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The question of equivalence between two or more groups is frequently of interest to many applied 
researchers. Equivalence testing is a statistical method designed to provide evidence that groups are 
comparable by demonstrating that the mean differences found between groups are small enough that they are 
considered practically unimportant. Few recommendations exist regarding the appropriate use of these tests 
under varying data conditions. A simulation study was conducted to examine the power and Type I error 
rates of the confidence interval approach to equivalence testing under conditions of equal and non-equal 
sample sizes and variability when comparing two and three groups. It was found that equivalence testing 
performs best when sample sizes are equal. The overall power of the test is strongly influenced by the size of 
the sample, the amount of variability in the sample, and the size of the difference in the population. 
Guidelines are provided regarding the use of equivalence tests when analyzing non-optimal data. 

     

Do students who complete their medical education 
in a distributed program achieve the same level of 
academic competence regardless of the location where 
they complete their education? This is an example of a 
question concerning the equivalence of two (or more) 
groups.  It is not the same as a question that asks 
whether two groups of students are achieving different 
levels of academic competence (e.g., Do students who 
complete their medical education in an urban location 
achieve higher marks than students completing their 
medical education in a rural location?). However, 
questions of these two types (equivalence and 
difference) are most commonly analyzed using the 
same method: a test of the null hypothesis of no 
significant difference.   

  ANOVAs and t-tests, often referred to as 
“difference tests”, are designed to provide evidence 
that groups are different when a statistically significant 
p-value is calculated. A significant p-value indicates that 
there is enough evidence to reject the null hypothesis 
of no difference, thus supporting the alternative 
hypothesis that there is a difference between the 
groups. To address questions of equivalence, 
researchers have commonly used these same tests to 
conclude that groups are equivalent when a non-

significant p-value is found. As several researchers have 
argued (e.g., Cribbie, Gruman, & Arpin-Cribbie, 2004; 
Rusticus & Lovato, 2011), this is not the correct 
method to use if your purpose is to demonstrate that 
groups are comparable. A non-significant finding, 
which reflects a failure to reject the null hypothesis of 
no difference, rather than the acceptance of the null 
hypothesis, indicates only that there is not enough 
evidence to support that two groups are statistically 
different. It does not provide sufficient evidence for 
the groups being comparable; a non-significant result 
could indicate that the groups are comparable, but it 
could also be a reflection of insufficient sample size or 
unreliable measurements.  

To correctly address questions about 
comparability, equivalence testing is a more appropriate 
method. Equivalence testing provides evidence of 
equivalence by demonstrating that any difference that 
exists between groups is small enough that, for 
practical purposes, the groups can be treated as 
equivalent (Blackwelder, 2004; Rogers, Howard, 
Vessey, 1993). Although still a form of statistical 
significance testing, the role of the null and alternative 
hypotheses have been reversed, such that the  null 
hypothesis in an equivalence test asserts that the 
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difference between two groups is at least as large as a 
difference specified in advance by the researcher (i.e., 
the point at which the difference represents a 
meaningful difference). The alternative hypothesis is 
that the difference is smaller than the one specified by 
the researcher. A rejection of the null hypothesis here 
provides support for the alternative hypothesis that any 
difference that exists is not of practical importance.  

As the usual meanings of the null and alternative 
hypotheses have been reversed, this means that the 
interpretations of Type I and Type II errors and power 
must also be altered. In both difference and 
equivalence testing, a Type I error occurs when we 
incorrectly conclude that the null hypothesis is false; a 
Type II error occurs when we incorrectly conclude that 
the null hypothesis is true. Power is the ability to 
correctly reject the null hypothesis. For equivalence 
testing, the practical interpretation of this is that a Type 
I error occurs when we conclude equivalence when in 
fact the groups are not equivalent and a Type II error 
occurs when we conclude non-equivalence when in fact 
the groups are equivalent. The power of an equivalence 
test is its ability to correctly conclude that two groups 
are equivalent.  

While tests of equivalence have been gaining in 
popularity within fields such as education and 
psychology, as researchers are becoming more aware of 
this method, few recommendations currently exist 
regarding the appropriate use of these tests. The 
primary concern is related to whether these tests will be 
able to correctly detect equivalence when the groups 
are equivalent (i.e., the test has sufficient power) and 
will not conclude equivalence when the groups truly are 
different (i.e., a Type I error). Typically, we want the 
power of our test to be at .80 or greater (i.e., we will 
correctly conclude equivalence 80% or more of the 
time).  Insufficient power could lead to a conclusion of 
non-equivalence even if the population means were 
equivalent (a Type II error). It is also equally important 
to ensure that the Type I error rates are at an 
appropriate level. A Type I error rate of .05 is generally 
considered to be acceptable (i.e., we will incorrectly 
conclude equivalence around 5% of the time). An 
inflated Type I error rate is of  more concern than a 
depressed rate in that the former makes a test invalid, 
while the latter makes the test more conservative 
(Nordstokke, Zumbo, Cairns, & Saklofske, 2011).  
Because tests of equivalence and difference tests differ 
in how they specify the null hypothesis, and have been 
shown to lead to different conclusions (Rusticus & 

Lovato, 2011), it cannot be assumed that the power of 
these two types of tests will be the same.  

The confidence interval approach, also known as 
Schuirmann’s equivalence test (Schuirmann, 1987), was 
selected because it is a commonly used approach when 
conducting tests of equivalence and is easy to calculate 
in popular software programs such as SPSS. 
Furthermore, this approach has performed better, or 
nearly as good as, other methods of assessing 
equivalence (Cribbie et al., 2004; Gruman, Cribbie, 
Arpin-Cribbie, 2007). Briefly stated, this approach 
calculates a confidence interval around the difference 
between two group means using the standard error of 
the difference. If this confidence interval is within a 
pre-specified range (the equivalence interval) then the 
groups are said to be equivalent.  Rogers and colleagues 
(1993) suggest that two groups are different when “the 
minimum difference between two groups that would be 
important enough to make the groups non-equivalent” 
(p. 554). As the difference between two groups could 
be in either a positive or negative direction, there is 
both a positive and a negative value to define 
equivalence, forming an equivalence interval. 
Equivalence can be concluded if the confidence 
interval around the mean difference is fully contained 
within the equivalence interval.   

Sample size and variability are two important 
factors that conceptually should influence the power of 
an equivalence test. For instance, small sample sizes 
and high variability result in larger confidence intervals 
than large sample sizes and low variability. As such, 
small sample sizes and/or high variability should be 
more likely to lead to conclusions of non-equivalence 
while large sample sizes and/or low variability should 
be more likely to lead to conclusions of equivalence.  

Simulation studies by Cribbie and colleagues 
(Cribbie, Arpin-Cribbie, & Gruman, 2010; Cribbie et 
al., 2004; Gruman et al., 2007) have compared the 
performance of the Schuirmann confidence interval 
approach to the student t difference test, as well as 
other modified equivalence tests, under combinations 
of equal and unequal sample sizes, group sizes, equal 
and unequal population variances, and/or population 
mean configurations. They found that the power of the 
confidence interval approach increases with increasing 
sample sizes and that it is affected by the pattern of 
sample heterogeneity, with power increasing when 
variances are positively paired (larger sample size paired 
with the larger variance) and decreasing when variances 
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are negatively paired (larger sample size paired with the 
smaller variance). In general, it is clear from their work 
that the confidence interval approach has unacceptably 
low power when sample sizes are very small.  

This study examined the power and type I error 
rates of the confidence interval approach to 
equivalence testing under varying conditions of equal 
and non-equal sample sizes and variances. We were 
particularly interested in the performance of 
equivalence tests when dealing with both unequal 
sample sizes and unequal variances, as this is a 
common situation we, and likely many others, have 
faced. For example, our work in higher education often 
requires conducting equivalence tests where one group 
can be up to seven times larger than the other group(s), 
and in many cases we have found that the data violate 
the assumption of homogeneity of variance. In the 
present study, we expand on previous studies by 
examining the power and Type I error rate of the 
Schuirmann confidence interval approach under 
conditions of both unequal sample sizes and unequal 
variances for comparisons involving both two and 
three groups. We conclude with a discussion of the 
implications of analyzing non-optimal data and provide 
recommendations for using tests of equivalence under 
such conditions. 

Methods 

A simulation study was conducted to examine the 
power of the confidence interval approach 
(Schuirmann, 1987) to detect population equivalence. 
The data were simulated to represent academic 
assessment data; a continuous variable that theoretically 
ranges from 0 to 100, but more typically ranges 
between 60 and 100. To define parameters for the 
simulation, descriptive statistics were calculated on a set 
of commonly collected assessment variables (e.g., exam 
scores, end of year grades) for a sample of 
undergraduate medical school students. These analyses 
suggested a mean assessment score of 81 (SD = 3) and 
a mean standard deviation of 6 (SD = 2) were 
representative of the assessment data collected at our 
university; thus, all simulations were centered on these 
two values.  

Several variables were manipulated in this study 
including (1) number of groups (2 or 3), (2) sample size 
(30, 60, 90, 150, 210), (3) sample standard deviation (4, 
6, 8), and (4) population mean difference (0, 2, 4, 5 
points). Based upon our previous work, we selected an 
equivalence interval of ±5% (Rusticus & Lovato, 2011). 

Thus, the first three population mean differences (0, 2, 
4 points) represent data that should be deemed 
equivalent, allowing identification of the power of the 
analyses, whereas the latter (5 points) represents non-
equivalence and allows us to identify the Type I error 
rate. In manipulating the standard deviation variable for 
the three group scenario, three variance conditions 
were created as follows: 

1. Equal variance condition - all the samples sizes 
had a standard deviation of six.  

2. Negatively paired variance condition - each 
sample size was paired with a specific standard 
deviation that decreased with increasing sample 
size: n = 30, SD = 8; n = 60, SD = 7; n = 90, 
SD = 6; n = 150, SD = 5; n = 210, SD = 4.  

3. Positively paired variance condition - each 
sample size was paired with a specific standard 
deviation that increased with increasing sample 
size: n = 30, SD = 4; n = 60, SD = 5; n = 90, 
SD = 6; n = 150, SD = 7; n = 210, SD = 8.  

One thousand normally distributed simulations 
were conducted for each condition using SPSS version 
20. Ninety percent confidence intervals on the mean 
difference between groups were calculated for each set 
of simulations via the t-test procedure in the two group 
scenario and the analysis of variance procedure in the 
three group scenario. When variances were unequal in 
the two group scenario, the Welch-Satterhwaite 
corrected confidence intervals were used (i.e., the 
confidence intervals were obtained from the row 
reading “equal variances not assumed”. In the three 
group case, confidence intervals were calculated using 
both a Games-Howell and Tukey post-hoc test to allow 
for comparison between these two options. Games-
Howell was selected because this method takes unequal 
group sizes into account, as well as violations of 
homogeneity of variance (Dunnet, 1980). Tukey was 
selected as it is one of the most widely used post-hoc 
tests.   

The power of the test was determined via the 
percentage of the 1000 simulations in each of the 0, 2 
and 4 point difference conditions in which the 
confidence intervals were fully contained within the 
equivalence interval. The Type I error rate was 
determined by calculating the percentage of the 1000 
simulations whereby equivalence was concluded in the 
5 point difference condition when the correct 
conclusion should have been non-equivalence.   
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Results 

The results of a representative selection of the 
simulations for the two group scenario are presented in 
Figures 1 (power) and 2 (Type I error) and for the three 
group scenario are presented in Figures 3, 4 (power) 
and 5 (Type I error).1 In each of the figures, the sample 
sizes for each condition are presented along the x-axis. 
The equal sample size pairings are on the left side of 
the graph and the unequal sample size pairings are on 
the right side of the graph; both are ordered from 
lowest to highest total sample size. Power is presented 
 

Figure 1. Power for declaring two populations equivalent 
under a representative selection of sample size condition and 
three selected variability conditions: equal, negatively, and 
positively paired variances. A: Population mean difference = 
0. B: Population mean difference = 2. C: Population mean 

difference = 4.  

Note. Data points contained within the shaded area are within 
acceptable limits for power.  

on the y-axis in Figures 1, 3, and 4 and represents the 
percentage of the 1000 simulations for which 
equivalence was correctly concluded. In general, power 
should increase as the sample size increases. Type I 

                                                 
1
 Readers interested in the graphical results for all simulation 

conditions should contact the first author. 

error is presented on the y-axis in Figures 2 and 5 and 
represents the percentage of the 1000 simulations for 
which equivalence was incorrectly concluded. Type I 
error should not be impacted by sample size. Separate 
 

 

Figure 2. Type I error rate for declaring two populations 
equivalent under a representative selection of  sample size 
condition and three selected variability conditions: equal, 
negatively, and positively paired variances.  

Note. Ideally, data points should be maintained at 5%. Data points 
that fall below 5% indicate a test that is conservative, but still 
acceptable. Data points that are greater than 5% indicate a test that 
is too liberal and is not acceptable.  

 

 

Figure 3. Power for declaring three populations equivalent 
using a (A) Games-Howell (GH) and (B) Tukey (TK) post-
hoc test under selected sample sizes and equal, negatively 
paired, and positively paired variability conditions when the 
population mean difference is equal to zero.  

Note. Data points contained within the shaded area are within 
acceptable limits for power.  
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lines are used for the three variance conditions: (1). 
equal variances, (2) negatively paired variances and (3) 
positively paired variances. The shaded rectangle in 
each figure represents the area of acceptable power 
(Figures 1, 3, and 4) or acceptable Type I error (Figure 
2 and 5). Ideally, we would like to see the data points 
contained within the shaded areas 

 

Figure 4. Power for declaring three populations equivalent 
using a (A) Games-Howell (GH) and (B) Tukey (TK) post-
hoc test under selected sample sizes and equal, negatively 
paired, and positively paired variability conditions when the 
population mean difference is equal to two.  

Note. Data points contained within the shaded area are within 
acceptable limits for power.   

Sample Size  

In both the two and three group scenarios, when 
group sample sizes were equal, power increased as the 
total sample size increased. Equal sample sizes were 
also more powerful than unequal sample sizes of the 
same total sample size and the greater the 
disproportion in sample sizes, the lower the overall 
power of the test. For example, in looking at Figure 4A 
and the negative Games-Howell condition, there were 
four scenarios where the total sample size was 270. 
When each of the three sample sizes was 90, power was 
acceptable at 85%, however, as the samples became 
more unbalanced, power dropped to 69% (sample sizes 
= 60, 60, 150), then to 30% (sample sizes = 30, 90, 
150) and finally to 11% (sample sizes = 30, 30, 210). 
Power was also lower in the three group scenario over 

the two group scenario for samples of equal size and 
variability.   

 

Figure 5. Type I error rate for declaring three populations 
equivalent under varying conditions of sample size and 
variability. 

Note. Ideally, data points should be maintained at 5%. Data points 
that fall below 5% indicate a test that is conservative, but still 
acceptable. Data points that are greater than 5% indicate a test that 
is too liberal and is not acceptable.   

Variability 

In the two group scenario, power decreased as 
variance increased from four SDs to six SDs to eight 
SDs (results not shown). When sample sizes were 
equal, power was not affected by variance 
heterogeneity. However, when sample sizes were 
unequal, positive variance pairings (the larger sample 
size paired with the larger standard deviation) tended to 
be the most powerful, negative pairings (the larger 
sample size paired with the smaller standard deviation) 
the least powerful, and equal standard deviations falling 
in the middle. However, because power tended to be 
high across the board for the condition where the 
population mean difference was zero (Figure 1A) and 
low when the population mean difference was four 
(Figure 1C), this pattern was only clearly seen in the 
condition where the population mean difference was 
two (Figure 1B). The greater the imbalance in sample 
size, the greater the differences in power between the 
equal and unequal variance conditions.   

In the three group scenario, the relationship 
between variance and sample size differed slightly 
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depending on whether a Games-Howell or Tukey post-
hoc test was used. For the Games-Howell post hoc 
test, power tended to be highest when the variances 
were positively paired and lowest when the variances 
were negatively paired; the greater the sample size 
imbalance, the greater the differences among the three 
variance conditions. When the variances were positively 
paired, power was nearly 100% for all sample size 
conditions when there was no difference between 
population means (Figure 3A) and slowly increased 
from 67% to 92%, with almost no impact from sample 
size imbalances when there was a two point difference 
between population means (Figure 4A).When the 
variances were negatively paired, there were substantial 
drops in power as samples became more unbalanced. 
The equal variance conditions showed more modest 
drops in power for unbalanced sample sizes. For the 
Tukey post-hoc test, power tended to be fairly similar 
among the three variance conditions once total sample 
sizes were over 200. For total sample sizes less than 
200, power tended to be highest for positively paired 
variances and lowest for negatively paired variances; a 
pattern that was consistent with the Games-Howell test 
and the two group comparisons.  

Post-Hoc Test   

When variances were equal, the Games-Howell 
and Tukey post-hoc tests performed similarly, 
regardless of whether sample sizes were equal or 
unequal. When variances were unequal, the Games-
Howell test showed greater fluctuations in power 
among the three variance conditions with higher power 
than Tukey when the variances were positively paired 
and lower power than Tukey when the variances were 
negatively paired.   

Population Mean Difference  

Overall, when the samples were drawn from a 
population specified to have a mean difference of zero,  
the results yielded acceptable levels of power (i.e., ≥ 
80%) for nearly all conditions in the two group 
scenario; only a few of the smallest sample size 
conditions, in combination with higher standard 
deviations, fell below the 80% criterion. For the three 
group condition and a zero population mean 

difference, power varied depending on the sample size, 
the sample variance and the post-hoc test used. For 
both the two and three group conditions, as the 
population mean difference increased, power 
decreased, especially for the condition in which the 
population mean configuration was set to four (results 
not shown in the three group case). For this latter 
configuration, there were no conditions for which 
power reached the 80% criterion. 

Type I Error 

In the two group scenario, Type I error was 
maintained at 5% for all simulation conditions (Figure 
2). In the three group scenario, Type I error rates were 
maintained at 5% or less for all conditions for which 
the variances and/or sample sizes were equal (Figure 
5). When variances were negatively paired and sample 
sizes unbalanced, Type I error rates tended to be 
conservative for the Games-Howell post-hoc test. Type 
I error rates also tended to be conservative for the 
Tukey post-hoc test for samples under 200, but became 
liberal as sample sizes increased from 300, with 
increasingly, and unacceptably, high levels for the Type 
I error rate as the samples became larger and more 
unbalanced (full range of results not shown). When 
variances were positively paired, Type I error was 
acceptable for both post-hoc tests for all sample size 
conditions, although the Tukey post-hoc test was 
slightly more conservative.   

Discussion 

When seeking to demonstrate that two or more 
groups are comparable, equivalence testing is the 
recommended method to use. Equivalence tests 
provide evidence that any differences that exist 
between groups are not meaningful and the groups can 
be treated as equivalent. A key first step in conducting 
these tests is to operationally define and justify the 
equivalence interval (i.e., the point at which differences 
are considered to be meaningful differences). 
Equivalence tests have been gaining popularity in 
education and the social sciences; however, there have 
been few studies that have investigated the statistical 
properties of this method and few guidelines provided 
for appropriately using tests of equivalence.  
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This study examined the statistical power and Type 
I error rate of the confidence interval approach to 
equivalence testing under varying conditions of group 
size, sample size, sample variability, and population 
mean difference. Knowing what happens to the power 
of a study when there are unequal sample sizes and/or 
variances will help to: (1) determine whether is it better 
to collect data from equal samples or to select a sample 
from within a larger sample to make the sample sizes 
more equal and (2) more accurately reach conclusions 

about the equivalence or comparability of two or more 
groups and the possible threats to internal validity of a 
study under non-optimal data conditions. 

We demonstrated that group differences in sample 
size and variance did influence the power of 
equivalence tests when comparing both two and three 
groups, and that unequal sample sizes paired with 
unequal variances interacted to have a large impact on 
power (See Table 1 for a summary of the results); 
findings that are consistent with and extend the 
simulation studies done by Cribbie et al. (2010) and 
Gruman et al. (2007). As expected, if sample sizes were 
equal, increasing the total sample size increased power. 
However, reductions in power were seen as sample 

sizes became unbalanced, even with a constant total 
sample size.  

Sample variability also impacted power, such that 
the lower the variance within groups, the greater the 
power; findings that are consistent with hypothesis 
testing models. What this study adds is its exploration 
of the combination of unequal sample sizes with 
unequal variances for various total sample sizes, thus 
allowing users of equivalence tests to make informed 
decisions regarding the appropriate use of these tests.  

When sample sizes were equal, variance 
heterogeneity did not have an impact on power (except 
for the smallest sample sizes). However, when 
variances were unequal and were paired with unequal 
sample sizes, there was often a substantial impact on 
power. The exact nature of this impact depended on 
the extent of the imbalances in sample size and 
variability, whether two or three groups were being 
compared, and, in the three group case, which post-hoc 
test was being used; in general, positively paired 
variances (i.e., larger variance paired with larger sample 
size) were the most powerful, negatively paired 
variances (i.e., larger variance paired with smaller 
sample size) the least powerful, and the greater the 
disparity, the greater the differences in power.  

Table 1. Overall Summary of Simulation Results for Two and Three Group Comparisons 

Condition Results  
Sample size Power increases as sample size increases 
Equal versus unequal 
sample size 

Equal sample sizes are more powerful than unequal sample sizes 
Power decreases as samples become increasingly unequal 

Variability Power decreases as variability increases 
Equal versus unequal 
variability 

Impact of unequal variability depends on whether sample sizes are equal or 
unequal and choice of post-hoc test 

Sample size and variability When sample sizes are equal, power tends not to be affected by unequal 
variability, except for smaller sample sizes in the three group comparisons 
When sample sizes are unequal, positive pairings tend to be the most powerful 
and negative pairings the least powerful; the greater the imbalance, the greater 
the differences in power among the three variance groups 
Unequal sample sizes paired with unequal variances affected Type I errors for 
both Games-Howell and Tukey post-hoc tests in the three group comparison; 
Type I error was not affected in the two group comparison when the Welch-
Satterhwaite correction was used 

Post-hoc test When sample sizes were equal, the two post-hoc tests performed similarly 
When sample sizes were unequal, the power of the Games-Howell test was 
more strongly affected by unequal sample sizes and variances than the Tukey 
test 

Population mean 
difference 

Power decreases as the size of the difference in the population increases 
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When there was truly no difference between the 
population means (population mean configuration 
equal to zero), power tended to be quite high in all of 
the samples drawn across the conditions tested in this 
study. It is not surprising that power dropped as the 
difference in population means increased.  

For the three group scenario, this study also 
sought to examine whether the Tukey or Games-
Howell post-hoc test would be the most appropriate to 
use for equivalence tests involving three (or more) 
groups. There were differences in the patterns of 
results that depended on the extent to which sample 
sizes and variances were equal or unequal. When 
sample sizes were equal, Tukey and Games-Howell 
performed similarly. Differences in power were seen 
between these two tests for the three variance 
conditions (equal, positive, negative) as sample sizes 
became more unequal, with the Games-Howell post-
hoc test showing larger fluctuations in power. While 
there were less fluctuations in power levels for the 
Tukey post-hoc test among the three variance 
conditions, there were still some large differences. 
Therefore, in deciding on which post-hoc test to use, it 
is important to first consider the sample variability. If 
sample variability is equivalent, either post-hoc test 
would suffice. If sample variability is positively paired, 
Games-Howell is the most powerful. If sample 
variability is negatively paired Tukey tends to be more 
powerful. However, if the total sample size exceeds 
around 300 and sample sizes are unequal, the Type I 
error rate for Tukey under these conditions becomes 
inflated, making the test invalid.  It is not 
recommended to use the equivalence test under those 
conditions that produced an inflated Type I error rate. 
If Type I errors are below 5% this does not invalidate 
the test, but does make it more conservative.   

What are the practical implications of the findings 
from this study?  If a researcher or evaluator has 
control over sample size, we advise collecting data from 
groups such that each group is roughly equal in sample 
size.  Equal group sizes will maximize power for a 
given total sample size and the power and Type I error 
rate will not be impacted if one were to find sample 
heterogeneity (i.e., violate the homogeneity of variance 
assumption).  

 If controlling sample size is not possible (which is 
often the case in applied settings), there are two 
possible options: (1) collect as much data as is possible, 
even if this results in unequal sample sizes or (2) 

sample from the larger group(s) to bring all group sizes 
into alignment. For example, let’s say we are interested 
in comparing two groups where one group has a total 
possible sample size of 210 and the other group has a 
maximum sample size of 30. Further, let’s say that the 
variances are negatively paired (this tends to be the 
more common situation as larger samples tend to 
provide better estimates of population parameters than 
smaller samples). If we assume that the groups are truly 
equivalent (population difference of zero), our power 
in this situation will be .89. If we were to equate the 
sample sizes by sampling only 30 from the larger class 
of 210, power drops slightly to .82, which is still within 
acceptable limits and requires less data collection. 
Thinking of this in the reverse, if we had two samples 
of 30 each, increasing the sample size in one group only 
results in a small increase in power. If it is difficult to 
collect data or if student survey burden is an issue, 
sampling may be an option, as long as there is sufficient 
power with both samples being at the smaller group 
size. Type I error is not a concern when comparing two 
groups via the t-test method, as long as the appropriate 
correction is made when variances are unequal (i.e., 
reading results from the “equal variances not assumed” 
row in the SPSS output).   

If we extend this to a three group scenario, and 
add a third group of 30 students, our example 
comparison will now be between two groups of 30 and 
one group of 210. Let’s assume the variances are 
negatively paired and the true difference among the 
groups is zero. If a Games-Howell post-hoc test is used 
power will be unacceptably low at .20 and if a Tukey 
post-hoc test is used power is still too low at .40. 
Looking at the corresponding Type I error rates, the 
Games-Howell test is conservative, while the Tukey 
test is slightly liberal, but both are generally in an 
acceptable range. Overall, this suggests that it may be 
inappropriate to conduct an equivalence test on these 
data because of a lack of power. What this means is 
that if you were to conduct an equivalence test on this 
data and found the groups to be equivalent then you 
can still have confidence in your conclusion of 
comparable groups because the conclusion is reached 
in spite of the study being underpowered. However, if 
you found the groups to be non-equivalent, it would be 
unclear as to whether this was because of the groups 
truly being non-equivalent or because sufficient power 
was lacking to detect equivalence (i.e., a Type II error).  
It is not until each group has at least a sample size of 60 
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that we see power at acceptable levels2. Building from 
this, if we were limited by two groups of 60, but had 
access to a larger third group, would it be better to 
collect data from the entire group or a subsample of 
60? Similar to the two group scenario, collecting more 
data, even if it does create an unbalanced design, does 
result in more power; however, in many cases, the 
increase in power is very little and may or may not be 
worth the extra effort collecting the additional data. 
Additionally, one needs to keep in mind that if a Tukey 
post-hoc test is used, severely unbalanced groups will 
result in increased Type I error rates.  

There are some limitations to this study that are 
important to consider. As this was a simulation study, 
the results are specific to the conditions investigated. 
While we tried to include a range of likely values and 
variables in conducting the simulations, not all ranges 
or variables could be modeled. Furthermore, all 
simulations were modeled as normally distributed. 
While the assessment data that were used to guide the 
selection of parameters and variables generally followed 
a normal distribution, in many cases, data often violate 
the assumption of normality. Further research is 
needed to investigate the impact of non-normality on 
equivalence tests, as well as other conditions that may 
be relevant to these tests. Finally, equivalence testing is 
a form of significance testing and is subject to the 
criticisms and misinterpretations of these types of tests 
(Thompson, 1994, 1999). However, equivalence tests 
have an advantage over traditional differences tests due 
to the use of an equivalence interval over a point-null 
hypothesis; a concept associated with the good-enough 
principle (Serlin & Lapsley, 1985).   

Conclusion  

Stated broadly, the confidence interval approach to 
equivalence testing is the most powerful and valid 
when applied to equal sample sizes. When sample sizes 
are equal, the inequality of variances across the two 
groups will not impact the conclusions drawn from 
these tests. If unequal sample sizes are paired with 
unequal variances, this can result in dramatic 
differences in power and inflated or reduced type I 
error rates.  

                                                 
2
 Keep in mind that these power values are based on specific 

values for the standard deviations. If standard deviations were 

smaller, power would be greater and if standard deviations 

were greater, power would be reduced. 

Inadequately powered studies can result in 
incorrect conclusions being drawn about the 
comparability of groups and can lead to a misuse of 
time and valuable resources. This study explored 
options for dealing with data that are not ideal. The 
figures provided can be used by researchers as 
guidelines for determining the minimum sample sizes 
needed for an appropriately powered study. Taking 
both sample size and variance into consideration when 
planning an analysis that address questions of 
comparability will result in more reliable, valid and 
generalizable results.  
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