbach’s (1947) position that the 



Practical Assessment Research & Evaluation, Vol 12, No 3 17 
Wu, Li, and Zumbo, Measurement Invariance 
 

variance not due to the latent variable is actually due 
to other causative variables that affect item response, 
then the assumption is almost wrong in every single 
application of common factor analysis. 
Necessity for strict invariance can be easily 

understood from our item-factor regression notion. 
Remember that in order to demonstrate the effect 
of lack of strong invariance, we temporarily ignore 
the existence of the residual term in equation (1). 
Now it’s appropriate to bring back the complete 
equation (1) that contains the regression residual 
term and further partition the residual term into two 
parts: a) sij, which is the effect that is unintentionally 
yet systematically measured by a specific item (or 
items) and b) rij, which is the random fluctuations of 
unreliability, yielding 

yij = τj + λj1η1i + λj2η2i +… λjpηpi + sij + rij,     (4)                                               

If systematic effect, sij, is present due to group 
membership and leads to the mean of the residuals 

to be higher (or lower) for one group or leads to 
unequal variation of the residuals between the 
groups, then such effect will shift the two 
regression lines away from the identical regression 
position achieved by strong invariance as a result of 
the cross-group inequality in the residual mean, the 
variance, or the joint impact of the two and 
obfuscate the equality in item-factor calibration. 
This effect is demonstrated in Figure 10. One can 
see that the residual values are systematically higher 
for Japan (indicated by “○”) then those of the U.S. 
(indicated by “●”), as is the variation among the 
Japanese respondents. As a result, the individual 
item-factor regression lines indicated by the dotted 
lines are shifted away from the identical position 
achieved by strong invariance. Hence, the strong MI 
condition is obfuscated by the item specific 
systematic effect.  

 

Figure 10: Impact of Systematic Item-specific Effect on MI 

 
 

If the item residuals consist of only the random 
errors, rij (i.e., the conditional independence 
assumption is met), they will not obfuscate the MI 
achieved by strong invariance because the random 
errors are expected to cancel each other out and 
result in means of zeros for each group and the 

residual variances will remain equal for the two 
groups. Hence, random error has no effect on the 
cross-group item-factor relationships and the 
identical calibration lines achieved by strong 
invariance will remain stable (see Figure 11). 

 

Figure 11: Impact of Random Error Effect on MI 
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Deshon (2004) argued that regardless of the 
methods used to estimate the factor scores, 
common factor analysis does not remove the 
influence of unwanted systematic effect. Common 
factor analysis simply reduces the variance of the 
observed variables to what might have been if such 
systematic effect did not affect the measured 
variables. The variance of the measured variable can 
be reduced but the influence of the unwanted 
systematic variables cannot be removed. He 
maintained that strong invariance is sufficient for 
MI only if the non-random residuals have 
influenced the common variance of the items and 
not differentially influenced their specific variances.  

In our view, Deshon’s (2004) and Lubke and 
Dolan’s (2003) argument against the capacity of 
common factor analysis to remove unwanted 
systematic effect can be easily understood from a 
multi-dimensionality perspective of bias (Ackerman, 
1992; Shealy & Stout, 1993). When exploratory 
factor analysis (i.e., unrestricted factor analysis) is 
applied separately to the groups, existence of bias is 
deemed feasible if the item specific variances result 
in the formation of an extra factor(s) for one group 
but not the other or for both groups with unequal 
means and/or variances on the extra factor. This 
effect of unequal means and/or variances in the 
extra factor is allowed to freely yield different 
estimates of the intercepts, loadings, and residual 
variances across groups because the parameter 
estimation are conducted separately for each group. 

However, imagine that a “strong” MG-CFA MI is 
specified according to the researcher’s theory, the 
number of factors is forced to be the same, and so 
are the loadings and intercepts. Such constraints will 
allow item specific effects to reside only in the 
residual terms and remain undetected if strict MI is 
not investigated and consequently disguising 
possible biases in the test scores. In situations 
where items are sound measures of the construct 
(i.e., communalities are high) and the model 
specification is correct for all groups (i.e., low 
residual variances and uncorrelated errors), testing 
strict invariance would likely reach the same 
conclusion as the strong invariance test would. 
However, such a desirable scenario is not always 
guaranteed. Hence, a judicious modeling strategy 
should always incorporate a test of strict invariance 
as a prudent step for ensuring MI rather than an 
unnecessarily rigorous requirement. 

Appendix D provides the LISREL/SIMPLIS 
syntax for testing strict invariance with the MACS 
model. Table 4 shows the results for the strict 
invariance test. Observe that none of the cross-
culture comparisons were tested for strict invariance 
as indicated by the “--” sign in Table 4 because 
strong invariance was rejected by the ∆CFI ≤ -0.01 
rule in the previous analyses. For within-culture 
comparisons, strict invariance and strong invariance 
came to the same conclusions. All 7 within-culture 
comparisons that passed the strong invariance test 
also passed the strict invariance test. Hence, testing 
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strict invariance did not alter the final decision 
about MI (see Table 4). Again, a large number of 
contradictory conclusions between Δχ2 and CFI ≥ 
.90 were observed as in the weak and strong 
invariance examinations. 

 
SUMMARY 

 
The purpose of the paper is to decode the 

meaning of MI and update the practice of MG-
CFA. In essence, our purpose is one of knowledge 
translation from the technical psychometric and 
statistical literature. We explained why strict 
invariance is a necessary condition for ensuring MI 
and why it should always be tested. We 

demonstrated: (a) why inequalities in the loadings 
and intercepts have a direct detrimental effect on 
the item-factor score calibration, and (b) how 
inequality in the residuals may distort the 
loading/intercept metric equality. In particular, we 
stress the necessity for modeling MACS factorial 
invariance so that the centers of the latent variable 
are scaled identically for the group mean 
comparison to be meaningful. Equally important is 
the testing the existence of group-related systematic 
effect in the residuals by the strict invariance. 
Unless residual variances of the measured variables 
can be clearly shown to be only a reflection of 
random errors, as a prudent step, equality in the 
residual terms should always be tested. 

 
Table 4: Fit Indices for Strict Invariance Models 

 
Comparison χ2 p RMSEA CFI Δ χ2 ΔCFI 

AUS vs. NZL 71.81 0.00 0.06 0.99 6.17 0.00 
CAN vs. USA 139.47 0.00 0.07 0.98 9.64 0.00 
AUS vs. CAN 32.70 0.14 0.02 1.00 0.60 0.00 
AUS vs. USA 197.82 0.00 0.10 0.97 12.41 -- 
USA vs. NZL 88.91 0.00 0.06 0.99 7.97 0.00 
CAN vs. NZL 69.87 0.00 0.05 0.99 8.25 0.00 
JPN vs. KOR 91.35 0.00 0.06 0.99 19.69 0.00 
JPN vs. TWN 189.87 0.00 0.10 0.97 14.78 -- 
TWN vs. KOR 98.58 0.00 0.06 0.99 10.68 0.00 
AUS vs. JPN 286.09 0.00 0.13 0.93 84.94 -- 
AUS vs. KOR 269.74 0.00 0.12 0.95 62.74 -- 
AUS vs. TWN 217.86 0.00 0.11 0.96 46.98 -- 
USA vs. TWN 754.69 0.00 0.17 0.90 93.49 -- 
USA vs. KOR 889.86 0.00 0.18 0.87 123.53 -- 
USA vs. JPN 823.39 0.00 0.18 0.86 112.68 -- 
CAN vs. JPN 448.51 0.00 0.14 0.91 87.89 -- 
CAN vs. KOR 445.92 0.00 0.14 0.92 79.55 -- 
CAN vs. TWN 377.13 0.00 0.13 0.94 57.81 -- 
TWN vs. NZL 365.40 0.00 0.14 0.94 45.71 -- 
NZL vs. JPN 483.88 0.00 0.18 0.88 83.80 -- 
NZL vs. KOR 485.02 0.00 0.17 0.90 64.22 -- 
Note. Δdf = 5, χ2 0.05 (5, N) = 11.07  
Note. Rejections of strict invariance were highlighted in bold.  
Note. “--” indicates that the strict invariance test was not legitimate, because the strong MI did not hold.

 
We also discuss that the MG-CFA decision 

about rejecting or supporting MI should not rely 
solely on either ∆χ2 test or fit indices. Instead, 
researchers should consider using change in fit 
indices, in particular, ∆CFI, ∆Gamma Hat, or 

∆Non-Centrality Index. These conclusions were 
adopted to guide our example investigation of 
construct comparability in the scores of the TIMSS 
mathematics test. Table 5 summarizes the results of 
the TIMSS MI investigations where within-culture
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Table 5. Summary Results of MI for 21 Planned Comparisons 
 AUS NZL CAN USA TWN KOR 

NZL Strict      
CAN Strict Strict     
USA Weak Strict Strict    
TWN Weak Weak Weak Weak   
KOR Weak Weak Weak Weak Strict  
JPN Weak Configure Weak Configure Weak Strict 

Note. Results for within-culture comparisons were highlighted in bold. 
 

comparisons were highlighted in bold and the 
cross-culture comparisons were grouped within a 
rectangle 

What do the results tell us and how should the 
results of an MI investigation be interpreted? In the 
TIMSS example, the general pattern observed for 
the within-culture comparisons is that MI is 
demonstrated. That is, for within-culture 
comparisons, the same construct is measured and is 
measured on the same metric. Hence, if any 
difference in the factor score is found, one can be 
assured that such difference is a result of a true 
difference in the amount of mathematics 
proficiency rather than measurement artifact. Also, 
we are assured that comparing and explaining 
variation is meaningful regardless of the group 
membership because cross-group variances are 
assured to be on the same metric. This broad 
statement does not imply that MI is guaranteed if 
the comparison is among countries that share 
similar cultural paradigms. In fact, MI in the AUS 
vs. USA and JPN vs. TWN comparisons was found 
to be absent in this study. In other words, although 
it is very likely that construct comparability does 
exist among countries that share the same cultural 
paradigms, MI should never be simply assumed. 

For cross-culture MI examinations, only weak 
invariance, at best, is achieved. This result indicates 
that intercept invariance does not hold for any of 
the cross-culture comparisons, hence, the 
mathematics test, as a whole, was consistently 
biased against one of the countries in the pairs. One 
cannot infer that there is true group difference even 
if the hypothesis test, such as a t-test, is significant 
because the detected difference might be an artifact 
of the measurement bias. Any research or policy 
exercise such as ranking performances or explaining 

group differences based on such mathematics 
proficiency scores is not meaningful because 
mathematics proficiency scores were not measured 
on the same metric unless some forms of linking or 
equating, which have their own variation of MI 
assumptions, is performed before comparison. This 
is an important point for policy makers, and school 
effectiveness researchers who value and interpret 
country rankings. Country rankings, which are 
commonly found in the media and in policy 
discussions, are only meaningful if MI has been 
empirically demonstrated.   

 

Closing Remarks 

It is interesting to note that for our TIMSS 
example, strong and strict invariance reach the same 
conclusions. This seems to suggest that, if the items 
communalities are high (e.g., .82, .56, .80, .59, and 
.79 for the five domains for Taiwan) and the model 
is correctly specified (indicated, for example, by the 
good configural fit), tests of strong and strict 
invariance will likely reach the same conclusions. 
Readers may, hence, overlook the necessity for 
strict MI. It is vital to realize that this fortunate 
coincidence in results is never known a priori. It is 
not guaranteed that the strong and strict invariance 
examinations will always come to the same 
conclusions for other datasets, especially when the 
model specification of the configural model is 
uncertain and the communalities of the observed 
indicators are low. Strict invariance detects potential 
obstruction of strong invariance due to the item-
specific systematic effect. Hence, testing strict 
invariance should be considered as a prudent step 
rather than an unnecessarily strict requirement for 
ensuring MI and should always be employed for MI 
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investigation. It is apparent when one reads the 
research literature where in MI is applied that some 
researchers envision MI as configural or weak 
invariance, these researchers appear to operate with 
the principle that strong and strict invariance are 
unnecessary, and, at best, are psychometric niceties. 
In this paper, we have shown in detail why this is 
not the case and why researchers should test for 
strong and strict invariance. 

As the literature suggested, in this study, χ2 does 
not provide practical usefulness in testing configural 
invariance. Likewise, the Δχ2 or CFI ≥ 0.90 rules do 
not appear useful for testing nested MI models. 
This conclusion is supported by the highly 
inconsistent (and almost always contradictory) 
conclusions reached by Δχ2 and CFI ≥ 0.90 rules. 
This contradiction in the MI conclusion should 
warn researchers that decisions based on either Δχ2 

or CFI, as widely applied in today’s practice, could 
be problematic.  

On a statistical methodology note, the MG-
CFA methods we reviewed and applied were largely 
based on the maximum likelihood estimation 
methods, which assume multivariate normal data. 
Future Monte Carlo studies should be conducted to 
verify these decision rules. In addition, to our 
knowledge, no study has investigated the 
appropriate fit indices for MG-CFA on polychoric 
correlation matrix for categorical data using 
alternative estimation methods such as weighted 
least squares.  

In short, this study demonstrates that the 
success of an MI MG-CFA investigation lies in the 
researcher’s lucid understanding of strict invariance 
as well as an informed choice of the appropriate fit 
indices. Cut-off values should be employed carefully 
in relation to the characteristics of the data such as 
sample size, complexity in the data structure, and 
the estimation methods used.  
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Appendix A: SIMPLIS Syntax for Testing Configural Invariance 
 
**  Note that for multi-group analyses SIMPLIS works on the principle that any  
**  parameters specified in the second group are freely estimated in the second group –  
**  hence they are allowed to be different in the second group. 
 
Group 1: Japan 
Raw Data from File JPN_DOMAIN.PSF 
Observed Varibles: ALGEBRA DATA NUMBER GEOMETRY MEASURE  
Latent Variables: MATH  
 
Relationships 
ALGEBRA = CONST MATH 
DATA = CONST MATH 
NUMBER = CONST MATH 
GEOMETRY = CONST MATH 
MEASURE = CONST MATH 
 
Group 2: USA 
Raw Data from File USA_DOMAIN.PSF 
 
Relationships 
ALGEBRA = CONST MATH 
DATA = CONST MATH 
NUMBER = CONST MATH 
GEOMETRY = CONST MATH 
MEASURE = CONST MATH 
 
Set the Error Variance of  ALGEBRA  Free  
Set the Error Variance of  DATA  Free 
Set the Error Variance of  NUMBER  Free 
Set the Error Variance of  GEOMETRY  Free 
Set the Error Variance of  MEASURE  Free 
 
 
Path Diagram 
End of Problem 
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Appendix B: SIMPLIS Syntax for Testing Weak Invariance 

 
**  Note that for multi-group analyses SIMPLIS works on the principle that any  
**  parameters specified in the second group are freely estimated in the second group –  
**  hence they are allowed to be different in the second group. 
 
Group 1: Japan 
Raw Data from File JPN_DOMAIN.PSF 
Observed Variables: ALGEBRA DATA NUMBER GEOMETRY MEASURE  
Latent Variables: MATH  
 
Relationships 
ALGEBRA = CONST MATH 
DATA = CONST MATH 
NUMBER = CONST MATH 
GEOMETRY = CONST MATH 
MEASURE = CONST MATH 
 
Group 2: USA 
Raw Data from File USA_DOMAIN.PSF 
 
Relationships 
ALGEBRA =  CONST 
DATA = CONST 
NUMBER = CONST 
GEOMETRY = CONST 
MEASURE =  CONST 
 
Set the Error Variance of  ALGEBRA  Free  
Set the Error Variance of  DATA  Free 
Set the Error Variance of  NUMBER  Free 
Set the Error Variance of  GEOMETRY  Free 
Set the Error Variance of  MEASURE  Free  
 
 
Path Diagram 
End of Problem  
 
 

Appendix C: SIMPLIS Syntax for Testing Strong Invariance 
 
**  Note that for multi-group analyses SIMPLIS works on the principle that any  
**  parameters specified in the second group are freely estimated in the second group –  
**  hence they are allowed to be different in the second group. 
 
Group 1: Japan 
Raw Data from File JPN_DOMAIN.PSF 
Observed Varibles:  ALGEBRA DATA NUMBER GEOMETRY MEASURE  
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Latent Variables: MATH  
 
Relationships 
ALGEBRA = CONST MATH 
DATA = CONST MATH 
NUMBER = CONST MATH 
GEOMETRY = CONST MATH 
MEASURE = CONST MATH 
 
Group 2: USA 
Raw Data from File USA_DOMAIN.PSF 
Set the Error Variance of  ALGEBRA  Free  
Set the Error Variance of  DATA  Free 
Set the Error Variance of  NUMBER  Free 
Set the Error Variance of  GEOMETRY  Free 
Set the Error Variance of  MEASURE  Free  
 
Path Diagram 
End of Problem 
 
 

Appendix D: SIMPLIS Syntax for Testing Strict Invariance 
 
**  Note that for multi-group analyses SIMPLIS works on the principle that any  
**  parameters specified in the second group are freely estimated in the second group –  
**  hence they are allowed to be different in the second group. 
 
Group 1: Japan 
Raw Data from File JPN_DOMAIN.PSF 
Observed Variables: ALGEBRA DATA NUMBER GEOMETRY MEASURE  
Latent Variables: MATH  
 
Relationships 
ALGEBRA = CONST MATH 
DATA =  CONST MATH 
NUMBER = CONST MATH 
GEOMETRY = CONST MATH 
MEASURE = CONST MATH 
 
Group 2: USA 
Raw Data from File USA_DOMAIN.PSF 
 
Path Diagram 
End of Problem 
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