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Exploratory factor analysis (EFA) methods are used extensively in the field of assessment and evaluation. 
Due to EFA’s widespread use, common methods and practices have come under close scrutiny. A substantial 
body of literature has been compiled highlighting problems with many of the methods and practices used in 
EFA, and, in response, many guidelines have been proposed with the aim to improve application. 
Unfortunately, implementing recommended EFA practices has been restricted by the range of options 
available in commercial statistical packages and, perhaps, due to an absence of clear, practical ‘how-to’ 
demonstrations. Consequently, this article describes the application of methods recommended to get the 
most out of your EFA. The article focuses on dealing with the common situation of analysing ordinal data as 
derived from Likert-type scales. These methods are demonstrated using the free, stand-alone, easy-to-use and 
powerful EFA package FACTOR (http://psico.fcep.urv.es/utilitats/factor/, Lorenzo-Seva & Ferrando, 
2006). The demonstration applies the recommended techniques using an accompanying dataset, based on the 
Big 5 personality test. The outcomes obtained by the EFA using the recommended procedures through 
FACTOR are compared to the default techniques currently available in SPSS. 

     

Exploratory factor analysis (EFA) is a cluster of 
common methods used to explore the underlying 
pattern of relationships among multiple observed 
variables. EFA is useful for assessing the 
dimensionality of questionnaire scales that measure 
underlying latent variables. Researchers use EFA to 
hypothesise and, later, confirm, through replication or 
confirmatory factor analysis (CFA), the model that gave 
rise to the interrelationships among the scale’s 
variables. From a practical standpoint, a researcher 
might want to know if a new scale can be considered 
uni- or multi-dimensional. Responding to this can help 
researchers reduce the total number of variables into a 
smaller number of factors, which are composed of 
highly related variables. EFA remains a very popular 
data analysis technique. However, criticisms of 
conventional EFA practices have frequently been cited 
(see Fabrigar, Wegener, MacCallum, & Strahan, 1999). 
EFA requires subjective input from the researcher and 
making poor decisions at each EFA stage can have a 
substantial impact on results. The main areas of 
concern include deciding on the following: an 

appropriate extraction method, the number of factors 
to retain, and the factor rotation technique (Costello & 
Osborne, 2005) 

Many researchers have attempted to improve the 
practice of EFA by publishing useful 
recommendations, many of which appear in PARE 
(Beavers et al., 2013; Costello & Osborne, 2005; 
Courtney, 2013; DiStefano, Zhu, & Mindrilla, 2009; 
Osborne & Fitzpatrick, 2012). The authors of these 
articles should be commended for presenting clear and 
practical guidelines for EFA practitioners. 
Unfortunately, many of the recommendations are 
challenging to implement using mainstream statistical 
software such as IBM SPSS Statistics (IBM Corp, 
2012). Commercial statistical packages, textbooks and 
instructors appear to be lagging behind recommended 
practices. Clear practical demonstrations for improving 
EFA are needed. Basto and Pereira (2012) and 
Courtney (2013) discuss the use of the R-Menu plugin 
for IMB SPSS Statistics (IBM Corp, 2012) for 
implementing judicious factor retention methods. The 
R plugins for SPSS substantially improve EFA 
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functionality, but the installation process can be 
burdensome and the very idea of using free EFA tools 
through a commercial package will seem nonsensical to 
some. Using the EFA packages directly through the 
free statistical package R (R Core Team, 2013) requires 
familiarity of the open source software and a moderate 
level of programming knowledge required may be off-
putting to some. As such, the aim of this paper is to 
demonstrate a viable alternative for implementing 
recommended EFA methods.  

Specifically, this article will demonstrate how to 
apply recommended EFA methods using the freely 
available PC software package FACTOR 
(http://psico.fcep.urv.es/utilitats/factor/, Lorenzo-
Seva & Ferrando, 2006). FACTOR is an easy to use, 
standalone EFA package with many powerful and 
cutting-edge features. It runs directly from an 
executable file and does not require installation. The 
demonstration, using an accompanying dataset, will 
focus on the analysis of ordinal variables created 
through the use of Likert-type rating scales. Ordinal 
variables are the norm for most EFAs. Research shows 
that the common use of Pearson correlations for EFA 
models can substantially underestimate the strength of 
the relationship between ordinal variables. This can 
lead to spurious factors in EFA outcomes (Garrido, 
Abad, & Ponsoda, 2013; Holgado–Tello, Chacón–
Moscoso, Barbero–García, & Vila–Abad, 2008; Olsson, 
1979b).  

Improving Your EFA 

Prior to demonstrating the use of FACTOR, 
methods for improving your EFA practices will be 
briefly summarised. The reader is directed to excellent 
articles in PARE by Costello and Osborne (2005) and 
Beavers et al. (2013) for more comprehensive 
treatments. At the outset, the decision faced by the 
practitioner during EFA is choosing between EFA and 
principal components analysis (PCA). Both EFA and 
PCA are used to reduce the number of dimensions 
inherent in the data. However, both make very 
different assumptions. Factor analysis is concerned 
with identifying the underlying factor structure that 
explains the relationships between the observed 
variables. On the other hand, PCA is used to reduce a 
large number of interrelated variables into a smaller set 
of "components" with minimal loss of information. 
For example, a researcher with multicollinearity issues 
in a multiple regression model might use PCA to 
cluster highly related variables into a single predictor to 

avoid biased parameter estimates. PCA does not 
attempt to explain the underlying population factor 
structure of the data and makes the often, unrealistic, 
assumption that each variable is measured without 
error. EFA, on the other hand, is based on the 
common or shared variance between variables, which is 
partitioned from the left-over variance unique to each 
variable and any error introduced by measurement. 
Hence, EFA is more theoretically aligned to the goals 
of exploring the dimensionality of a scale proposing to 
measure a latent variable. The researcher must also 
decide between EFA vs. confirmatory factor analysis 
(CFA). Generally speaking, CFA is selected when a 
researcher has a hypothesised structure explaining the 
relationship between variables and wishes to validate 
the fit of a model using data taken from a sample 
(Note. CFA can still be used in an exploratory manner, 
see Schmitt, 2011). On the other hand, EFA is chosen 
when the researcher cannot assume, a priori, a structure 
to the variable’s relationships and must rely on the 
sample to estimate it (Matsunaga, 2010). This 
commonly occurs when new assessment instruments or 
scales are developed and tested for the first time.  

Another related issue is the type of correlation 
matrix to be analysed. Conventional EFA is based on 
the Pearson correlation matrix. Pearson correlations 
assume data have been measured on, at least, an equal 
interval scale and a linear relationship exists between 
the variables. These assumptions are typically violated 
in the case of variables measured using ordinal rating 
scales (Timmerman & Lorenzo-Seva, 2011). Pearson 
correlations have been found to underestimate the 
strength of relationships between ordinal items 
(Olsson, 1979a). In relation to EFA procedures, studies 
have observed Pearson correlation matrices used on 
ordinal data giving rise to spurious multidimensionality 
and biased factor loadings (Bernstein & Teng, 1989). 
Acknowledging the limitations of the Pearson 
correlation, researchers have investigated the use of an 
alternate measure of correlation known as the 
polychoric correlation. The polychoric correlation, 
which is an extension of the tetrachoric correlation, is a 
technique for estimating the correlation between two 
bivariate normally distributed continuous variables 
measured using an ordinal scale (Olsson, 1979a).  

To demonstrate the performance of the Polychoric 
correlation, a simple simulation was performed using R 
(R Core Team, 2013, contact author for the simulation 
script). First, a bivariate normal population distribution 
was generated with a population Pearson correlation of 
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r = .557 (Figure 1a). Next, 1000 random samples of 
size n = 30 from the bivariate data, x,y, were taken 
from the population. For each sample, the normally 
distributed bivariate data were converted to ordinal 
data measured on a five-point Likert-type scale using 
 

arbitrary and unequal splits in the distribution (Figure 
1b).  These splits were determined subjectively and 
should only be considered one hypothetical example of 
an infinite number of ways to split a continuous scale. 
Even though an underlying bivariate normal 
distribution was used, the resulting ordinal conversion 
resulted in highly skewed distributions. The simulation 
involved calculating a Pearson correlation and a 
Polychoric correlation for each sample of the ordinal 
data. The mean Pearson correlation for the 1000 
simulated samples resulted in Pearson’s r = 0.462, 
which was a substantial underestimation. On the other 
hand, the Polychoric correlation was able to recover the 
population’s true correlation closely by returning a 
sampling mean of r = 0.560. This very simple 
simulation demonstrates that the polychoric correlation 
is an unbiased estimate of the population Pearson 
correlation for bivariate normally distributed variables 
which have been measured using an ordinal scale. 
Therefore, it’s not surprising that researchers 
recommend the use of polychoric correlations for EFA 
performed on data from ordinal variables (Garrido et 
al., 2013; Holgado–Tello et al., 2008; Timmerman & 
Lorenzo-Seva, 2011). 

The next major decision faced by a researcher 
during EFA is deciding on the extraction method. 
Common examples include unweighted least squares, 

generalised least squares, maximum likelihood, 
principal axis factoring, alpha factoring and image 
factor to name a few (Costello & Osborne, 2005). The 
 

 

Figure 1b.  A normally distributed random variable is 
arbitrarily converted to an ordinal random variable 
measured on a five-point Likert scale (ranging from 
strongly disagree to strongly agree). Even though the 
variable is normally distributed in the population, the 
ordinal conversion results in a highly skewed 
distribution. 

 

method selected should be based on the nature of the 
underlying distribution of the data. For example, 
maximum likelihood is recommended when data are 
multivariate normally distributed, while principal axis 
factoring makes no distributional assumptions 
(Fabrigar et al., 1999). For other methods, clear 
guidelines are lacking. A common problem with EFA 
extraction methods concerns the reporting of indices of 
model fit including the amount of variance explained 
by an EFA model. PCA allows a researcher to report 
the total variance explained as a measure of goodness 
of fit. PCA is able to do this because it only has to 
distinguish between the explained variability of the 
components and the total variability inherent in all the 
observed variables. EFA can produce a measure of 
goodness of fit based only on the common variance, 
after error and unique variance is partitioned out, but 
there are challenges with this computation for regular 
EFA methods including principal axis factoring, 

 

Figure 1a. Bivariate normal distribution, Pearson r = 
.557. 
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unweighted least squares and maximum likelihood EFA 
(Lorenzo-Seva, 2013). Minimum rank factor analysis 
(MRFA, Shapiro & ten Berge, 2002; ten Berge & Kiers, 
1991), as currently implemented only in FACTOR, is 
able to estimate the percentage of common variance 
explained by an EFA model. This is an attractive 
property for an EFA extraction method. 

Deciding how many factors to retain following 
extraction has received substantial attention in the 
literature. While researchers can use their own 
judgement to decide on the number of factors to retain, 
more often than not, researchers revert to conventional 
guidelines, including the Kaiser criteria (eigenvalue > 1) 
and scree plot. Unfortunately, the Kaiser criteria and 
scree plot have been shown to overestimate the 
number of dimensions in the data (Hubbard & Allen, 
1987; Ruscio & Roche, 2012; Zwick & Velicer, 1986). 
While the scree plot is substantially more accurate than 
the Kaiser criteria (Zwick & Veliver, 1986), ambiguous 
scree plots suffer from issues with subjectivity as 
evidence by poor inter-rater reliability (Crawford & 
Koopman, 1979). Parallel analysis (PA, Horn, 1965) is a 
commonly recommended method for factor retention 
(Fabrigar et al., 1999). Horn’s original PA works by 
generating many (e.g. 500) random parallel datasets, 
with the same number of variables and cases as the 
sample dataset. Each of these parallel datasets, which 
are filled with independent randomly generated data, is 
analysed using PCA. The mean eigenvalues of the 
factors extracted from the random parallel datasets are 
compared to the samples’ eigenvalues. All factors 
where the sample’s eigenvalues are greater than the 
means of the random parallel datasets are retained. PA 
has been found to be superior to conventional methods 
for correctly identifying the true number of dimensions 
(Hubbard & Allen, 1987; Ruscio & Roche, 2012; Zwick 
& Velicer, 1986). PA analysis was second only to the 
comparison data (CD) method in simulation studies 
performed by Ruscio and Roche (2012). In FACTOR, 
a powerful variation of PA using MRFA and polychoric 
correlations is available. Timmerman and Lorenzo-Seva 
(2011) found PA-MRFA, which is based on random 
permutation of the sample data and comparing the 
percentage of common variance extracted by MRFA, 
outperformed Horn’s PA and PA based on principal 
axis factoring (Humphreys & Ilgen, 1969). 

Assuming a scale is multidimensional, factor 
rotation will be necessary to aid the interpretation of 
the model. There are two main classes for rotation, 
orthogonal and oblique. Orthogonal rotation seeks to 

find a solution that minimises the relationship between 
factors. This method has been criticised as most factors 
that make up a latent variable are expected to share 
some degree of relationship (Gaskin & Happell, 2013). 
Costello and Osborne (2005) also demonstrated that an 
oblique rotation could be used to estimate an 
orthogonal model, but not vice versa. Therefore, 
oblique rotation, which allows relationships between 
factors, should be preferred in most situations, unless a 
strong argument can be made as to why the factors 
should not be correlated (Beavers et al., 2013; Costello 
& Osborne, 2005; Gaskin & Happell, 2013; Matsunaga, 
2010). In FACTOR, many common and advanced 
methods for oblique and orthogonal rotation are 
available. For example, FACTOR provides the option 
to use the oblique Promin rotation method which has 
been found to perform comparably to direct oblimin 
for recovering a true rotated solution and to slightly 
outperforms it when fewer complex variables (variables 
that load highly onto more than one factor) are present 
(Lorenzo-Seva, 1999).  

The following recommendations can be made 
based on this brief summary on how to improve your 
EFA for ordinal data: 

• EFA is theoretically based on exploring the 
underlying relationship among variables that 
comprise a scale used to measure a latent 
variable.  

• Polychoric correlations are preferred in place of 
Pearson correlations when variables are 
measured using an ordinal scale. However, 
polychoric correlations still make the 
assumption that the ordinal variables are 
derived from a bivariate normal population 
distribution.  

• Decisions about the extraction method to be 
used for EFA should be based on the scale and 
shape of the data’s distribution.   

• The Kaiser criteria and scree plot should be 
avoided for factor retention decisions. Scree 
plots are suitable for getting a sense of the 
number of dimensions, but ambiguities can 
arise. Parallel analysis-based methods are 
recommended as they outperform both the 
Kaiser criteria and scree plot.  

• By default, oblique rotation methods should be 
chosen as most factors in a multidimensional 
scale will share some degree of relationship. 
Orthogonal rotation should only be used when 
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there is a strong justification to assume no 
relationship between factors. 

Each of these recommendations will be met in the 
following sections by using FACTOR. The 
demonstration will use a motivating example. The 
options available and output generated by FACTOR 
are substantial. The aim of this article is to demonstrate 
and discuss the most pertinent for getting the most out 
of your EFA for ordinal data. 

Demonstrating FACTOR 

The Example 

The example data was downloaded from the 
Online Personality Tests website (http://personality-
testing.info/). This website stores the responses from 
over half a million online anonymously completed 
personality tests. The tests and data are made freely 
available to the public for educational purposes. The 
test chosen was the well-known Big 5 Personality Test 
based on the Big-Five markers reported by Goldberg 
(1992). According to Big 5 theory, personality is 
comprised of five main traits including extraversion 
(E), agreeableness (A), conscientiousness (C), 
emotional stability (N) and intellect/imagination (O). 
While the Big 5 has generated substantial evidence of 
construct validity through previous factor analytic 
studies, it was interesting to investigate if EFA 
performed in FACTOR using the recommend methods 
could extract the theoretically proposed factor structure 
and compare these results to what would have been 
obtained using a default approach in SPSS. The Big 5 
dataset contained the results of more than 11,000 tests. 
Computationally, this was very large for the PA 
procedure that would be implemented. Therefore, a 
random sample of 500 tests was analysed, which was 
considered a more representative sample size used in 
EFA studies. The Big 5 test used by the Online 
Personality Tests website included 50 self-reported 
personality items, for example, “I get stressed out 
easily”, which were rated on an ordinal five-point scale 
ranging from (1) disagree to (5) agree. The dataset used 
in the following demonstration can be obtained by 
contacting the author.   
 

Preparation 

The first step is to download and open FACTOR 
(http://psico.fcep.urv.es/utilitats/factor/). 

Unfortunately, FACTOR is only available for PCs. 
FACTOR runs directly from an executable file and 
does not require installation. FACTOR requires the 
data to be in a simple format using the .dat file 
extension. The data file must have no labels and no 
extra variables, just the variables to be included in the 
EFA. No missing values are permitted. If participants 
have missing values, the participant must either be 
removed entirely (case-wise deletion) or an appropriate 
missing value imputation implemented (see Shrive, 
Stuart, Quan, & Ghali, 2006). A file with descriptive 
variable labels can be attached separately. The easiest 
way to create a .dat file is to export your data from the 
statistical package in the .dat format. Packages such as 
SPSS will have built-in options for this purpose. You 
can also convert common dataset formats using Excel, 
but not directly. To do so, use Excel to save the dataset 
as a plain text file, .txt, in a tab delimited format. Find 
the dataset saved on your computer and change its 
extension from .txt to .dat. A tab delimited .txt file and 
a .dat file are equivalent. The file is now ready to be 
used in FACTOR.  

A label file can also be created to accompany the 
dataset. Open a plain file in a text editor and type the 
labels for the variables in column order. Each row 
corresponds to a column label. Save this file as a simple 
.txt file. Figure 2Figure displays an example. The Big 5 
items were labelled using an item number, 0 – 49 and a 
letter corresponding to the theoretically aligned trait. 

 

 
Figure 2. FACTOR label file example. 
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Extraction and Retention 

The EFA demonstration will be broken into two 
major steps: 1) Extraction and Retention and 2) 
Rotation. To begin, open FACTOR and click on the 
read data button (Figure 3). Set the number of 
participants and number of items. You will also need to 
locate the file with the participants’ scores (the .dat 
dataset) and the variables’ labels file if you have one. 
Click OK and select the Configure Analysis button. 

The configuration window is where the many 
features of FACTOR become apparent (Figure 4a). 
The practitioner has access to many powerful EFA 

methods including the option to analyse polychoric 
correlations, perform parallel analysis and execute 
advanced extraction and rotation methods such as 
MRFA and Promin. In the configuration menu, select 
the option to analyse polychoric correlations, due to 
the ordinal nature of the data. PA should also be 
selected and based on the minimum rank factor 
analysis (MRFA, Timmerman & Lorenzo-Seva, 2011). 
Note that Horn’s method is available as a configurable 
option (Figure 4b). The PA-MRFA is advised based on 
simulation studies which have found it to outperform 
Horn’s PA (Timmerman & Lorenzo-Seva, 2011). Other 
conventional extraction methods, including PCA are 
also available in addition to the useful option to save 
factor scores (see DiStefano et al., 2009). In the first 
step, it’s not important to specify the correct rotation  
 

 

Figure 4b. Main FACTOR PA Configuration window 

method or the number of factors to be retained. The 
number of factors to be extracted and rotation method 
can be specified in the second step once the PA has 
advised the number of dimensions to retain. You can 
also specify the name of the output file from the 

 

Figure 4a. Main FACTOR Configuration window 

 
 

Figure 3. FACTOR’s Main window and Read Data window. 
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analysis to be saved in a .txt file. Click OK and hit the 
compute button to run the PA. FACTOR will give you 
a warning before proceeding if you specify zero 
number of factors. Ignore this message and proceed. 
The author advises that separate files be saved for each 
step of the EFA. This enables the practitioner to 
separate the results of the PA from the rotation. 

PA is a simulation method and, as such, can take 
considerable computational time depending on the 
sample size and number of variables. For some 
perspective, the PA for the Big 5 data took 16 minutes 
on a Core I7 Intel processor with 8 GB RAM. It’s also 
common for Windows to report FACTOR to be non-
responsive even though the simulation is correctly 
running in the computer’s memory (Figure 5). Once 
the PA is complete you will be presented with a 
comprehensive output file. The most pertinent output 
will now be presented and discussed.  

  

 

Figure 5. Parallel analysis will take some time. Be 
patient. FACTOR is still responding despite the 
warning. 

The first part of the output lists the details of the 
analysis. The log includes the data file location, number 
of participants, variables, factors extracted, factor 
retention method, type of correlation matrix analysed, 
and the factor extraction and rotation method. The 
second important table presents the item’s univariate 
statistics (Table 1). FACTOR recommends the use of 
polychoric correlations when either the skewness or 
kurtosis statistics are higher than one in absolute value. 
Items 6 and 8 in Table 1 exhibit kurtosis in excess of 
this threshold. While such rules of thumb may be 
convenient, the author advises that the decision to use 
either polychoric or Pearson correlations be based on 
the level of the item’s measurement. Also, recall that 
polychoric correlation assume variables represent 
bivariate normal distributions measured using an 
ordinal scale. Multivariate tests for skewness and 
kurtosis proposed by Mardia (1970) are also reported. 
For the Big 5 data, the test for skewness was not 
statistically significant, p = 1.00. However, there was 
evidence of excessive kurtosis, p < .001. Mardia’s test 
result can be used for supporting the decision to us 
polychoric correlations.  

Common methods for determining the suitability 
of the data for factor analysis are also reported by 
FACTOR. Check the polychoric correlation matrix for 
evidence of non-zero correlations, a statistically 
significant Bartlett’s test and a Kaiser-Meyer-Olkin 
(KMO) statistic above .80 (Beavers et al., 2013). The 
Big 5 example satisfied all these checks with evidence 
of substantial correlations between items, Bartlett’s 
statistic = 11497.3 (df = 1125), p < .001, and KMO = 
0.88. On a practical note, estimating the polychoric 
 
Table 1. FACTOR’s Univariate Descriptive Statistics Output 
for the First 10 Big 5 Items 

Var Mean 
Confidence 

Interval 
Variance Skewness Kurtosis 

V1 2.494 (2.36   2.63) 1.406 0.350 -0.742 

V2 2.118 (1.98   2.26) 1.480 0.915 -0.214 

V3 3.276 (3.15   3.40) 1.228 -0.243 -0.769 

V4 3.166 (3.02   3.31) 1.578 -0.164 -0.973 

V5 3.918 (3.80   4.04) 1.107 -0.785 -0.017 

V6 2.916 (2.76   3.07) 1.841 0.061 -1.177 

V7 3.850 (3.73   3.97) 1.135 -0.851 0.136 

V8 3.010 (2.85   3.17) 1.874 -0.027 -1.259 

V9 3.268 (3.13   3.41) 1.488 -0.278 -0.942 

V10 1.944 (1.83   2.06) 1.013 0.891 0.047 

correlation requires the convergence of an iterative 
maximum likelihood algorithm. Researchers have noted 
that the polychoric correlation estimation commonly 
fails to converge (Babakus, Ferguson, & Jöreskog, 
1987; Timmerman & Lorenzo-Seva, 2011). When this 
occurs in FACTOR, the pair of variables responsible 
for non-convergence will be reported and the Pearson 
correlation inserted into the correlation matrix instead. 
Therefore, the correlation matrix may be a polychoric 
and Pearson correlation matrix. For the Big 5 example, 
all polychoric correlations converged. Once the 
suitability of the data for EFA has been satisfied, it’s 
time to interpret the results of PA-MRFA.  

FACTOR will report the advised number of 
dimensions based on the PA-MRFA. You will notice 
that PA-MRFA is based on the random explained 
common variance, and not eigenvalues as proposed by 
Horn (1965). The method also uses random 
permutation of the data instead of purely randomly 
generated data. There are two criteria that FACTOR 
will apply to make the decision for how many factors to 
retain. One method is based on the mean of random 
variance extracted and the other on the 95th percentile 
of random percentage of variance. Simulation studies 
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suggest that the 95th percentile criteria is more accurate 
(Timmerman & Lorenzo-Seva, 2011). FACTOR 
compares the mean or the 95th percentile of the factor’s 
percentage of common variance explained from the 
randomly permutated data to the observed explained 
common variance from the sample. If a factor’s 
observed percentage exceeds the random percentage, 
the factor is retained. This occurred five times in the 

case of the Big 5 example (Table2). The real data 
percentage of variance for the first five factors 
exceeded the 95th percentile of the random common 
variance extracted. For factor 6, the common variance 
from the 95th percentile of random variance, 3.6 
exceeded the real-data percentage, 2.7, hence five 
factors were retained.   

 
Table 2. Parallel Analysis Based On 
Minimum Rank Factor Analysis of 
Polychoric Correlations (Timmerman & 
Lorenzo-Seva, 2011) for the Big-5 Example 

Var 
Real-data % 
of variance 

Mean of 
random 
variance 

95 percentile 
of random % 
of variance 

1 20.0* 4.2 4.5 

2 11.8* 4 4.2 

3 9.6* 3.8 4 

4 8.6* 3.7 3.9 

5 5.8* 3.6 3.8 

6 2.7 3.5 3.6 

7 2.6 3.4 3.5 

8 2.2 3.3 3.4 

9 2 3.2 3.3 

10 1.9 3.1 3.2 

Note. Only the first 10 factors are shown. 
Percentage of variance relates to common variance. 
The factors with stars are retained as the real-data 
percentage of common variance is higher than the 
95th percentile of the PA-MRFA’s random datasets 

 

Factor Rotation 

Once the PA has advised the number of 
dimension supported by the data, the next step is to 
extract the number of advised dimensions and select a 
rotation option to aid in factor interpretation. To save 
time, ensure you don’t select the PA option in the 
second step or else the PA will be run again, wasting 
time. Instead, select the Minimum Average Partial 
(MAP) option as this is a non-simulation method. Set 

the number of advised dimensions to five, select the 
MRFA option for extraction, and select a rotation 
method. The oblique rotation method is recommended 
for EFA. Promin (Lorenzo-Seva, 1999) rotation is the 
advised option by the developers of FACTOR. 
However, other more familiar oblique rotation 
methods are available including the commonly used 
direct oblimin method. Save the output file using a 
different file name to the PA output. These options are 
summarised in Figure 6. 

 

Figure 6. FACTOR Rotation Configuration for the 
second step of the Big 5 example. 

 
The overall fit of the five factor model can be 

expressed by reporting the overall percentage of 
common variance explained. This estimate was made 
possible with the use of MRFA. For the five factor 
model of the Big 5 data, the overall percentage of 
common variance explained was 63.03%.  The output 
also reports the unrotated loading matrix, structure 
matrix, communalities and rotated (pattern) matrix. 
The rotated (pattern) loading matrix, structure matrix 
and communalities are reported in Appendix A. All 
communalities were above the minimum of .4 as
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Table 3. A Comparison of the Big 5 Rotated Factor Solutions for FACTOR and SPSS  

 FACTORa SPSSb 
Item F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 

16_N 0.796       0.755   
41_N 0.695       0.649   
26_N 0.662       0.621   
36_N 0.661       0.609   
6_N 0.611     -0.316  0.592   

46_N 0.399       0.377   
11_N -0.437       -0.380   
1_N -0.596       -0.555   

31_N -0.641       -0.594   
21_N -0.726       -0.678   
20_E  0.791    -0.766     
0_E  0.769    -0.742     

30_E  0.758    -0.728     
40_E  0.684    -0.662     
10_E  0.653    -0.642     
25_E  -0.541    0.538     
35_E  -0.651    0.609     
45_E  -0.720    0.689     
5_E  -0.802    0.761     

15_E  -0.808    0.766     
38_C   0.843       0.812 
28_C   0.795       0.779 
33_C   0.787       0.757 
43_C   0.784       0.736 
3_C   0.690       0.677 

48_C   0.657       0.636 
13_C   0.610       0.580 
23_C   0.597       0.551 
18_C   -0.395       -0.373 
8_C   -0.628       -0.609 
2_A    0.726   -0.700    

22_A    0.702   -0.686    
42_A    0.661   -0.617    
32_A    0.617   -0.569    
47_A    0.575   -0.542    
12_A    0.468   -0.437    
37_A    -0.414   0.396    
7_A    -0.588   0.549    

17_A    -0.593   0.577    
27_A    -0.719   0.697    
4_O     0.704    0.654  

49_O     0.683    0.659  
39_O     0.666    0.619  
24_O     0.642    0.619  
34_O     0.555    0.496  
14_O     0.548    0.491  
44_O     0.457    0.424  
19_O     -0.479    -0.465  
29_O     -0.513    -0.481  
9_O     -0.666    -0.616  

           
Reliabilityc 0.896 0.931 0.923 0.879 0.873 .816 .849 .911 .888 .839 
% Varianced 23.1 13.5 10.7 8.9 6.7 - - - - - 

Note. Rotated loading with values < .3 suppressed. a Matrix: Poloychoric correlations , Extraction: MRFA , Retention: PA, 
Rotation: Promin, b Matrix: Pearson correlations, Extraction: Principal Axis Factoring, Retention: Scree plot, Rotation: Direct 
oblimin. c Factor:  Mislevy and Bock (1990), SPSS: Cronbach’s α. d Percentage of common variance explained based on 
MRFA. 
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suggested by Costello and Osbourne (2005). The 
rotated (pattern) matrix, with loading below .3 
suppressed is reported in Table 3. All items load onto 
their theoretical personality dimension. All loadings are 
checked to be above the minimum of .32 as advised by 
Tabachnick and Fidell (2001). No complex or cross-
loading items are present. 

FACTOR also reports reliability estimates based 
on Mislevy and Bock (1990) and the McDonald’s 
Omega statistic (Table 3). The Mislevy and Bock 
reliability estimate reflects the proportion of variance in 
a group of items’ factor score accounted for by the 
underlying common latent variable that drives the item 
scores. In other words, imagine for each person in the 
population, there was a factor score (summed or 
average scores across items that compose a factor) and 
an individual’s true score on a latent variable. A 
correlation is calculated between the factor scores and 
the true latent variable. If this correlation is squared 
you obtain the reliability estimate proposed by Mislevy 
and Bock, which reflects the proportion of variability in 
the factors scores explained by the latent variable. The 
Miselvy and Bock estimate is different to the 
McDonald estimate as it is based on the standardised 
factor scores, whereas the McDonald estimate is based 
on the unstandardised factor loadings (Zinbarg, 2006).  
FACTOR does not report conventional Cronbach’s 
alpha statistics as estimates of internal consistency for 
each factor. These estimates would need to be obtained 
through another statistical package such as SPSS. 

SPSS 

The EFA for the Big 5 data was performed in 
SPSS using principal axis factoring. This allowed a 
comparison using the standard methods available in 
SPSS. Had the conventional Kaiser Criteria been 
followed, the practitioner would have extracted 9 
factors (Table 4). The scree plot suggested the correct 
five factors (Figure 7), however, such an unambiguous 
plot shouldn’t be expected in practice. Ambiguities are 
common. Scree plots may provide an initial idea of the 
number of dimensions, but PA analysis should be 
preferred. PA has been shown to be more accurate and 
avoids issues with subjectivity. The five factor solution 
is presented alongside the five factor model discovered 
using FACTOR in Table 3 (Appendix B contains the 
complete results including the rotated loading matrix, 
structure matrix and communalities). The major 
difference between the two solutions concerns the 
factor loadings. The EFA in SPSS was based on  

 

Table 4. Eigenvalues from EFA Extracted using Principle 
Axis Factoring for the Big 5 Data 

Factor 
Initial Eigenvalues 

Rotation 
Loadings 

Total 
% of 

Variance 
Cumu-
lative % 

Total 

1 8.748 17.497 17.497 6.382 
2 5.222 10.444 27.941 4.181 
3 4.226 8.452 36.393 4.520 
4 3.553 7.106 43.499 2.573 
5 2.752 5.503 49.002 5.781 
6 1.320 2.641 51.643 3.293 
7 1.305 2.611 54.254 1.116 
8 1.126 2.252 56.506 .920 
9 1.004 2.007 58.513 2.227 

10 .946 1.893 60.406  
11 .921 1.841 62.247  
12 .915 1.830 64.076  

 

 

Figure 7. Scree plot of factor eigenvalues for EFA using 
principal axis factor for factor extraction. The eigenvalues 
drop-off substantially after the fifth factor, therefore, five 
factors are advised. This was an example of an 
unambiguous scree plot, however, in practice, ambiguities 
can arise. Scree plots may be suitable for getting an idea 
of the number of dimensions, but PA should be preferred 

Pearson correlations and as a result the resulting factor 
loadings are systematically lower than the factor 
loadings based on the polychoric correlations matrix 
analysed in FACTOR. A cross-loading also appears for 
item 6_N. In conclusion, it was interesting to note that 
both FACTOR and SPSS EFAs arrived at the correct 
theoretical model. Therefore, a practitioner might 
consider what was gained by performing the 
recommended EFA practices through FACTOR. The 
EFA performed in FACTOR provided objective 
evidence to retain five factors, demonstrated 
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systematically higher factor loadings, contained no 
complex factors and provided an overall indicator of 
model fit. 

Conclusions 

A major barrier to the implementation of 
recommended EFA practices relates to a lack of 
features in major software, particularly SPSS, and, 
perhaps, a lack of clear how-to demonstrations. While 
SPSS’s EFA features can be greatly enhanced with the 
R-menu plugin, alternatives are available. This paper 
demonstrated recommended methods for improving 
your EFA for ordinal data using FACTOR, a free, 
powerful and standalone EFA package for the PC. 
FACTOR provides the practitioner with a powerful 
arsenal of EFA options including the use of polychoric 
correlations, parallel analysis and minimum rank factor 
analysis. This demonstration concentrated on the 
salient features of FACTOR that are most likely to 
assist the EFA practitioner. FACTOR includes other 
advanced options including semi-specified target 
matrices of the factor loadings, second order factors 
and advanced output for evaluating EFA models. 
Despite these features there are some minor limitations 
of the current version. FACTOR will run only on PC, 
does not accept many standard data formats, the PA 
procedures take a long time to simulate and the very 
promising comparison dataset (CD) method (Ruscio & 
Roche, 2012) for factor retention is yet to be 
implemented. Yet, FACTOR’s benefits far outweigh 
its’ caveats. FACTOR is free, packaged with many 
powerful and cutting edge EFA procedures and is 
relatively easy to use. It is hoped that this 
demonstration helps other researchers to improve their 
EFA for ordinal data by implementing recommended 
procedures that are commonly inaccessible.  

References 

Babakus, E., Ferguson, J. C. E., & Jöreskog, K. G. (1987). 
The sensitivity of confirmatory maximum likelihood 
factor analysis to violations of measurement scale and 
distributional assumptions. Journal of Marketing Research, 
24(2), 222–228. 

Basto, M., & Pereira, J. M. (2012). An SPSS R-Menu for 
ordinal factor analysis. Journal of Statistical Software, 46(4), 
1–29. 

Beavers, A. S., Lounsbury, J. W., Richards, J. K., Huck, S. 
W., Skolits, G. J., & Esquivel, S. L. (2013). Practical 
considerations for using exploratory factor analysis in 
educational research. Practical Assessment, Research & 
Evaluation, 18(6), 1–13. Retrieved from 
http://pareonline.net/pdf/v18n6.pdf 

Bernstein, I. H., & Teng, G. (1989). Factoring items and 
factoring scales are different: Spurious evidence for 
multidimensionality due to item categorization. 
Psychological Bulletin, 105(3), 467–477. doi:10.1037/0033-
2909.105.3.467 

Costello, A. B., & Osborne, J. W. (2005). Best practices in 
exploratory factor analysis: Four recommendations for 
getting the most from your analysis. Practical Assessment, 
Research & Evaluation, 10(7), 1–9. Retrieved from 
http://pareonline.net/pdf/v10n7.pdf 

Courtney, M. G. R. (2013). Determining the number of 
factors to retain in EFA: Using the SPSS R-Menu v2.0 
to make more judicious estimations. Practical Assessment, 
Research & Evaluation, 18(8), 1–14. Retrieved from 
http://pareonline.net/pdf/v18n8.pdf 

Crawford, C. B., & Koopman, P. (1979). Note: Inter-rater 
reliabiliy of scree test and mean square ratio test of 
number of factors. Perceptual and Motor Skills, 49(1), 
223–226. doi:10.2466/pms.1979.49.1.223 

DiStefano, C., Zhu, M., & Mindrilla, D. (2009). 
Understanding and using factor scores: Considerations 
for the applied researcher. Practical Assessment, Research 
& Evaluation, 14(20), 1–11. Retrieved from 
http://pareonline.net/pdf/v14n20.pdf 

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & 
Strahan, E. J. (1999). Evaluating the use of exploratory 
factor analysis in psychological research. Psychological 
Methods, 4(3), 272–299. doi:10.1037/1082-989X.4.3.272 

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new 
look at Horn’s parallel analysis with ordinal variables. 
Psychological Methods, 18(4), 454–74. 
doi:10.1037/a0030005 

Gaskin, C. J., & Happell, B. (2013). On exploratory factor 
analysis: A review of recent evidence, an assessment of 
current practice, and recommendations for future use. 
International Journal of Nursing Studies. 
doi:10.1016/j.ijnurstu.2013.10.005 

Goldberg, L. R. (1992). The development of the markers for 
the Big-Five factor structure. Psychological Assessment, 4, 
26–42. 

Holgado–Tello, F. P., Chacón–Moscoso, S., Barbero–
García, I., & Vila–Abad, E. (2008). Polychoric versus 
Pearson correlations in exploratory and confirmatory 
factor analysis of ordinal variables. Quality & Quantity, 
44(1), 153–166. doi:10.1007/s11135-008-9190-y 

Horn, J. L. (1965). A rationale and test for the number of 
factors in factor analysis. Psychometrika, 30(2), 179–185. 
doi:10.1007/BF02289447 

Hubbard, R., & Allen, S. J. (1987). An empirical comparison 
of alternative methods for principal component 
extraction. Journal of Business Research, 15(2), 173–190. 
doi:10.1016/0148-2963(84)90047-X 



Practical Assessment, Research & Evaluation, Vol 19, No 5 Page 12 
Baglin, IMPROVING YOUR EXPLORATORY FACTOR ANALYSIS 
 

 

Humphreys, L. G., & Ilgen, D. R. (1969). Note on a 
criterion for the number of common factors. 
Educational and Psychological Measurement, 29(3), 571–578. 
doi:10.1177/001316446902900303 

IBM Corp. (2012). IBM SPSS Statistics 21 for Windows. 
Armonk, NY: IBM Corp. 

Lorenzo-Seva, U. (1999). Promin: A Method for Oblique 
Factor Rotation. Multivariate Behavioral Research, 34(3), 
347–365. doi:10.1207/S15327906MBR3403_3 

Lorenzo-Seva, U. (2013). How to report the percentage of 
explained common variance in exploratory factor analysis. 
Technical report. Tarragona. Retrieved from 
http://psico.fcep.urv.cat/utilitats/factor/ 

Lorenzo-Seva, U., & Ferrando, P. J. (2006). FACTOR: A 
computer program to fit the exploratory factor analysis 
model. Behavior Research Methods, 38(1), 88–91. 

Mardia, K. V. (1970). Measures of multivariate skewness and 
kurtosis with applications. Biometrika, 57(3), 519–530. 
doi:10.1093/biomet/57.3.519 

Matsunaga, M. (2010). How to factor-analyse your data 
right: Do’s dont's, and how-to's. International Journal of 
Psychological Research, 3(1), 97–110. 

Mislevy, R. J., & Bock, R. D. (1990). BILOG 3: Item analysis 
and test scoring with binary logistic regression models. 
Mooresville, IN: Scientific Software. 

Olsson, U. (1979a). Maximum likelihood estimation of the 
polychoric correlation coefficient. Psychometrika, 44(4), 
443–460. 

Olsson, U. (1979b). On the robustness of factor analysis 
against crude classification of the observations. 
Multivariate Behavioral Research, 14(4), 485–500. 
doi:10.1207/s15327906mbr1404_7 

Osborne, J. W., & Fitzpatrick, D. C. (2012). Replication 
analysis in exploratory factor analysis: What it is and 
why it makes your analysis better. Practical Assessment, 
Research & Evaluation, 17(15), 1–8. Retrieved from 
http://pareonline.net/pdf/v17n15.pdf 

R Core Team. (2013). R: A language and environment for 
statistical computing. Vienna, Austria. Retrieved from 
http://www.r-project.org 

Ruscio, J., & Roche, B. (2012). Determining the number of 
factors to retain in an exploratory factor analysis using 
comparison data of known factorial structure. 
Psychological Assessment, 24(2), 282–92. 
doi:10.1037/a0025697 

Schmitt, T. A. (2011). Current methodological 
considerations in exploratory and confirmatory factor 
analysis. Journal of Psychoeducational Assessment, 29(4), 
304–321. doi:10.1177/0734282911406653 

Shapiro, A., & ten Berge, J. M. F. (2002). Statistical inference 
of minimum rank factor analysis. Psychometrika, 67(1), 
79–94. doi:10.1007/BF02294710 

Shrive, F. M., Stuart, H., Quan, H., & Ghali, W. A. (2006). 
Dealing with missing data in a multi-question 
depression scale: A comparison of imputation 
methods. BMC Medical Research Methodology, 57. 
doi:doi:10.1186/1471-2288-6-57 

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate 
statistics (4th ed.). Boston, MA: Allyn & Bacon. 

ten Berge, J. M. F., & Kiers, A. L. (1991). A numerical 
approach to the approximate and the exact minimum 
rank of a covariance matrix. Psychometrika, 56(2), 309–
315. 

Timmerman, M. E., & Lorenzo-Seva, U. (2011). 
Dimensionality assessment of ordered polytomous 
items with parallel analysis. Psychological Methods, 16(2), 
209–20. doi:10.1037/a0023353 

Zinbarg, R. E. (2006). Estimating generalizability to a latent 
variable common to all of a scale’s indicators: A 
comparison of estimators for ωh. Applied Psychological 
Measurement, 30(2), 121–144. 
doi:10.1177/0146621605278814 

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five 
rules for determining the number of components to 
retain. Psychological Bulletin, 99(3), 432–442. 

doi:10.1037/0033-2909.99.3.432. 
 

 

  



Practical Assessment, Research & Evaluation, Vol 19, No 5 Page 13 
Baglin, IMPROVING YOUR EXPLORATORY FACTOR ANALYSIS 
 

 

Appendix A: Complete EFA Results for Big 5 Example Analysed Using FACTOR 
 Rotated (Pattern) Matrixa  Structure Matrixa  
Variable F1 F2 F3 F4 F5  F1 F2 F3 F4 F5 Communality 
0_E -0.033 0.769 0.031 -0.018 0.052  0.215 0.761 -0.200 -0.027 0.225 0.765 
1_N -0.596 0.078 -0.036 0.037 -0.086  -0.574 -0.121 0.001 -0.040 -0.152 0.608 
2_A -0.026 -0.034 0.022 0.726 0.018  0.075 -0.038 -0.158 0.715 -0.034 0.715 
3_C 0.122 -0.095 0.690 -0.119 -0.098  -0.010 -0.288 0.749 -0.278 -0.178 0.805 
4_O -0.039 -0.047 -0.049 -0.047 0.704  0.046 0.120 -0.102 -0.077 0.696 0.838 
5_E -0.048 -0.802 -0.100 0.043 0.050  -0.281 -0.776 0.129 0.052 -0.135 0.860 
6_N 0.611 0.268 0.007 -0.022 0.069  0.702 0.477 -0.137 0.069 0.221 0.791 
7_A 0.067 0.034 0.055 -0.588 0.095  -0.004 0.056 0.182 -0.597 0.137 0.680 
8_C -0.027 0.065 -0.628 -0.096 0.018  0.044 0.249 -0.622 0.065 0.109 0.609 
9_O 0.010 0.092 0.181 0.066 -0.666  -0.066 -0.114 0.214 0.055 -0.668 0.853 
10_E 0.110 0.653 -0.229 0.018 -0.045  0.338 0.747 -0.437 0.103 0.150 0.825 
11_N -0.437 0.265 0.208 -0.115 0.144  -0.370 0.095 0.185 -0.242 0.124 0.645 
12_A 0.007 -0.067 0.063 0.468 0.253  0.088 -0.020 -0.071 0.438 0.207 0.550 
13_C 0.201 -0.129 0.610 0.057 0.025  0.111 -0.242 0.611 -0.075 -0.051 0.678 
14_O -0.013 0.067 0.159 -0.072 0.548  0.061 0.143 0.094 -0.144 0.547 0.809 
15_E 0.074 -0.808 0.008 -0.005 0.095  -0.172 -0.765 0.235 -0.007 -0.084 0.802 
16_N 0.796 -0.112 0.025 0.046 -0.020  0.762 0.130 -0.030 0.161 0.064 0.802 
17_A -0.036 -0.002 0.264 -0.593 0.088  -0.141 -0.078 0.415 -0.673 0.082 0.744 
18_C -0.097 0.208 -0.395 0.055 -0.114  0.001 0.270 -0.450 0.152 -0.035 0.668 
19_O -0.048 0.076 0.108 0.171 -0.479  -0.077 -0.082 0.102 0.161 -0.489 0.561 
20_E 0.115 0.791 0.109 0.079 -0.020  0.366 0.791 -0.160 0.076 0.164 0.860 
21_N -0.726 0.019 0.025 0.121 -0.003  -0.705 -0.220 0.061 0.003 -0.114 0.764 
22_A 0.018 0.077 0.024 0.702 -0.028  0.143 0.075 -0.183 0.701 -0.046 0.673 
23_C -0.067 0.093 0.597 0.005 -0.143  -0.117 -0.142 0.591 -0.154 -0.202 0.751 
24_O -0.076 0.161 -0.042 0.181 0.642  0.101 0.301 -0.207 0.149 0.664 0.748 
25_E -0.183 -0.541 0.011 0.011 -0.191  -0.384 -0.648 0.212 -0.014 -0.346 0.777 
26_N 0.662 -0.083 0.145 -0.014 -0.127  0.601 0.055 0.122 0.055 -0.067 0.663 
27_A 0.078 0.029 0.072 -0.719 0.058  -0.022 0.039 0.238 -0.729 0.105 0.739 
28_C 0.057 0.032 0.795 0.011 -0.090  -0.024 -0.211 0.787 -0.185 -0.169 0.794 
29_O -0.148 -0.013 -0.018 -0.011 -0.513  -0.227 -0.175 0.064 -0.003 -0.535 0.674 
30_E 0.043 0.758 0.005 -0.044 0.034  0.283 0.778 -0.221 -0.034 0.219 0.848 
31_N -0.641 -0.237 0.006 0.063 0.024  -0.705 -0.438 0.123 -0.040 -0.129 0.895 
32_A -0.008 -0.025 0.165 0.617 0.017  0.065 -0.067 0.008 0.571 -0.042 0.649 
33_C -0.115 0.150 0.787 -0.006 -0.004  -0.147 -0.125 0.756 -0.230 -0.079 0.814 
34_O -0.047 -0.019 -0.069 0.155 0.555  0.058 0.118 -0.165 0.137 0.544 0.765 
35_E 0.062 -0.651 -0.040 0.038 0.022  -0.133 -0.614 0.138 0.051 -0.118 0.653 
36_N 0.661 -0.031 -0.050 0.045 -0.056  0.655 0.183 -0.112 0.162 0.036 0.747 
37_A -0.117 -0.026 0.057 -0.414 -0.047  -0.201 -0.095 0.191 -0.445 -0.055 0.503 
38_C -0.083 0.112 0.843 0.040 0.011  -0.124 -0.166 0.805 -0.194 -0.077 0.867 
39_O -0.075 -0.070 -0.055 -0.128 0.666  -0.015 0.077 -0.071 -0.160 0.652 0.810 
40_E -0.050 0.684 -0.029 0.005 0.058  0.180 0.691 -0.239 0.008 0.214 0.664 
41_N 0.695 0.025 0.091 0.060 0.071  0.713 0.236 -0.010 0.139 0.164 0.799 
42_A 0.082 0.005 0.050 0.661 -0.094  0.166 0.000 -0.123 0.665 -0.121 0.745 
43_C -0.178 0.123 0.784 0.005 0.027  -0.213 -0.164 0.760 -0.229 -0.063 0.894 
44_O 0.117 -0.201 0.199 0.044 0.457  0.106 -0.116 0.182 -0.016 0.401 0.574 
45_E 0.075 -0.720 0.014 -0.018 0.011  -0.158 -0.698 0.227 -0.017 -0.147 0.684 
46_N 0.399 0.264 -0.189 0.031 0.065  0.517 0.464 -0.325 0.141 0.206 0.766 
47_A -0.004 0.009 0.122 0.575 0.158  0.098 0.013 -0.050 0.534 0.116 0.574 
48_C 0.026 -0.185 0.657 -0.059 0.113  -0.092 -0.349 0.713 -0.236 -0.002 0.797 
49_O -0.045 0.162 0.069 0.082 0.683  0.112 0.288 -0.078 0.023 0.702 0.771 

Note. a Matrix: Poloychoric correlations, Extraction: MRFA, Retention: PA, Rotation: Promin 
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Appendix B Complete EFA Results for Big 5 Example Analysed using SPSS 
 Rotated (Pattern) Matrixa   Structure Matrixa  
Variable F1 F2 F3 F4 F5  F1 F2 F3 F4 F5 Communality 
0_E -0.742 0.016 0.000 0.064 0.004  -0.752 0.035 0.148 0.187 -0.184 0.570 
1_N -0.013 -0.025 -0.555 -0.096 -0.030  0.104 0.050 -0.556 -0.146 -0.004 0.320 
2_A 0.030 -0.700 -0.027 -0.011 -0.011  0.048 -0.699 0.074 -0.044 -0.148 0.491 
3_C 0.102 0.132 0.112 -0.105 0.677  0.267 0.251 0.027 -0.145 0.731 0.573 
4_O 0.006 0.039 -0.035 0.654 -0.060  -0.112 0.056 0.024 0.655 -0.086 0.434 
5_E 0.761 -0.044 -0.082 0.033 -0.068  0.755 -0.060 -0.217 -0.098 0.118 0.584 
6_N -0.316 0.012 0.592 0.087 -0.013  -0.449 -0.071 0.661 0.198 -0.126 0.551 
7_A -0.039 0.549 0.062 0.114 0.079  -0.061 0.561 -0.007 0.142 0.175 0.340 
8_C -0.074 0.078 -0.022 0.036 -0.609  -0.232 -0.044 0.015 0.084 -0.612 0.389 
9_O -0.040 -0.051 0.011 -0.616 0.177  0.106 -0.037 -0.041 -0.620 0.191 0.413 
10_E -0.642 -0.025 0.132 -0.026 -0.246  -0.725 -0.085 0.271 0.107 -0.419 0.604 
11_N -0.197 0.123 -0.380 0.128 0.187  -0.100 0.229 -0.358 0.118 0.175 0.232 
12_A 0.050 -0.437 0.007 0.221 0.030  0.028 -0.424 0.083 0.196 -0.062 0.229 
13_C 0.120 -0.038 0.185 0.009 0.580  0.230 0.053 0.139 -0.028 0.593 0.395 
14_O -0.084 0.071 -0.004 0.491 0.127  -0.134 0.118 0.043 0.500 0.092 0.276 
15_E 0.766 0.004 0.037 0.082 0.033  0.753 -0.007 -0.106 -0.044 0.221 0.577 
16_N 0.036 -0.053 0.755 -0.006 0.014  -0.105 -0.166 0.755 0.058 -0.026 0.575 
17_A 0.012 0.577 -0.033 0.101 0.281  0.061 0.644 -0.128 0.101 0.401 0.500 
18_C -0.187 -0.060 -0.075 -0.094 -0.373  -0.251 -0.127 -0.019 -0.051 -0.424 0.219 
19_O -0.038 -0.153 -0.040 -0.465 0.103  0.076 -0.142 -0.059 -0.474 0.090 0.251 
20_E -0.766 -0.076 0.143 -0.009 0.072  -0.773 -0.067 0.299 0.125 -0.144 0.628 
21_N 0.053 -0.100 -0.678 -0.025 0.027  0.198 0.006 -0.677 -0.104 0.055 0.473 
22_A -0.081 -0.686 0.017 -0.051 -0.007  -0.064 -0.690 0.133 -0.061 -0.170 0.486 
23_C -0.048 0.021 -0.054 -0.148 0.551  0.127 0.140 -0.090 -0.176 0.555 0.334 
24_O -0.180 -0.178 -0.063 0.619 -0.071  -0.284 -0.156 0.062 0.640 -0.186 0.484 
25_E 0.538 -0.007 -0.197 -0.197 0.040  0.620 0.013 -0.322 -0.308 0.196 0.465 
26_N 0.027 0.009 0.621 -0.113 0.136  -0.041 -0.062 0.597 -0.065 0.120 0.393 
27_A -0.030 0.697 0.077 0.085 0.099  -0.048 0.710 -0.020 0.118 0.229 0.527 
28_C -0.014 0.008 0.056 -0.105 0.779  0.189 0.159 0.008 -0.142 0.780 0.621 
29_O 0.055 0.015 -0.138 -0.481 0.001  0.162 0.018 -0.197 -0.503 0.053 0.278 
30_E -0.728 0.040 0.073 0.050 -0.023  -0.757 0.041 0.215 0.181 -0.205 0.582 
31_N 0.285 -0.044 -0.594 -0.002 0.020  0.407 0.044 -0.644 -0.109 0.113 0.499 
32_A 0.027 -0.569 -0.004 -0.013 0.122  0.072 -0.544 0.069 -0.046 0.010 0.313 
33_C -0.112 0.027 -0.102 -0.021 0.757  0.102 0.203 -0.125 -0.054 0.740 0.568 
34_O -0.013 -0.141 -0.037 0.496 -0.087  -0.108 -0.135 0.039 0.495 -0.147 0.277 
35_E 0.609 -0.037 0.029 0.011 -0.017  0.598 -0.057 -0.082 -0.088 0.127 0.361 
36_N -0.035 -0.055 0.609 -0.037 -0.056  -0.160 -0.160 0.623 0.028 -0.105 0.399 
37_A 0.041 0.396 -0.112 -0.034 0.079  0.081 0.427 -0.188 -0.042 0.181 0.209 
38_C -0.080 -0.018 -0.076 -0.008 0.812  0.142 0.165 -0.099 -0.050 0.792 0.637 
39_O 0.034 0.113 -0.069 0.619 -0.058  -0.073 0.134 -0.031 0.615 -0.058 0.399 
40_E -0.662 -0.008 -0.022 0.068 -0.051  -0.682 0.001 0.117 0.178 -0.224 0.472 
41_N -0.092 -0.065 0.649 0.080 0.071  -0.213 -0.144 0.681 0.151 -0.004 0.483 
42_A -0.009 -0.617 0.079 -0.115 0.013  0.010 -0.630 0.163 -0.129 -0.116 0.415 
43_C -0.073 0.024 -0.157 0.005 0.736  0.142 0.204 -0.183 -0.039 0.730 0.560 
44_O 0.159 -0.038 0.101 0.424 0.179  0.115 -0.004 0.108 0.396 0.181 0.230 
45_E 0.689 0.018 0.042 0.002 0.037  0.689 0.005 -0.096 -0.110 0.213 0.478 
46_N -0.297 -0.043 0.377 0.081 -0.196  -0.432 -0.133 0.459 0.176 -0.305 0.381 
47_A -0.015 -0.542 -0.001 0.130 0.084  -0.004 -0.519 0.092 0.107 -0.041 0.292 
48_C 0.186 0.073 0.015 0.093 0.636  0.327 0.204 -0.056 0.030 0.692 0.517 
49_O -0.182 -0.081 -0.035 0.659 0.039  -0.273 -0.040 0.074 0.681 -0.061 0.497 

Note. a Matrix: Pearson correlations, Extraction: Principal Axis Factoring, Retention: Scree plot, Rotation: Oblique 
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