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Parallel Analysis is a Monte Carlo simulation technique that aids researchers in determining the 
number of factors to retain in Principal Component and Exploratory Factor Analysis. This method 
provides a superior alternative to other techniques that are commonly used for the same purpose, 
such as the Scree test or the Kaiser’s eigenvalue-greater-than-one rule. Nevertheless, Parallel 
Analysis is not well known among researchers, in part because it is not included as an analysis 
option in the most popular statistical packages. This paper describes and illustrates how to apply 
Parallel Analysis with an easy-to-use computer program called ViSta-PARAN. ViSta-PARAN is a 
user-friendly application that can compute and interpret Parallel Analysis.  Its user interface is fully 
graphic and includes a dialog box to specify parameters, and specialized graphics to visualize the 
analysis output. 

Exploratory Factor Analysis (EFA) and Principal 
Component Analysis (PCA) are multivariate 
statistical techniques widely used in social and 
behavioral sciences. In a previous paper in Practical 
Assessment, Research and Evaluation, Costello and 
Osborne (2005) discuss common practices in 
studies using these techniques, and provide 
researchers with a compilation of “best practices” in 
EFA. One of the topics these authors discuss is the 
number of factors to retain, which is the most important 
decision to make after factor extraction. Mistakes at 
this stage, such as extracting too few or too many 
factors, may lead to erroneous conclusions in the 
analysis.  Unfortunately, the most popular statistical 

programs do not provide users with the most 
accurate methods to solve this problem, as Costello 
and Osborne (2005) note.  This is the case with 
Parallel Analysis (PA), which is one of the methods 
most recommended to deal with the number-of-
factors-to-retain problem, but is not available in 
commonly used statistical packages. In view of this, 
the present paper: 1) briefly reviews some methods 
to deal with the number-of-factor-to-retain 
problem, 2) provides a general description of the 
PA technique, 3) introduces the ViSta-PARAN 
software, a new and freely available computer 
program to carry out PA; and 4) illustrates how to 
apply PA by using ViSta-PARAN. 
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THE NUMBER-OF-FACTORS-TO-RETAIN 

PROBLEM 

Various authors have commented on the 
importance of deciding how many factors or 
components to retain when applying EFA and PCA 
(e.g., Fabrigar, Wegener, MacCallum, & Strahan, 
1999; Hayton, Allen, & Scarpello, 2004).  Hayton et 
al. (2004) states three reasons why this decision is so 
important. Firstly, it can affect EFA results more 
than other decisions, such as selecting an extraction 
method or the factor rotation method, since there is 
evidence of the relative robustness of EFA with 
regards to these matters (Zwick & Velicer, 1986). 
Secondly, the EFA requires that a balance be struck 
between “reducing” and adequately “representing” 
the correlations that exist in a group of variables; 
therefore, it’s very usefulness depends on 
distinguishing important factors from trivial ones. 
Lastly, an error in terms of selecting the number of 
factors can significantly alter the solution and the 
interpretation of EFA results. Underextraction can 
lead to the loss of relevant information and a 
substantial distortion in the solution; for example, 
in the variables loading. On the other hand, 
overextraction although less grave, can lead to 
factors with few substantial loading, which can be 
difficult to interpret and/or replicate (Zwick & 
Velicer, 1986). To sum up, both underextraction 
and overextraction have consequences that 
adversely impact the EFA’s efficiency and meaning. 

 Nonetheless, it is also important to recognize 
that in EFA, previous theory and research play an 
important role, such that the researcher should 
consider both substantive and statistical issues when 
deciding on the number of factors (Fabrigar et al., 
1999). Of course, when theory is a guiding force, 
the better option may be the Confirmatory Factor 
Analysis approach. 

Methods for determining the number of factors 
to retain 

Given the importance of this decision, different 
methods have been proposed to determine the 
number of factors to retain. Further, various studies 
have been undertaken to evaluate the individual or 

comparative efficiency of these methods (Horn & 
Engstrom, 1979; Zwick and Vellicer, 1986; 
Hubbard & Allen, 1987; Lautenschlager, 1989; Buja 
and Eyuboglu, 1992). These studies are generally 
concerned with an evaluation of the ability of these 
methods to determine the number of non-trivial 
factors in data generated by simulation. A brief 
review of the principal focus areas and results of 
some of these studies follows. Special consideration 
is given to the work of Zwick and Vellicer (1986) 
who compared different methods under different 
conditions. 

K1 - Kaiser’s eigenvalue-greater-than-one rule 

The K1 method proposed by Kaiser (1960) is 
perhaps the best know and most utilized in practice 
(Fabrigar et. al, 1999). According to this rule, only 
the factors that have eigenvalues greater than one 
are retained for interpretation. Despite the 
simplicity of this method, many authors agree that it 
is problematic and inefficient when it comes to 
determining the number of factors. Fabrigan et. al 
(1999) notes three problems with using this 
method. First, the method was proposed for the 
PCA case - eigenvalues of the correlation matrix 
with unities at the diagonal -, and it is not a valid 
rule in the EFA case - eigenvalues of the correlation 
matrix with communality estimates at the diagonal -. 
Secondly, as with all mechanical rules, this method 
can lead to arbitrary decisions; for instance, it 
doesn’t make much sense to regard a factor with an 
eigenvalue of 1.01 as ‘major’ and one with an 
eigenvalue of .99 as ‘trivial’. Lastly, in various 
simulation studies with PCA and EFA, this method 
has demonstrated tendency to substantially 
overestimate the number of factors, and, in some 
cases, even underestimate them (Zwick & Velicer, 
1986). In fact, there is a problematic relation 
between the number of factors retained and the 
number of variables. Kaiser himself reported that 
the number of components retained by K1 is 
commonly between one-third and one-fifth or one-
sixth the number of variables included in the 
correlation matrix (Zwick & Velicer, 1986). In 
summary, despite K1’s widespread use, experts 
agree that it has deficiencies and that its use is not 
recommended. 
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Cattell’s Scree test 

Another popular approach is based on the Cattell’s 
Scree test (Cattell, 1966), which involves the visual 
exploration of a graphical representation of the 
eigenvalues. In this method, the eigenvalues are 
presented in descending order and linked with a 
line. Afterwards, the graph is examined to 
determine the point at which the last significant 
drop or break takes place—in other words, where 
the line levels off. The logic behind this method is 
that this point divides the important or major 
factors from the minor or trivial factors. 

 This method has been criticized for its 
subjectivity, since there is not an objective 
definition of the cutoff point between the important 
and trivial factors. Indeed, some cases may present 
various drops and possible cutoff points, such that 
the graph may be ambiguous and difficult to 
interpret. Zwick and Velicer (1986) indicate that, 
when analyzing how examiners interpret the Scree 
test, the results can be very varied, depending on 
the training received by the examiners and also the 
nature of the solution. Nonetheless, they also 
mention that the Scree test can be more accurate 
and less variable than the K1 method. For instance, 
factors that affect the K1 method, such as the 
number of variables, do not appreciably affect the 
Scree test. Lastly, Zwick and Velicer (1986) also 
note that the Scree test has a tendency to 
overestimate, and conclude that, given the existence 
of better methods, its use is also not recommended. 

Velicer’s MAP test - Minimum Average Partial  

Velicer (1976) proposes the MAP test (Minimum 
Average Partial), a method based on the application 
of PCA and in the subsequent analysis of partial 
correlation matrices. This rule employs the EFA 
concept of ‘common’ factors to determine how 
many components to extract. The method seeks to 
determine what components are common, and is 
proposed as a rule to find the best factor solution, 
rather than to find the cutoff point for the number 
of factor. Due to the way it is calculated, one of the 
properties of this solution is that it does not retain 
factors that have too few loading; when using this 
rule, “at least two variables will have high loadings 
on each retained component” (Zwick and Velicer, 

1986). In terms of its ability to select factors, MAP 
has proven superior to the techniques described in 
the previous paragraphs (Wood, Tataryn, & 
Gorsuch, 1996;  Zwick and Velicer, 1986). Zwick 
and Velicer (1986) found that, through their 
simulation study, the MAP method was quite 
accurate under many conditions, although under 
certain conditions it may reveal a tendency to 
underestimate the number of factors. Specifically, 
when there are low variables loading and low 
number of variables per component, the MAP 
method consistently underestimated the number of 
major components. 

Horn’s Parallel Analysis 

Horn (1965) proposes PA, a method based on the 
generation of random variables, to determine the 
number of factors to retain. PA, as it was 
introduced early on by Horn (1965), compares the 
observed eigenvalues extracted from the correlation 
matrix to be analyzed with those obtained from 
uncorrelated normal variables. From a 
computational point of view, PA implies a Monte 
Carlo simulation process, since ‘expected’ 
eigenvalues are obtained by simulating normal 
random samples that parallel the observed data in 
terms of sample size and number of variables. 
When this technique was put forward, a factor was 
considered significant if the associated eigenvalue 
was bigger than the mean of those obtained from 
the random uncorrelated data. Currently, it is 
recommended to use the eigenvalue that 
corresponds to a given percentile, such as the 95th 
of the distribution of eigenvalues derived from the 
random data (Cota, Longman, Holden, Fekken, & 
Xinaris, 1993; Glorfeld, 1995). Additionally, when 
using PA in factor analysis, the procedure is 
essentially the same, except that the diagonal of the 
correlation matrix is replaced by squared multiple 
correlations, which is the first step in approximating 
variables communalities in EFA. 

 Various studies indicate that PA is an 
appropriate method to determine the number of 
factors (Humphreys & Montanelli, 1975; Zwick & 
Velicer, 1986). Zwick & Velicer (1986) found that, 
among the methods analyzed, PA is the most 
accurate, showing the least variability and sensitivity 
to different factors. Glorfeld (1995) concurs with 
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this appraisal and states that, if the findings on the 
functioning of the different methods are reviewed, 
one would find few reasons to choose another 
method over PA. Similarly, several academic 
journals editorialize in favor of this position as 
well—for instance, the journal Educational and 
Psychological Measurement (Thompson & Daniel, 
1996). Finally, it can be said there is sufficient 
agreement in considering PA the best available 
alternative for solving the number-of-factors-to-
retain problem in EFA and PCA.  

MORE ON PARALLEL ANALYSIS 

Like all Monte Carlo methods, PA requires an 
intensive computational process. In fact, some 
authors have indicated that one of the main 
drawbacks of PA is that it can be quite costly in 
terms of computation time (Montanelli & 
Humphreys, 1976). A quick solution to this 
problem has been to use regression formulas which 
approximate the expected eigenvalues for a given 
observed data matrix (Lautenschlager, Lance, & 

Flaherty, 1989; Longman, Cota, Holden, & Fekken, 
1989a; Keeling, 2000). Still another approach has 
been to provide tables of simulated eigenvalues, 
such as those published by Buja & Eyuboglu (1992). 
These tables incorporate estimated eigenvalues for a 
large range of different sample sizes and number of 
variables. 

 Even though using regression formulas or 
statistical tables may simplify the use of PA, we 
believe that both approaches are unnecessary today 
because of the availability and the computational 
power of personal computers. For example, Table 1 
gives the times observed to complete PA for 
Principal Component Analysis (PCA) and Principal 
Axis Factor Analysis (FA) by using the normal data 
simulation approach in our new ViSta-PARAN 
program. Different combinations of number of 
variables (p) and sample size (n) are presented. We 
can see that, with a practical application and a 
standard personal computer, the computational cost 
of PA is not at all excessive. 

 

Table 1: Time to complete PA under different 
conditions. Mean time observed in seconds for 
different combinations of p variables and n 
observations, for PCA and FA models. Estimates 
based on five tests of 100 replications each ran on 
a 950-MHz PC 

n, p PCA FA 

75, 5 2.46 3.08 

150, 10 3.28 4.38 

300, 20 6.08 7.30 

 

 A PA based on permutations of the data, as has 
been proposed by Buja & Eyuboglu (1992), can take 
more time.   In this approach, expected eigenvalues 
are computed form the multivariate permutations of 
the observed data, rather than from simulated 
normal data. This method has the advantage of not 
needing to keep the assumption of multivariate 
normality of the classical PA since the null reference 
set is conditional on the observed data. 

Nonetheless, the authors also indicate that PA 
possesses a certain degree of robustness to handle 
deviations from normal assumptions, meaning that 
the permutation approach does not likely offer 
practical advantages. 

 Lastly, it has also been suggested that 
tetrachoric or polychoric correlations instead of 
Pearson correlations may be more appropriate 
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when working with item-level data in the Likert or 
binary format. There is evidence that PA performs 
well with respect to the latter case (Weng & Cheng, 
2005).

Parallel Analysis and Statistical Software 

Although there is consensus among statisticians that 
PA provides an appropriate rule for factor selection, 
the application of this method in psychological and 
social research has been limited (e.g., Fabrigar et al, 
1999). In contrast, some methods that have marked 
limitations are used extensively by researchers. One 
of these methods is the Kaiser’s eigenvalue-greater-
than-one rule. This method is the default option in 
many statistical packages, which might explain its 
popularity to a certain extent. On the other hand, 
software that offers a PA option is not widely 
known among researchers. 

 Today, there are some stand-alone programs for 
PA (Longman, Cota, Holden, & Fekken, 1989b; 
Kaufman & Dunlap, 2000; Watkins, 2000) as well as 
some specialized macros for SPSS and SAS users 
(O’Connor, 2000). Of course, these stand-alone 
programs do not provide a full factor analysis; they 
only report the PA output. Also, it is important to 
note that in some cases they have computational 
restrictions. For example, the Watkins program only 
provides PA for the PCA case (Watkins, 2000). In 
the case of the SPSS and SAS macros, they can be 
used with well-known statistical software and in 
combination with a variety of factor analysis 
methods. But running and using a macro is not a 
user-friendly experience, especially for those users 
who are only familiar with standard graphical user 
interfaces (GUIs). 

 This paper describes a new program that has 
better capabilities and is easier to use than the 
previously published software. First, unlike some 
stand-alone software (see p.e. Watkins, 2000), this 
program is integrated into a multi-purpose statistical 
package called ViSta, “The Visual Statistics System” 
(Young, 2003). ViSta offers researchers an array of 
tools to edit, transform and analyze statistical data.  
Second, compared to the PA programs that are 
integrated into general statistical packages (like SPSS 
or SAS), our program has the following advantages: 
a) it is integrated into a free, non-commercial, open 

and expandable statistical software package; b) it 
works as a completely interfaced plug-in analysis, 
which means that PA can be performed using all of 
ViSta’s graphical user interface tools, including a 
dialog box for parameter specification; and c) it 
includes specialized graphics to visualize the PA 
output, which can be used to better understand the 
results of the analysis. These features provide 
researchers with a new, user-friendly way to carry 
out PA. 

THE VISTA-PARAN PROGRAM: 
 AN EXAMPLE 

ViSta-PARAN is a plug-in of ViSta “The Visual 
Statistics System” (Young, 1996). ViSta is a 
statistical system focused on exploratory data 
analysis and statistical visualization methods 
(Young, Valero-Mora, and Friendly, 2006). It is 
almost entirely programmed with the LispStat 
statistical language (Tierney, 1990). ViSta is free, 
open and expandable, and provides basic, 
intermediate and advanced statistical methods.  

 Figure 1 shows a screen shot of the ViSta 
program and an open data file. The example 
contains data from a job satisfaction study in a 
public health institution (Terrony, 2002). The 
dataset includes 16 items from a job satisfaction 
inventory (JSI), each with a rating based on a seven-
point scale, ranging from strong agreement to 
strong disagreement. The data was generated from a 
sample of health professionals in a public hospital 
in Mar del Plata, Argentina. We will use this dataset 
to illustrate how to use the ViSta-PARAN program. 

 The ViSta-PARAN program may be invoked 
by selecting Parallel Analysis from the ViSta’s 
Analysis menu options (see Figure 1). Doing so will 
bring up a pop-up window which prompts the user 
to specify the following (see Figure 2): 

1) Model: ViSta-PARAN offers PA for two 
models: Principal Component Analysis and 
Principal Axis Factor Analysis. In the latter 
case, the diagonal of the correlation matrix 
is replaced by squared multiple correlations, 
which is the first step for approximating a 
principal axis factor solution. 
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2) Method: ViSta-PARAN offers two PA 
computation methods: normal data 
simulation and data permutation. As we 
mentioned previously, the Data Permutation 

option leads to a multivariate permutation 
test that uses random permutations of the 
observed data instead of normal simulated 
data. 

Figure 1: Partial view of ViSta environment with an example of a data matrix for PA. 

The user can also specify the number of 
samples to be simulated (default=200). In cases 
where a random data eigenvalue is close to the 
observed eigenvalue, it is advisable to run the 
analysis again using a larger number of 
replications in order to obtain a more reliable 

solution. In Figure 2, this number has been 
changed to 500. The cutoff percentile can also 
be specified (default = 95th); this represents the 
point at which estimated eigenvalues are taken 
as a comparison baseline. 
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Figure 2: ViSta-PARAN dialog box for interactive model and parameter specification. 

 
ViSta-PARAN offers two types of output: 
numerical and visual. Figure 3 shows the numerical 
report for the example. The report contains two 
parts: the first part displays general information 
about the data that have been analyzed and the 
parameters chosen in the analysis; the second part 
displays output more specifically linked to PA, 

including observed versus estimated eigenvalues. In 
our example, the first and second eigenvalues 
extracted from the actual data are larger than the 
corresponding 95th percentile random data 
eigenvalue. This suggests that the first two 
components are those to be retained for 
interpretation. 

 

Figure 3: Image of the ViSta-PA’s report. 

 

 

 The visual output of ViSta-PARAN is shown in 
Figure 4. This output consists of two graphics: a 
“Scree Parallel” plot and a “Scree Simulation” plot. The 
Scree Parallel plot graphs the observed and 

estimated eigenvalues, shown in Figure 4 in red 
(observed eigenvalues), green (95th percentile 
random data eigenvalues) and gray (mean of the 
random data eigenvalues). The point at which the 
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lines intersect indicates the number of factors that 
must be retained according to the PA criterion. This 
occurs at the second principal component, as was 
stated in the report. In a sense, the first graph is a 
summary of the second, which provides greater 
detail on the simulation process. The Scree 
simulation plot shows the Scree plot of the 
observed eigenvalues and all the Scree plots 
resulting from the simulated data (shown as a broad 
blue stripe). The latter, due to their large quantity, 
tend to overlap and appear as one broad blue stripe. 

Comparing the red line with the blue stripe, we 
have a visual “significance test” for each of the 
eigenvalues. Furthermore, the user can add various 
other features to this second graph, such as averages 
for the eigenvalues, a boxplot to explore the 
distribution of the simulated eigenvalues, etc. (see 
buttons below the graph). Taken together, the Scree 
Parallel plot and the Scree Simulation Plots provide a 
graphical analogy for both the computational 
process and the solution of the PA application. 

Figure 4: View of the ViSta-PA’s graphics: “Scree Parallel” plot and “Scree Simulation” 
plot 

  

 
 Figure 5 can help one better understand these 
graphs. In this case, PA has been applied to a matrix 
with dimensions equal to those of the real data 
matrix, but based on randomly generated 
uncorrelated normal variables. In this case, the 
expectation is that no eigenvalues will supersede the 
Pa criteria, which can be clearly seen in the graph. 
In the Scree Parallel, it can be seen that the observed 
eigenvalues are all found below the cutoff line 
estimated using the simulated data. While in the 
Scree Simulation, we can see that the red line lies 
within the blue stripe of expected eigenvalues. 

FINAL REMARKS 

PA is one of the most recommendable rules for 
factor selection in EFA and PCA, but it is not 

available as an analysis option in the most 
commonly used statistical software packages. In 
view of that, this paper describes a new, interactive 
and easy-to-use computer program capable of 
carrying out PA – the ViSta-PARAN program. 

 ViSta-PARAN has been developed with the 
LipStat statistical programming language. It is 
integrated as an analysis module in ViSta “The 
Visual Statistics System,” a free, open and expandable 
statistical system focused on multivariate statistical 
visualization methods. ViSta-PARAN provides 
parametric and non-parametric PA for Principal 
Component and Principal Axis factor analysis. The 
results can be easily interpreted by using reports or 
specialized graphics. 
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Figure 5: Example of “Scree Parallel” plot and “Scree Simulation” plot 
for a data matrix of random uncorrelated normal variables. 

   

 

 We hope this new tool increases the use of valid 
rules to deal with the number-of-factors-to-retain 
problem. Additionally, this program is a useful tool 
for educational purposes, as a way of introducing 
the PA method in statistics courses. The ViSta-
PARAN program may be obtained without cost at: 
http://www.mdp.edu.ar/psicologia/vista/. It runs 
on Windows 95 or later and requires ViSta 6.4 
(http://forrest.psych.unc.edu/research/index.html) 
or  ViSta 7 (http://www.uv.es/visualstats/Book/) 
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