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Clustered data (e.g., students within schools) are often analyzed in educational research where data
are naturally nested. As a consequence, multilevel modeling (MLLM) has commonly been used to
study the contextual or group-level (e.g., school) effects on individual outcomes. The current study
investigates the use of an alternative procedure to MLM: regression using Taylor series linearization
(TSL) variance estimation. Despite the name, regressions using TSL are straightforward to conduct,
can yield consistent and unbiased estimates and standard errors (given the appropriate conditions),
and can be performed using a variety of commercially- and freely-available statistical software. 1
analyze a subsample of the High School and Beyond (HSB) dataset using MLM, regression using
TSL, and ordinary least squares regression and compare results. In addition, 12,000 random samples
are drawn from the HSB dataset of varying level-one and level-two sample sizes in order to compute
biases in standard errors based on the different conditions. Sample R and SAS syntax showing how

to run regtressions using TSL are provided.

Multilevel modeling (MLLM) has become a staple
regression technique of choice for analyzing contextual
effects using nested data within social science research.
The use of multilevel models (also known as random
coefficient models or more popularly known as
hierarchical linear models) has grown in use over the
years especially with educational research that often
investigate the effects of schools or teachers on student
outcomes. Though student-level (i.e., level-one units)
outcomes are often evaluated, the treatment introduced
in studies (e.g., a new curriculum to help raise math
scores, a school-wide intervention to reduce bullying) is
usually provided at the group level (i.e., level-two units)
which requires researchers to properly account for the
clustered nature of the data. MLM is a versatile and
flexible analytic technique though not all nested data
need to be analyzed using MLM (Huang, 2014).

Another older, readily-implemented but less well-
known approach, at least in educational/psychological
research circles, may effectively account for the
clustered nature of the data when analyzing contextual
effects: regression using Taylor series linearization
(TSL; Rust, 1985). Despite the name, regressions using
TSL are straightforward to perform, are available in
both commercial (e.g., Mplus, SPSS) and free statistical
software (e.g., R, SAS University), and may result in
unbiased estimates and standard errors when the
appropriate conditions are met.

This article compares results from models using a
well-known dataset that investigates group-level effects
as well as cross-level interactions using three regression
techniques: standard ordinary least squares (OLS)
regression, MLLM, and regression using TSL. I compare
regression results using a subset of the High School



Practical Assessment, Research & Evaluation, Vol 19, No 13
Huang, Taylor Series Linearization

and Beyond (HSB) dataset. In addition, 12,000 random
samples drawn from the HSB dataset with differing
level one and level two samples sizes are analyzed to
investigate the results of the three techniques when
sample size conditions are varied.

The objective of this article is to briefly introduce
applied researchers to TSL as well as provide some
guidance as to when regression using TSL may be
appropriate in the analysis of clustered data. Alternative
procedures for analyzing clustered data have received
some attention (e.g., Arceneaux & Nickerson, 2009,
Bliese, 2000; Harden, 2011), though studies have not
specifically investigated TSL regression when analyzing
group-level  effects  together  with  cross-level
interactions (e.g., group-level variables interacting with
individual-level variables). Cross-level interactions are
particularly useful when investigating the effects of
treatments administered at the group level which may
vary in effect depending on student-level characteristics
(e.g., “does the effect of the new curriculum [the
‘treatment’ introduced at the school or classroom level]
on academic achievement differ based on a child’s
socioeconomic status?”). The current study provides
additional empirical evidence when TSL may be
appropriate and provides example syntax which applied
researchers may easily modity for their own use.

Issues with Using OLS Regression in
Analyzing Contextual Effects

Using OLS regression with nested data is
problematic because observations within one group or
cluster are more alike with each other compared to
individuals in other groups or clusters, violating a well-
known assumption of observation independence
(Cohen, Cohen, West, & Aiken, 2003). For example,
students within one school have more in common with
each other compared to students in other schools
potentially as a result of sharing the same teachers or
school setting. Violating the assumption of observation
independence has been known to lead to biased
standard error estimates (i.e., estimates are too small or
too large) which in turn can result in questionable
inferences. When standard errors are underestimated,
the probability of erroneously claiming statistical
significance (i.e., a Type I error) increases (Clarke, 2008;
Hox, 2002; Kreft & De Leeuw, 1998; Snijders &
Bosker, 2012). The misestimation of standard errors is
not a metre technical issue; if standard errors are
consistently smaller than they should be (ie., the
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standard errors are biased downwards), traditional test
statistics are artificially inflated which could result in
the acceptance or rejection of important policy
decisions based on study results.

In addition, when multilevel data are analyzed as a
single-level dataset, the degrees of freedom of the level-
two variables are artificially inflated as group-level
variables are treated as repeating level-one variables in a
model. For example, when analyzing data from 30
schools with 30 students per cluster (l.e., a total of n =
900 students), school-level effects are evaluated using n
— k (where k is the number of predictors) degrees of
freedom even though in actuality there are only 30
schools so the degrees of freedom for level-one and
level-two variables should be different. Again, greater
degrees of freedom in this case may also contribute to
increased Type I error rates.

Primarily,  the  violation  of  observation
independence affects standard error estimates and not
the regression coefficient (i.e.,, the b’s) estimates
(Huang, 2014). Several studies using simulations
(Harden, 2011; McNeish, 2014; Mundfrom & Schultz,
2001) and applied examples (Astin & Denson, 2009;
Claessens, 2012; Newman, Newman, & Salzman, 2010)
have repeatedly shown that estimates do not diverge
much when either OLS or MLM is used. As a result,
regression coefficient estimates using either method are
generally unbiased and interest in the differences
between methods wusually focus on the proper
estimation of the standard errors.

Adjusting Standard Errors

Several standard error adjustment techniques have
been developed and are known by various names that
can correct standard errors depending on the type of
regression assumption violated (e.g., heteroskedasticity,
observation  independence) (Petersen,  2008).
Educational =~ researchers  should  note  that
econometricians generally use a variety of adjusted
standard error estimates that have names such as
cluster adjusted, robust cluster adjusted, and bootstrap
cluster adjusted standard errors (see Harden, 2011)
among others which all differ from the standard errors
resulting from standard OLS regression. In educational
research, a commonly used manual method of adjusting

standard errors when clustering is present 1s the design
effect (DEFF) approach (Kish, 1965).

Several studies have shown how to manually adjust
standard errors derived using OLS analyses of clustered
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data (see Hahs-Vaughn, 2005; McCoach & Adelson,
2010). Even though DEFF adjustment may effectively
adjust standard errors at the group level and reduce the
likelihood of Type I errors for level-two coetficients, at
the lowest level (i.e., level one), standard errors may be
too conservative resulting in a high likelihood of Type
IT errors (Huang, 2014). As a result, researchers may
have to deal with a trade-off where, depending on a
combination of sample sizes at levels one and two,
level-two estimates are unbiased while level-one
estimates are too conservative. However, instead of
having to manually adjust standard errors, an
alternative procedure is readily available in several
statistical programs, the use of the Taylor series
linearization (TSL) variance estimation.

Using Taylor Series Linearization

Taylor series linearization (TSL), also known as the
Taylor approximation method, linearization, the delta
method, or the propagation of variances, has been
available for decades (Kish, 1965; Kish & Frankel,
1974; Laplante & Hébert, 2001; Rust, 1985) and is
often used to analyze data collected through means
other than simple random sampling (SRS). Complex
sampling designs are typically used in nationally-
representative surveys when data collected are not the
product of a SRS. For practical purposes, nationally-
representative surveys do not usually employ SRS and
may select, for example, an initial set of clusters or
groups (L.e., the primary sampling units) and from
there, select observations within clusters using some
other sampling procedure (e.g., stratified sampling,
random sampling). Multiple levels of clusters may also
be present such as when individuals from families are
selected from neighborhoods within cities (Lumley,
2004). The National Center for Educational Statistics
(NCES) routinely uses TSL when reporting results
collected from its various national surveys (see Wang et

al,, 2011).

In the context of regression, coefficients estimates
from models that use TSL are the same as those found
when OLS regression is used except that standard
errors will differ. TSL specifically makes use of the
complex sampling design (e.g., the clusters, strata used)
when making corrections to standard error estimates
(Bell & McCaffrey, 2002; Lee & Forthofer, 2000). In
the field of economics, sandwich variance estimators
are often used to provide cluster robust standard errors
which are similar to the standard error estimates
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derived wusing TSL (Lumley, 2004). For applied
researchers, the “mathematical explanation to this
estimator [TSL] is a bit demanding” (Laplante &
Hébert, 2001, p. 298) though fortunately is handled by
the statistical software. TSL has been referred to as the
gold standard for variance estimation in complex
sample data (e.g., it is the default variance estimation
procedure used in the SAS Survey procedures), it is
relatively easy to implement, and has been used often in
the regression-based analyses of large-sample data
(Mukhopadhyay, An, Tobias, & Watts, 2008).
Traditionally, the analysis of complex survey samples
required specialized software (Lumley, 2004) such as
SUDAAN  (Research Triangle Institute, 2010).
Nowadays however, various software packages can
perform TSL even using freely-available programs (see
Siller & Tompkins, 2006 for an overview and syntax for
different commercial software packages).

Performing a Regression Using TSL

For R wusers, researchers can install the Survey
package (Lumley, 2014) which was developed for the
analysis of complex survey samples that do not use
SRS. For the analysis of simple clustered data (i.e., no
stratification, no weights), researchers only need to
specify the clustering variable using the svydesign
function as well as the name of the dataset to be
analyzed. After specifying the survey design, a
regression can be performed using the svyglm function
(e.g., math achievement is regressed on the mean
socioeconomic status [SES] at the school level as well
as the individual students SES). See Table 1 for
example R code to analyze a downloadable version of
the HSB data (available online at the indicated URL as
a Stata .dta file, the read.dta function from the foreign
package is used to import the dataset) which uses a
school id (i.e., school) as the clustering variable.
Beginning R users following the provided code should
note that R is case sensitive.

Using R:

install.packages ("survey")

library (survey)

install.packages ("foreign")

library (foreign)

hsb<-
read.dta(file="http://www.ats.ucla.e
du/stat/paperexamples/singer/hsbl2.d
tall)

design<-svydesign (id=~school, data=hsb)

tsl<-svyglm(mathach~meanses+ses,design)

summary (tsl)
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By default, SAS wuses TSL when the PROC
SURVEY procedures are used and only requires the
user to indicate what the clustering variable is with the
cluster statement. Using SAS (after downloading the
hsb12.dta into the c:\datam)\ directory), SAS users can
enter:

proc import

datafile="c:\datam\hsbl2.dta"
out=hsb; run;

proc surveyreg data=hsb;
cluster school;
model mathach=meanses ses;
run;

To build cross-level interactions (ie., level-two
variable x level-one variable), modify the statement in R
to read:

tsl<-svyglm(mathach~meanses+ses+
meanses:ses,design)

(the added meanses:ses term indicates a cross-level
interaction between the average SES at the school level
x the student’s SES). In SAS, modify the model
statement to read: model mathach=meanses ses
meanses*ses. Both programs allow for the
automatic creation of interaction terms.

Method

The purpose of the current study is to illustrate the
differences and similarities using OLS regression,
MLM, and regression using Taylor series linearization
(TSL) variance estimation. I analyze a subsample of the
1982 High School and Beyond (HSB) dataset used by
both Raudenbush and Bryk (2002) and Singer (1998).

The data are comprised of information from 7,185
students from 160 schools. The level-one outcome is
the student’s math achievement (MATHACH; M =
12.75, SD = 6.88) score and included as a covariate is a
student’s SES (M = 0.00, SD = 0.78). At level two (i.e.,
the school level), the aggregated SES (M = -0.00, SD =
0.41) is included as well as a SECTOR variable dummy
coded as a 1 (n = 70; Catholic school) and a 0 (n = 90;
non-Catholic school). The intraclass correlation, which
indicates the amount of variability attributable to the
group level, was .18 (see Raudenbush & Bryk, 2002, pp.
68-69, for a more detailed description of the sample).

Following the final full model specifications of
Singer (1998, p. 339), the following equations are
modeled using MLLM:
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ﬂOj =%Yoo t+ }/OlMEANSESI + )/stECTOR + Upj
Bij = V1o + Y11 MEANSES; +y;,SECTOR

where Yij represents the math achievement score of
student 1 in school j. The variable indicates that the
students’ SES is group-mean centered where the
school’s average SES is subtracted from the student’s
SES. The combined level-one and level-two equations
result in:

Yi; = Yoo + Yo1MEANSES; + y,SECTOR;
+v10(SESy —SES;)
+y11MEANSES;(SES;; — SES;)
+¥12SECTOR;(SES;; — SES;) + ugj + 13

Both yg; and yg; represent the association of the
level-two effects with math achievement while
controlling for all other variables in the model. The vy,,
term models the effect of the level-one predictor. Both
vy and vy, model the effects of the cross-level
interactions. The OLS and TSL regressions, for
purposes of comparability, have a similar equation
except that the random component, u0j, is not
included.

Analyses were done using both R and SAS. The
nlme package (Pinheiro, Bates, DebRoy, Sarkar, & R
Core Team, 2014) for R was used to run MLM using
restricted maximum likelihood. The survey package
(Lumley, 2014) was used to run the regressions using
TSL variance estimation by specifying the school as the
cluster variable. The first set of analyses compare the
regression coefficients and standard error estimates
with each other.

However, as applied researchers collecting their
own data may not always have access to a large sample,
I investigate differences in regression techniques using
a smaller sample. Using R, I conducted a bootstrap
simulation to draw repeated samples from the HSB
dataset while manipulating sample sizes at both level
one (n = 5, 10, 15, 20) and level two (j = 10, 30, 50) to
provide a total of 12 conditions. Similar to other
simulation studies, 1,000 samples were drawn for each
condition (Clarke, 2008; Hox & Maas, 2005) resulting
in the 12,000 datasets (i.e., 4 level-one conditions x 3
level-two conditions x 1,000 replications). Level-two
sample sizes were selected based on research that
investigated sample size requirements at the group level
(Hox & Maas, 2005; Kreft & De Leeuw, 1998; Snijders
& Bosker, 2012).
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As population parameters estimated using OLS
regression, regression using TSL, and MLM are all
relatively unbiased as shown by numerous studies
(Astin & Denson, 2009; Harden, 2011; Huang, 2014,
McNeish, 2014; Mundfrom & Schultz, 2001; Newman
et al., 2010), the current study focused on the standard
error estimates which is of primary concern when
studying contextual effects. To evaluate standard error
performance, I computed the relative bias of the
standard error estimates compared to the empirical
standard errors which is the standard deviation of the
parameter estimates across the 1,000 replication for a
given condition. Bias is computed as the difference of
the estimated standard error less the empirical standard
error divided by the empirical standard error multiplied

by 100 (i.e., bias 290%9 X 100 ). Based on prior Monte
Catlo simulation studies, bias in standard etrors less

than £10% were not considered problematic (Muthén
& Muthén, 2002).

Results

Parameter estimates, modeled with R, using OLS
regression, regression using TSL variance estimation,
and MLM all yielded comparable estimates for level-
one, level-two, and cross-level interactions terms (see
Table 1). Standard errors for level-one estimates as well
as the two cross-level interactions were similar for all
models. However, standard errors for OLS regtression
coefficients were much smaller than either estimates
using MLLM or TSL but only for the level-two standard
errors. Results were similar when done using PROC
MIXED (for the MLM model) and PROC
SURVEYREG (for regression using TSL) using SAS.

Bootstrapped Standard Errors. Even though model
results using the entire sample showed that regressions
using TSL variance estimation and MLM yielded
comparable estimates and standard errors, I
investigated if the results were similar when level-one
and level-two sample size conditions are varied. Tables
2 to 4 show the bias in the standard error estimates
across the different conditions. All MLM models
converged (i.e., allowed admissible solutions) with the
exception of five models (out of 1,000) for the smallest
level-2 sample size condition (j = 10).
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Table 1. Comparison of Parameter Estimates and Standard
Errors Using Multilevel Modeling (MLM), Ordinary Least
Squares Regression (OLS), and Regression Using Taylor
Series Linearization (I'SL) Variance Estimation

MLM TSL OLS
Variable Est SE Est SE Est SE
Intercept 12.11 0.20 1210 0.7 1210 0.11
Mean SES (yor) 534 037 517 034 517  0.19
Sector (yo2) 1.21 031 1.27 030 127 0.16
SES (10) 294 015 294 015 294 015

Mean SESxSES  1.04 029 1.04 033 1.04 030

(y11)

Sector x SES -1.64 023 -1.64 024 -1.64 024
(12)

Notes. SES = socioeconomic status. SES at the student level is group-
mean centered. All estimates are statistically significant (all ps < .001).

Table 2. Bias in Level Two Standard Errors Using
Otrdinary Least Squares (OLS) Regression, Regression
Using Taylor Series Linearization (IT'SL) Variance
Estimation, and Multilevel Modeling (MLM) by Level
One and Level Two Sample Size Conditions

Sample

size You Yoo
Lvl Lvl

2 1 OLS TS MLM OLS TSL

10 5 -128 -284 14  -195 -29.0 -6.3
10 = -175  -23.8 49  -204 -20.1 1.3
15 265 -2538 1.1 -286 -224 -2.2
20 355  -311 -8.0 | =362  -27.9 -9.3
30 5 -4.5 -7.0 7.6 -7.6 -2.6 4.1
10 | -14.8 -7.3 6.0 | -16.9 -1.0 3.4
15 | -17.7 -1.7 12.6 | -245 -0.4 3.2

20 | -25.1 -2.5 10.5 | -27.5 3.2 6.1
50 5 -0.6 1.0 11.7 -7.6 0.6 3.9
10 -8.7 3.4 145 | -14.8 4.9 6.9
15 | -12.1 7.8 19.8 | -18.2 10.2 114

20 | -18.1 8.2 20.7 | -244 9.7 10.5

Notes. Shaded numbers are underestimated by over 10%. Underlined

numbers are overestimated by over 10%.

Level-two Standard Errors. Table 2 shows the
standard error bias for the level-two (i.e., school level)
coefficients (i.e., Yy, Yoo)- As could be expected based
on prior research, OLS standard errors for the group-
level variables were mostly underestimated (i.e., too
small) and biased downwards. However, regression
using TSL were also biased downward for the smallest
level-two sample size condition (7 = 10). In general, the
standard errors for the level-two variables for the
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regressions using TSL and MLM were comparable
when group level sample size was at least 30. MLM
standard errors for level-two variables though were
slightly more conservative.

Table 3. Bias in Level One Standard Errors Using
Otrdinary Least Squares (OLS) Regression, Regression
Using Taylor Series Linearization (ISL) Variance
Estimation, and Multilevel Modeling (MLM) by Level
One and Level Two Sample Size Conditions

Sample size Y11

Level 2 Level 1 OLS TSL MLM
10 5 -6.0 -28.9 -84
10 -0.3 -24.8 -1.5

15 0.7 -22.6 -1.5

20 -0.3 -22.1 -1.6

30 5 0.0 -7.9 -1.1
10 5.6 -2.7 3.6

15 3.9 -4.7 1.7

20 8.9 0.3 7.2

50 5 -0.4 -4.0 -1.3
10 25 -2.0 1.2

15 6.9 1.2 44

20 139 8.3 11.3

Notes. Shaded numbers are underestimated by over 10%. Underlined
numbers are overestimated by over 10%.

Level-one Standard Errors. Standard errors for the
level-one coefficient was generally unbiased for all
conditions and type of regressions used, with the
exception of regression using TSL when the number of
groups was small (f = 10). Standard errors for
regressions for y,; using TSL variance estimation were
consistently underestimated by 22-29%.

Cross-level Interaction Standard Etrors. Similar to
the level-one standard errors, the standard errors for
the regressions using TSL were also consistently
underestimated for the smallest group-level sample size
condition ( = 10). However, even when ;j = 30, when
level-one sample sizes were small (i.e., » = 5), TSL still
underestimated the standard errors. On the other hand,
the standard errors when OLS regression was used
were relatively unbiased and comparable to the MLM
standard errors. In other words, if cross-level
interactions are of primary interest, using standard OLS
regression, regardless of level-one or level-two sample
size, did not result in biased standard errors.
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Table 4. Bias in Cross-level Interaction Standard Errors
Using Ordinary Least Squares (OLS) Regression,
Regression Using Taylor Series Linearization (TSL)
Variance Estimation, and Multilevel Modeling (MLM) by
Level One and Level Two Sample Size Conditions

Sample
size Y11 Y12
Lvl Lvl
2 1 OLS TSI, MLM OLS TS, MLM

10 5 -3.9 | -29.7 -0.2 -54  -31.0 -8.1
10 -1.5 © -28.9 -3.6 0.7 | -26.3 -0.2
15 -1.7 1 -27.6 -3.9 -09 = 271 -1.8
20 -5.7 © -289 -7.6 44 241 23
30 5 -0.6 | -12.0 -1.7 0.7 -9.0 -0.9
10 0.9 -8.4 -1.0 3.4 -0.6 1.6
15 0.8 -8.0 -1.5 0.7 -9.1 -0.2
20 2.1 -4.5 -0.2 8.2 -2.0 7.3
50 5 -0.1 -7.5 -1.0 2.6 -3.7 1.9
10 2.0 -3.1 1.3 1.9 -3.8 1.5
15 3.7 0.2 2.7 8.6 1.5 8.3
20 5.0 3.9 3.1 10.6 4.4 9.5

Notes. Shaded numbers are underestimated by over 10%. Underlined
numbers are overestimated by over 10%.

Discussion

Regression model results, derived through analyses
of a subset of the HSB dataset, indicated that multilevel
modeling (MLM) and regression using Taylor series
linearization (ISL) variance estimation yielded similar
parameter estimates and standard errors, regardless of
level of analysis (i.e., level-one, level-two, cross-level
interaction terms). However, level-two standard errors
were much lower for the OLS regression results
compared to either model using TSL or MLM, in line
with prior research (Harden, 2011; McNeish, 2014). In
general, when analyzing large datasets and the
researcher is interested in level-two variables as well as
cross-level interactions, either MLM or TSL will yield
consistent (i.e., unbiased) estimates and standard errors.
While MLLM is a versatile and flexible technique, TSL
regression may offer a simpler alternative, one which is
straightforward to run (as shown by the provided
syntax). As stated by Bell and McCaffrey (2002, p. 168),
“many analysts [may]| prefer the simplicity of standard
regression models when random effects are not of
direct interest.”

If smaller samples though are to be studied,
researchers are cautioned with wusing TSL variance
estimation when group-level sample sizes are small (j < 30).
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While TSL methods are widely used in the analysis of
large, nested datasets (Mukhopadhyay et al., 2008),
researchers gathering their own data may not have
access to hundreds of schools. Our findings are
consistent with Bell and McCaffrey’s (2002) earlier
study which showed that TSL standard errors may be
severely biased downwards with small group sizes.
Even with larger group sizes (i.e., ] = 30), researchers
should strive to have at least 10 subjects per group to
avoid negatively biased standard errors when examining
cross-level interactions (see Table 4). Even though
regression using TSL is a viable alternative to MLM,
larger group-level sample sizes may be needed.

Of note as well is that while level-two standard
errors are underestimated using OLS regression, the
cross-level interactions were consistent and unbiased.
In some instances, standard errors using OLS
regressions were actually larger (i.e., more conservative)
compared to those derived using MLM (see Table 4).
This was shown using the 12,000 samples drawn as well
as when the main dataset used (see Table 1). While the
use of OLS regression may be frowned upon when
nested datasets are analyzed, the issue of Type I error
has generally been shown to be associated with the
level-two (i.e., group-level) coefficients and analysts
should not conclude that all standard errors using OLS
regression are underestimated (see Harden, 2011;
Huang, 2014).

There are some limitation to consider in assessing
the current study’s results. First, as a simulation, the
tindings may be specific to the conditions of the data
mnvestigated. However, in modeling results, the current
study did consider the effects of level-one, level-two,
and cross-level interactions terms all together using a
readily available dataset. Second, in order to be
consistent with prior studies that have used the HSB
dataset (e.g., Raudenbush & Bryk, 2002; Singer, 1998)
in the teaching of MLLM, I followed the exact same
centering strategies used for the variables though the
type of centering used may change results, which could
be an area for future study. Raudenbush and Bryk
(2002) as well as Enders and Tofighi (2007) though
indicate that group-mean centering variables may be
most appropriate when the level-one variables are of
primary interest.

Conclusion

The analysis of clustered data is commonly
performed in the social and behavioral sciences and I
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present an older, well-accepted, though not often used
technique (in educational research circles) that is
suitable for the analysis of clustered data: regression
using Taylor series linearization (TSL). If large, nested
datasets are investigated, such as those provided by the
NCES, then using TSL or MLM should result in
comparable and acceptable estimates when studying
contextual or level-two effects. Taylor series
linearization is often used in the analysis of nested
datasets and is one of the options, in addition to using
MLM, suggested by the NCES in their training sessions
tor the analysis of nationally-representative datasets.

However, with smaller datasets, TSL. may be a
good alternative to MLM when group size is at least 30
and there are 10 or more observations within each
cluster. The current study has shown, that given the
appropriate conditions described, regression using TSL
variance estimation may result in unbiased estimates
and TSL regression can be readily performed using a
variety of commercial and free statistical software.
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