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Variable-length computerized classification tests, CCTs, (Lin & Spray, 2000; Thompson, 2006) are a 
powerful and efficient approach to testing for the purpose of classifying examinees into groups.  
CCTs are designed by the specification of at least five technical components: psychometric model, 
calibrated item bank, starting point, item selection algorithm, and termination criterion. Several 
options exist for each of these CCT components, creating a myriad of possible designs.  Confusion 
among designs is exacerbated by the lack of a standardized nomenclature.  This article outlines the 
components of a CCT, common options for each component, and the interaction of options for 
different components, so that practitioners may more efficiently design CCTs.  It also offers a 
suggestion of nomenclature. 
 
Variable-length computerized classification tests 

(CCT: Lin & Spray, 2000; Thompson, 2006; 
Parshall, Spray, Kalohn, & Davey, 2006) offer a 
sophisticated testing methodology designed to 
classify examinees into groups with the goal of 
maximizing the efficiency of the test, namely 
reducing classification error while using as few 
items as necessary.  Variable-length CCT research 
primarily investigates new alternatives in CCT 
design that are proposed to further this goal.  
However, because several alternatives exist for the 
specification of each component in variable-length 
CCT, there are an extensive number of possible 
designs, creating possible confusion both in its 
development and in the relevant nomenclature.  
The purpose of this article is to organize variable-
length CCT design and its nomenclature by first 
delineating the required components of a variable-
length CCT, identifying commonly used alternatives 
for each component, and making recommendations 
regarding the interaction of components. 

First, the term “computerized classification 
test” is a general expression that, upon initial 
inspection, can refer to any test for examinee 
classification administered by computer.  However, 
it has been used in research to refer to a specific 
type of test, a variable-length computerized test (Lin 
& Spray, 2000; Parshall, Spray, Kalohn, & Davey, 
2006).  A variable-length test is a computerized 
assessment where not every examinee receives a test 
of the same length because the test will terminate 
when it has accomplished its purpose.  In CCT, this 
occurs when the test is able to classify an examinee, 
while in computerized adaptive testing it often 
occurs when a point estimate of ability reaches a 
certain amount of precision.   

It is proposed that the acronym VL-CCT be 
used to refer to variable-length CCT rather than 
using the term CCT, and the term CCT be reserved 
for the broader topic of classification exams 
administered by computer.  Many classification tests 
administered by computer are not variable length, 
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such as linear-on-the-fly tests or computerized 
administrations of traditional fixed-form tests.  
Similarly, it is proposed that the term “adaptive,” 
which is sometimes used to refer to variable-length 
computerized tests (Spray & Reckase, 1996), be 
reserved for a test that adapts to an examinee using 
individual examinee information, namely a test that 
selects items based on examinee responses.  A test 
that maximizes information at a cutscore does not 
take the examinee into account, only aspects of the 
items, and is therefore not truly adaptive. 

The broader term “classification” is used, 
following Parshall, Spray, Kalohn, and Davey 
(2006), rather than the often-used “mastery” 
(Kingsbury & Weiss, 1983; Yang, Poggio, & 
Glasnapp, 2006) because while most VL-CCT 
applications are for the commonly encountered 
mastery test, the VL-CCT methods are generalizable 
to classification for more than two groups (e.g., 
Spray, 1993; Eggen & Straetmans, 2000; Jiao, Wang, 
& Lau, 2004). 

DESIGN COMPONENTS 

 

VL-CCT requires the specification of five 
mandatory design components, similar to the 
components of computerized adaptive testing 
(Weiss & Kingsbury, 1984).  The components are 
outlined in Table 1.  Additional components 
addressing practical issues such as item exposure 
and content constraints are often imposed, but 
these are not mandatory for the creation of a VL-
CCT, and will be addressed separately.  Required 
VL-CCT components include: 

1. Psychometric model 
2. Calibrated item bank 
3. Starting point 
4. Item selection algorithm 
5. Termination criterion (classification/scoring 

procedure). 
 

 
Table 1: CCT Components 
CCT Component Available options Example References

Classical Test Theory Linn, Rock, & Cleary, 1972; Frick, 1992; 
Rudner, 2002 Psychometric 

Model Item Response 
Theory 

Reckase, 1983; Kingsbury & Weiss, 1983; 
Lau & Wang, 1998; Eggen & Straetmans, 
2000 

Peaked Xiao, 1999 Item Bank 
(peakedness not 
always reported) Not peaked Kingsbury & Weiss, 1983; Finkelman, 2003; 

Yang, Poggio, & Glasnapp, 2006
Default (LR = 1 or θ 
= 0.0) Most extant research Starting point 
Previous information Yang, Poggio, & Glasnapp, 2006 

Estimate-based Reckase, 1983; Kingsbury & Weiss, 1983; 
Eggen, 1999 Item Selection 

Cutscore-based Spray & Reckase, 1994, 1996; Eggen, 1999 
 Global (Mutual) Weissman, 2004 

SPRT Reckase, 1983; Eggen, 1999; Eggen & 
Straetmans, 2000 

ACI Kingsbury & Weiss, 1983; Eggen & 
Straetmans, 2000; Chang, 2006 

Termination 
Criterion 

Bayesian decision 
theory Vos, 2000; Glas & Vos, 2006 
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VL-CCT differs from computerized adaptive 
testing for point estimation of ability in that the 
termination criterion and the classification/scoring 
procedure are the same thing; the test is terminated 
when the examinee is classified.  If the purpose of 
the test is a point estimate of examinee ability, then 
the two are considered separately (Weiss & 
Kingsbury, 1984). 

 

Psychometric Model 

The first step in the technical development of a 
VL-CCT is the selection of a psychometric model 
that will be used as a basis for the remaining 
components.  Both prevailing psychometric 
theories, classical test theory (CTT) and item 
response theory (IRT) can be used in the 
development of VL-CCT.  Both require the 
sampling of examinees to obtain calibrations of 
item parameters, but the use of CTT requires the 
additional constraint of being able to distinguish 
between members of the intended groups through 
other means. 

CTT requires distinguishable groups because 
VL-CCT with a classical model is designed to have 
separate item parameters for each group (Frick, 
1992; Rudner, 2002), specifically the difficulty or 
proportion-correct statistics.  For example, a test 
for licensure may obtain a sample of licensed, 
practicing professionals and another sample of 
students being educated to enter the profession.  
Theoretically, more practicing professionals will 
answer the item correctly, and the test is designed to 
make use of this differentiation.  CTT offers the 
advantage of conceptual simplicity and applicability 
to small samples, but can still be used to design 
highly efficient VL-CCTs (Rudner, 2002). 

IRT is actually a family of models that offers a 
powerful alternative to CCT, but with the drawback 
that it requires a much larger calibration sample, up 
to 1,000 examinees (Wainer & Mislevy, 2000).  IRT 
evaluates the probability of a correct response 
across all levels of ability (θ), with fine distinction 
rather than only across broad groups.  A standard-
setting study must be performed to determine a 
cutscore or cutscores on θ.  While the majority of 
VL-CCT research has employed dichotomous IRT 
(e.g., Reckase, 1983; Spray & Reckase, 1996; Eggen, 
1999) it is also possible to use polytomous IRT (Lau 

& Wang, 1998) such as the generalized partial credit 
model (Muraki, 1992).  An advantage of IRT is that 
it places items and examinees on a common scale 
(θ), as well as the cutscore.  This generally applicable 
scale facilitates sophisticated methods for the 
remaining components. 

 

Calibrated item bank 

The optimal characteristics of the item bank to 
be used are determined by other components of the 
VL-CCT.  Obviously, the calibration procedure 
depends upon the psychometric model selected, and 
the structure of the item bank is derived from the 
content specifications of the test, often based on a 
job analysis.  The ranges of desired item statistics 
depend on the intended item selection algorithm.  
For example, if the item selection algorithm will 
select items with difficulty values near the cutscore 
on the θ metric, then many items will be needed 
with difficulty parameters in this region.  If the item 
selection algorithm will match item difficulty to 
estimated examinee θ, then a wide range of 
difficulty parameters are necessary because there 
may be a wide range of examinee ability.  
Unfortunately, detailed information regarding the 
item bank, especially the very relevant characteristic 
of peakedness, is not always reported in VL-CCT 
research. 

An important question to ask when developing 
the item bank is as to how many items will be 
needed.  The answer lies in several issues.  If the 
test is very high stakes and only a small amount of 
classification error can be tolerated, such as a 
medical licensure examination, then more items are 
needed than a test whose stakes are lower, such as a 
test of corporate training retention.  If IRT is used, 
then fewer items are needed if the items provide a 
high amount of information, which can occur when 
they have relatively high discrimination values or a 
polytomous IRT model.  Ideally, simulation studies 
will be carried out to determine the efficiency of the 
proposed procedure, which includes the 
characteristics of the item bank.  If the results of the 
simulation study are not satisfactory, other choices 
of components may be explored. 
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Starting point 

If previous information is available concerning 
individual examinees, this can be used to modify the 
starting point of the test (Weiss & Kingsbury, 1984; 
Yang, Poggio, & Glasnapp, 2006).  For example, if 
the test must be periodically retaken for 
recertification in a profession, then previously 
certified examinees may warrant a higher initial 
estimate of ability than examinees that are taking the 
test for the first time.  Their previous score itself 
may be used, if available.  This is not often the case, 
though, and the default values of a termination 
criterion are usually used, such as a likelihood ratio 
of 1.0 (an even ratio) or examinee ability at the 
mean of the population. 

 

Item selection algorithm 

The most basic item selection algorithm for VL-
CCT is random item selection (Kingsbury & Weiss, 
1983).  At each point in the test, an item is 
randomly selected from the bank.  Unfortunately, 
this makes no use of known information regarding 
neither the items nor the examinees, and therefore 
sacrifices efficiency. 

A more appropriate approach is intelligent item 
selection, where the computer evaluates the 
unadministered items in the bank and decides which 
would be the “best” to administer next.  While this 
is conceptually straightforward, it is not 
operationally so, as there are different methods to 
quantify exactly what constitutes “best.”  Moreover, 
certain methods are more appropriate for or can 
only be used with certain termination criteria, item 
bank characteristics, and psychometric models.  
Given the number of methods available, and the 
differences in appropriateness regarding other 
components, a large amount of VL-CCT research as 
focused on item selection (e.g., Spray & Reckase, 
1994; Eggen, 1999; Lin & Spray, 2000). 

Intelligent item selection methods can generally 
be classified into two types, cutscore-based and 
estimate based (Thompson, 2006).  Cutscore-based 
methods seek to maximize the amount of 
information that items provide at the cutscore (with 
IRT), or equivalently to differentiate between the 
two groups divided by the cutscore (classical).  
Estimate-based methods seek select the next item 

based on an estimate of examinee ability, regardless 
of the cutscore location. 

When the psychometric model is classical test 
theory, three cutscore-based methods have been 
proposed (Rudner, 2002): maximum discrimination, 
information gain, and minimum expected cost.  
Maximum information is the conceptually simplest; 
the next item chosen is that which offers the best 
discrimination between the groups, or has the 
greatest difference in the proportion P of correct 
responses in each group from the calibration 
sample.  Rudner (2002) quantifies this as 
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where zi = 1 is a correct response to item i, and 
the upper mastery group being considered is mk+1.  
For example, an item that is correctly answered by 
0.80 of masters mk+1 and 0.30 of nonmasters mk is 
more discriminating than an item that was correctly 
answered by 0.60 of masters and 0.50 of 
nonmasters.   

Information gain evaluates the same concept 
through a more sophisticated quantification that 
employs Shannon’s information (1948) index of 
entropy, 
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Information gain is maximized with the greatest 
reduction of entropy, 

 H(S0) – H(Si)     (3) 

where H(S0) is the current level of entropy and 
H(Si) is the expected entropy after item i, expressed 
as 
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Information gain increases with a greater 
difference between the group difficulty statistics 
(Rudner, 2002).   

Minimum expected cost is a Bayesian criteria 
that fits with the Bayesian decision theory 
framework that is applied to VL-CCT with classical 
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test theory.  It assumes that the test user can 
arbitrarily specify the relative cost or loss of each 
type of classification error, and seeks to minimize 
the expected cost, as calculated with the posterior 
probabilities of the examinee’s classification.  If c21 
is the cost of making a classification decision in 
group 2 (d2) when the examinee is actually in 
mastery group 1 (m1), and c12 is vice versa, then the 
expected cost is 

  (5) 
)()|(
)()|(

22112

11221

mPmdPc
mPmdPcB +=

Items are selected to minimize expected cost 
after administration,  
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where the probability of each response is 
multiplied by the expected cost B if the examinee 
were to respond with the given response (Rudner, 
2002).  The probability of a response is assumed to 
be (Rudner, 2002) 
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Three cutscore-based methods have also been 
suggested with IRT (Lin & Spray, 2000): maximum 
Fisher information, maximum Kullback-Liebler 
information, and a log-odds ratio.  Maximum Fisher 
information seeks to maximize information at a 
single point, given the probability of a correct 
response P and incorrect response Q (Embretson & 
Reise, 2000) 
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whereas Kullback-Liebler information evaluates 
information across a region θ0 to θ1 around the 
cutscore (Eggen, 1999) 
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Lin and Spray (2000) additionally suggested a 
transformation of the ratio between the probability 
of a correct response for a point above the cutscore 
and a point below the cutscore, as defined by the 
SPRT termination criterion.  Note that the three are 
conceptually equivalent; an item with the greatest 
information (slope) at the cutscore is the item that 
will have the greatest information in a small region 
around the cutscore, or produce the greatest 
differences in probability values on either side of 
the cutscore.  Therefore, they perform comparably 
(Lin & Spray, 2000). 

Likewise, Fisher and Kullback-Liebler 
information can be used as criteria for estimate-
based item selection (Reckase, 1983; Spray & 
Reckase, 1994; Eggen, 1999).  The equation of the 
calculation remains the same, but is now calculated 
with respect to the current estimate of examinee θ 
at each point in the test.  The conceptual 
equivalence also carries over to this application; the 
item with the highest information at the current θ 
estimate is also the item with the highest 
information in a small region around the current θ 
estimate.  Estimate-based item selection can also be 
referred to as adaptive item selection, because it 
makes use of individual examinee information, 
namely the response vector, in an effort to adapt 
the test to the individual examinee.  Cutscore-based 
item selection is sometimes called sequential 
selection. 

An additional method that is too broad to fit 
either item selection type is mutual information, which 
evaluates item information across the range of θ.  
Because it is so broad, it is not as applicable to a 
situation where the exact neighborhood of desired 
information is known, such as a single cutscore.  
However, it is quite useful when information is 
needed across a wider range of θ, such as the 
beginning of a CAT when little is known regarding 
examinee θ, or when there are several cutscores 
(Weissman, 2004). 

 

Termination criteria 

Three termination criteria are utilized in VL-
CCT: IRT-based confidence intervals, the sequential 
probability ratio test, and decision theory.  Each 
offers substantially shorter tests than a conventional 
full-length fixed-form test while maintaining a 
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similar level of classification accuracy (Kingsbury & 
Weiss, 1983; Rudner, 2002).  However, the 
appropriateness of each criterion and the 
maximization of its benefits depend on several 
other factors, such as the psychometric model and 
item selection algorithm.  For example, the use of 
IRT-based confidence intervals requires a large 
bank of IRT-calibrated items, which in turn requires 
a large calibration sample. 

The confidence interval approach formulates 
the classification purpose as a statistical estimation 
problem (Eggen & Straetmans, 2000).  The test is 
designed to obtain an estimate of θ  for  examinee 
j,  and determine if it is within a range of θ 
corresponding to membership in a certain group, 
where group membership is defined by ranges of θ 
that are delineated by cutscores.  To quantify this 
definition, a confidence interval is constructed 
around  using the conditional standard error of 
measurement (CSEM), expressed as (Thompson, 
2006) 

jθ̂

jθ̂

)(ˆ)(ˆ CSEMzCSEMz jjj αα θθθ +≤≤−    (10) 

where zα is the normal deviate corresponding to 
a 1-α confidence interval.  While this method was 
originally suggested with a Bayesian (Owen, 1975) 
estimation procedure (Kingsbury & Weiss, 1983; 
Spray and Reckase, 1996), it can also be used with 
maximum likelihood estimation (Eggen & 
Straetmans, 2000, Yang, Poggio, & Glasnapp, 
2006).  Similarly, while it originally suggested as a 
two-sided interval, the algorithm can also be 
designed as a one-sided interval with β-protection 
(Chang, 2005). 

An example of this approach in the simplest, 
two-group mastery testing situation is to evaluate 
after each item whether the confidence interval is 
above or below the cutscore.  If the interval is 
completely above the cutscore, the examinee can be 
classified as “Pass,” and if completely below, as 
“Fail.”  If the interval contains the cutscore, another 
item is administered.  An example of this is shown 
in Figure 1, where an examinee is administered 16 
items before the confidence interval falls completely 
above a cutscore of 0.75. 

 

Figure 1: Graphic depiction of confidence interval criterion with cutscore of 0.75 

This approach was originally termed “adaptive 
mastery testing” (Kingsbury & Weiss, 1983), but 
“adaptive” is a term that is more appropriately 

reserved for estimate-based item selection 
algorithms, and the confidence interval approach 
does not require adaptive item selection as originally 



Practical Assessment Research & Evaluation, Vol 12, No 1 7 
Thompson, Variable-length CCT 
 
suggested.  Additionally, it is easily extended beyond 
the mastery testing situation to three or more 
categories (Eggen & Straetmans, 2000), so the 
inclusion of “mastery” in the term in unnecessarily 
limiting. 

The SPRT formulates the classification purpose 
as a hypothesis testing problem (Eggen & 
Straetmans, 2000), comparing the ratio of the 
likelihoods of two competing hypotheses.  In CCT, 
the likelihoods are calculated using the probability P 
of an examinee’s response if each of the hypotheses 
were true, that is, if the examinee were truly a 
“pass” (P2) or “fail” (P1) classification.  This is 
expressed in general form after n items as, where X 
is the observed response to item i: 
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This ratio is then compared to two decision 
points A and B (Wald, 1947)  

Lower decision point = B = β / (1 - α) (12) 
Upper decision point = A = (1 - β) / α   (13) 

If the ratio is above the upper decision point 
after n items, the examinee is classified as above the 
cutscore.  If the ratio is below the lower decision 
point, the examinee is classified as below the 
cutscore.  If the ratio is between the decision points, 
another item is administered. 

While the P parameters have often been 
subscripted with 0 and 1 to match the traditional 
hypothesis testing notation of H0 and H1, not every 
VL-CCT with the SPRT is limited to the two 
hypotheses of pass and fail.  If there are two or 
more cutscores being used to classify examinees 
into three or more groups, there will be at least 
three P values that need to be specified (Eggen & 
Straetmans, 2000; Rudner, 2002; Jiao, Wang, & Lau, 
2004).  If the notation begins at 1 rather than 0, 
these values will be numbered sequentially and 
more appropriately reflect the multiple-cutscore 
situation.   

Several methods have been offered for 
specifying the P1 and P2 parameters.  Originally, the 
SPRT was developed with equivalent P1 and P2 

parameters for each step in the test (Wald, 1947), 
and was first applied thus to educational 
measurement (Ferguson, 1969).  They can be 
allowed to vary by estimating the proportion of the 
population in each group correctly answering the 
question, using classical difficulty statistics (Frick, 
1992; Rudner, 2002).  Weitzman (1982a, b) 
suggested averaging classical difficulty statistics 
across multiple subgroups within each group.   

The most commonly used method (Reckase, 
1983; Parshall, Spray, Kalohn, & Davey, 2006) is to 
define as the probability of a correct response to 
each item from an examinee with corresponding 
ability levels θ1 and θ2, as calculated with an IRT 
item response function.  These two ability levels are 
defined in the mastery testing situation as the lowest 
acceptable θ for an examinee that passes the test 
and the highest acceptable θ for an examinee that 
fails the test.  The range between the two values is 
termed the “indifference region,” and is often 
determined in practice by adding and subtracting a 
small constant δ from the cutscore (Eggen, 1999; 
Eggen & Straetmans, 2000).  This approach is 
depicted graphically in Figure 2, with a cutscore of 
0.0 and δ = 0.3, making for P1 = 0.52 and P2 = 0.72.  
A wider indifference region will lead to increased 
error but decreased test length (Reckase, 1983; 
Eggen, 1999). 

Both the SPRT and IRT confidence intervals 
are easily extended to multiple cutscores, and 
although two methods have been suggested for a 
multiple-cutscore SPRT (Sobel & Wald, 1949; 
Armitage, 1950), they are equivalent when given an 
even comparison (Govindarajulu, 1987).  Jiao, 
Wang, and Lau (2004) compared the two in a 
simulation study, but with different indifference 
regions, which caused the differing results found.  
VL-CCT is a highly efficient method of classifying 
examinees into three or more groups (Spray, 1993; 
Xiao, 1999; Eggen & Straetmans, 2000; Yang, 
Poggio, & Glasnapp 2006).

The third criterion is a Bayesian decision theory 
framework (Lewis & Sheehan, 1990; Sheehan & 
Lewis, 1992).  In this approach, loss or utility 
structures must be defined that take into account 
the probability of the possible classification 
scenarios for each examinee and the costs 
associated with each, as represented in Eq. 5, with 
the additional term of the cost of administering 
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another item.  Vos (2000) claimed that a threshold 
loss structure is conceptually appropriate, but a 
linear or squared-error loss function may be used, as 
it more appropriately represents the high-stakes 

classification testing situation.  It is much less of an 
concern to license a doctor whose true score is 
slightly below the cutscore than one whose true 
score is substantially below.   

 

 

Figure 2: P1 and P2 specification with Reckase’s (1983) method 

Because there are an infinite number of possible 
criterion functions, no specific function best 
represents this approach, which has led to the 
development of optimization methods (Vos, 2000).  
This infinite number of functions is both an 
advantage and a drawback of Bayesian decision 
theory.  Proponents point out that it presents 
greater flexibility and allows various costs to be 
explicitly taken into account.  However, the 
selection of a function introduces a certain amount 
of arbitrariness.  Moreover, both the SPRT and IRT 
confidence intervals allow costs of misclassification 
to be specified via nominal error rates. 

Bayesian decision theory VL-CCTs have been 
traditionally applied with a classical binomial model 
for item responses, because when used in 
combination with a beta examinee distribution, the 
number-correct score alone can be used to calculate 
expected loss at future stages of the test (Vos, 
2000).  Items are selected and tests are terminated 
to minimize the specified loss function.  However, 
item response theory and adaptive item selection 

techniques have recently been incorporated with 
this termination criterion (Glas & Vos, 2006). 

 

PRACTICAL CONSTRAINTS 

In addition to the mandatory technical 
components of VL-CCT, a non-mandatory but 
essential element is practical constraints on the 
computer algorithms.  In most cases, it is desirable 
to place constraints on item exposure, so that the 
most informative items are not over-exposed and 
therefore compromised (Kalohn & Spray, 1998).  
Additionally, it is often the case that the test content 
is distributed across definite content areas, and the 
VL-CCT must be developed to take this into 
account (Eggen & Straetmans, 2000).  For public 
relations purposes, constraints on test length may 
be instilled to prevent tests that are too short, as a 
VL-CCT can make decisions with only a few items 
or continue indefinitely for examinees of certain 
ability levels (Parshall, Spray, Kalohn, & Davey, 
2006).  However, while these serve important 
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purposes, their psychometric effect is not 
substantial (Eggen & Straetmans, 2000).  Obviously, 
a minimum test length will increase the average test 
length over all examinees, and a maximum test 
length will decrease average test length.  Similarly, 
item exposure constraints and content constraints 
generally only serve to increase average test length. 

An additional constraint that has been suggested 
is to design the VL-CCT with truncation rules 
(Finkelman, 2003).  The purpose of this is to 
address the situation where an examinee has a θ 
level very near the cutscore, and the VL-CCT may 
very well continue until the item bank is exhausted 
without making a classification decision.  A 
component may be designed into the VL-CCT to 
recognize this situation and determine when the 
remaining items in the bank do not have enough 
information to make a decision either way, even if 
the examinee answered all of the remaining items 
correctly (or incorrectly).  This differs from a 
maximum test length constraint in that is not 
arbitrarily set, e.g., 50 items, but empirically justified 
and therefore more legally defensible. 

 

ROBUSTNESS 

VL-CCTs have been found to be quite robust 
with respect to certain violations of assumptions.  
Research has focused on the role of IRT 
assumptions in VL-CCTs with the SPRT 
termination criterion, as it is used more often than 
the confidence interval and Bayesian decision 
theory criteria.  The assumptions of IRT are more 
restrictive than classical test theory, and therefore 
have a greater possibility for detrimental effect.  
Two primary assumptions can have an effect on 
average test length and classification accuracy: the 
number of dimensions and number of parameters.   

Reckase (1983) evaluated VL-CCT efficiency 
and accuracy when data was simulated with a three-
parameter IRT model, but the VL-CCT assumed a 
one-parameter model.  This effectively lowered the 
cutscore by 1.5 θ units, greatly decreasing 
classification accuracy.  Similar results were found 
by Kalohn and Spray (1999) and Jiao and Lau 
(2003), regardless of any practical constraints 
imposed.  Using a two-parameter model when the 
three-parameter model is more appropriate does 
not have such dire consequences (Jiao & Lau, 

2003).  Violations of this type are easy to account 
for by simply using a more appropriate IRT model. 

Employing unidimensional IRT when data is 
actually modeled with two-dimensional IRT has a 
less dramatic effect.  Spray, Abdel-fattah, Huang, 
and Lau (1997) and Lau (1996) found that this has 
only a minimal effect on classification error.  
However, it does require more items to make a 
decision, and the increase in items is related to a 
decrease in the correlation between dimensions 
(Lau, 1996). 

Of course, even if the correct model is chosen, 
there is a possibility that the item calibration 
procedure did not accurately estimate item 
parameters.  Similar to what was found regarding 
the number of dimensions, Spray and Reckase 
(1987) found that item parameter estimation error 
had no effect on classification error, but simply 
required more items for the test to make a decision, 
which is important to remember when weighing 
number of IRT parameters against sample size. 

VL-CCTs with an SPRT termination criterion 
can perform efficiently even when the parameters 
being used are not actually estimated.  Huang, 
Kalohn, Lin, and Spray (2000) investigated the 
situation where a large item pool is available, but 
only a small subset has been calibrated with IRT 
while the majority of the items have classical 
statistics.  VL-CCTs with classical parameters 
transformed to IRT performed just as accurately as 
VL-CCTs with the known IRT parameters that 
were generated for the simulation, while 
maintaining the same ATL, demonstrating that the 
efficiency of SPRT-based VL-CCTs is quite robust.   

 

CONCLUSIONS 

While there is no question as to the fact that 
VL-CCTs offer a substantial advantage in terms of 
shorter tests than a conventional fixed-length 
approach, the specific components utilized directly 
affects the extent of this advantage.  Knowledge of 
the available options and the limitation of choices 
due to the situation, such as a small sample size, is 
essential in the development of an efficient and 
defensible VL-CCT.  An additional area of choices 
is presented by the practical constraints that are 
most likely warranted. 
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The most important aspect to take into account 
when selecting VL-CCT components is the 
resources of the testing program.  As previously 
mentioned, IRT-based confidence intervals is not a 
viable termination criterion for a testing program 
that does not have sufficient sample sizes for IRT.  
The next most important aspect to consider is that 
some components are more appropriate for use 
with certain other components.  For example, the 
SPRT works most effectively with cutscore-based 
item selection because it increases the P2-P1 
difference (Lin & Spray, 2000), while IRT 
confidence intervals work most effectively with 
estimate-based item selection because it decreases 
the CSEM.  Therefore, the SPRT is more 
appropriate for an item bank with a relatively 
peaked information function, while IRT confidence 
intervals are more appropriate for a bank with a 
relatively uniform information function.  If only a 
certain item bank is available, it may then effectively 
determine the termination criterion and item 
selection method to be used.   

Several points of contention remain in CCT 
research, the most important of which is the most 
effective termination criterion.  Spray and Reckase 
(1996) found the SPRT to outperform IRT 
confidence intervals, but cutscore-based item 
selection was used for both methods even though it 
is less than optimal for the confidence interval 
criterion.  Chang (2005) viewed the confidence 
interval approach more favorably, so a consensus 
has not been reached regarding the two.  
Additionally, Bayesian decision theory methods 
(Vos, 2000) have not been compared to optimal 
VL-CCTs with the SPRT or IRT confidence 
intervals.  However, the SPRT is the uniformly 
most powerful test of two competing hypotheses 
(Spray & Reckase, 1996), as well as being applicable 
with any psychometric model (Reckase, 1983; Lau 
& Wang, 1998; Rudner, 2002).  This allows it the 
advantage of producing very efficient tests even 
with small sample sizes (Frick, 1992; Rudner, 2002).   

Again, item selection methods have only small 
differences in terms of efficiency when assessing 
similar information (Spray & Reckase, 1994; Eggen, 
1999; Lin & Spray, 2000; Rudner, 2002).  The 
differences are much greater between cutscore-
based and estimated-based algorithms than within 
(Eggen, 1999).  These results imply that, in some 

cases, a less sophisticated methodology may be 
more appropriate.  Mutual information, the most 
sophisticated method, is appropriate early in the test 
or when there are several cutscores (Weissman, 
2004). 

The same is true regarding the psychometric 
model.  VL-CCTs designed with classical test theory 
can classify examinees accurately and with few items 
(Frick, 1992; Rudner, 2002).  However, if the 
sample size allows, the advantages of IRT are well 
known (Embretson & Reise, 2000).  Additionally, if 
polytomously scored items are applicable, decisions 
can be made with even fewer items than 
dichotomous IRT (Lau & Wang, 1998), as 
polytomous IRT offers more information and 
across a wider range (Dodd, De Ayala, & Koch, 
1995).  Moreover, a VL-CCT with IRT item 
parameters estimated from classical statistics also 
works efficiently (Huang, Kalohn, Lin, & Spray, 
2000).  If dichotomous IRT is used, it is important 
to employ the appropriate number of parameters, as 
using fewer parameters than is needed effectively 
lowers the cutscore (Reckase, 1983; Jiao & Lau, 
2003). 

While most research concerning VL-CCT 
assumes the common situation of mastery testing, 
where the purpose of the test is to classify the 
examinee as “pass” or “fail,” the methods outlined 
herein are easily extendable testing situations to 
more than one cutscore (Spray, 1993; Eggen & 
Straetmans, 2000; Weissman, 2004).  Similarly, they 
can be extended to testing situations where the 
psychometric model is polytomous (Lau & Wang, 
1998; 1999), such as the partial credit model 
(Masters, 1982) and generalized partial credit model 
(Muraki, 1992). 

It is also important to consider VL-CCT in the 
broader view of classification testing.  These tests 
are often high-stakes, and great care should be taken 
to develop legally defensible tests and to safeguard 
the integrity of the items, the test, and scores.  This 
in turn serves to safeguard the value of the 
credential, which is of paramount importance as the 
credential is the primary product being sold by 
organizations.  Though a large amount of income 
may be generated through ancillary revenue sources 
such as continuing education, it is the credential 
itself that holds the greatest value to all 
stakeholders.  This protection is the ultimate 
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purpose of the practical testing constraints, and 
should be considered as constraints are imposed. 

VL-CCT remains a subject of current research.  
Specific topics include psychometric model (Lau & 
Wang, 1998; 1999; Rudner, 2002), multiple 
classifications (Jiao, Wang, & Lau, 2004; Yang, 
Poggio, & Glassnap, 2006), item selection 
algorithms (Weissman, 2004), specification of 
termination criteria (Chang, 2006) and 
combinations of methods (Glas & Vos, 2006).  
Additionally, research on computerized adaptive 
testing for point estimation of ability is often 
relevant (e.g., Weissman, 2006).  Future research 
will continue to investigate new methodologies and 
refine current ones to offer incremental increases in 
test efficiency and accuracy.  The pervasiveness of 
the classification testing situation in today’s society 
ensures that VL-CCT will remain an important type 
of computerized testing.  
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