
 
A peer-reviewed electronic journal. 

Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission 
is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the 
right to authorize third party reproduction of this article in print, electronic and database forms. 

Volume 19, Number 2, May 2014      ISSN 1531-7714  

 
Impact of Violation of the Missing-at-Random Assumption 

on Full-Information Maximum Likelihood Method in 
Multidimensional Adaptive Testing 

 
Kyung T. Han & Fanmin Guo 

Graduate Management Admission Council® 
 

The full-information maximum likelihood (FIML) method makes it possible to estimate and analyze structural 
equation models (SEM) even when data are partially missing, enabling incomplete data to contribute to model 
estimation. The cornerstone of FIML is the missing-at-random (MAR) assumption. In (unidimensional) 
computerized adaptive testing (CAT), unselected items (i.e., responses that are not observed) remain at random 
even though selected items (i.e., responses that are observed) have been associated with a test taker’s latent trait 
that is being measured. In multidimensional adaptive testing (MAT), however, the missingness in the response 
data partially depends on the unobserved data because items are selected based on various types of information 
including the covariance among latent traits. This eventually may lead to violations of MAR. This study aimed 
to evaluate the potential impact such a violation of MAR in MAT could have on FIML estimation performance. 
The results showed an increase in estimation errors in item parameter estimation when the MAT response data 
were used, and differences in the level of the impact depending on how items loaded on multiple latent traits. 

Although the technical and practical frameworks of 
factor analysis (FA) and item response theory (IRT) were 
developed independently from one another, the 
literature reveals an obvious connection between FA and 
IRT such that one approach essentially can yield results 
equivalent to those from the other approach under 
various conditions (Takane & Leeuw, 1987; Reise, 
Widaman, & Pugh, 1993; Kamata & Bauer, 2008). Just 
as the IRT framework and its initial applications, which 
are based mainly on a unidimensional latent structure 
(Lord & Novick, 1968), were extended for a variety of 
multidimensional latent structures, so too have the 
relations between multidimensional IRT (MIRT) and FA 
(particularly, the confirmatory factor analysis (CFA) and 
the structural equation modeling (SEM)) been revisited 
and studied (McDonald, 2000; Reckase, 2009; Osteen, 
2010).  

Efforts to incorporate MIRT into computerized 
adaptive testing (CAT) have made significant progress as 
well (Segall, 1996, 2000; Reckase, 2009). In order to 
analyze response data from multidimensional adaptive 

testing (MAT) using SEM, however, one must first 
address technical obstacles related to the uniqueness of 
the CAT response data—the extreme level of sparseness 
of the data matrix and its missing mechanism, which does 
not strictly meet the missing-at-random (MAR) condition. 
The purpose of this study is to evaluate the performance 
of the full-information maximum likelihood (FIML) 
method when using response data sets from MAT. 

Relations Between IRT and CFA 

One of the most common IRT models for 
dichotomous responses with a single latent trait is the 
two-parameter logistic (2PL) model, which can be 
expressed as 

 
ܲ൫ ܷ ൌ 1หߠ, ܽ, ܾ൯

ൌ
1

1  exp	ሺെܽሺߠ െ ܾሻሻ
 

(1)

where ߠ is the person parameter describing the 
characteristics on the relevant latent trait of examinee j, 
and ܽ and ܾ are the item parameters describing the 
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discrimination and difficulty of item i. When there is 
more than one latent trait of interests, the 2PL model 
(Equation 1) can be generalized as 

 
ܲ൫ ܷ ൌ 1หીܒ, ,ܑ܉ ܾ൯

ൌ
1

1  exp	ሺെܑ܉
′ሺીܒ െ ܾሻሻ

, 
(2)

where ܑ܉
′  is a 1 × H vector of discrimination parameters 

for each relevant trait (with H being the number of latent 
traits), ીܒ is a vector of person parameters for each H 
trait, and  is a H × 1 vector of 1’s (the symbols in bold 
represent vectors). In Equation 2, the parameters of the 
exponent, ܑ܉

′൫ીܒ െ ܾ൯, can be reparameterized as 
ૃܑ
′ીܒ  ߥ , where ૃܑ

′ ൌ ܑ܉
′  and ߥ ൌ ܑ܉

′ܾ. In ૃܑ
′ીܒ  ߥ , 

 is often called the intercept and ૃ is called the set of ߥ
slopes. With the reparameterization, it becomes clear 
that the exponent is essentially equivalent to a common 
factor analytical model (Christoffersson, 1975), which 
often is expressed as 

ݕ 
∗ ൌ ߥ  ૃܑ

ࣈ′  ε, (3)

where ݕ
∗  is a latent response variable, ࣈ is a vector of 

factor scores of person j on each latent trait (which can 
be replaced by ીܒ), and, ε is the residual, which typically 
is assumed to be normally distributed. In cases with 
binary variables such as the multidimensional 2PL model 
a threshold model is added, where the observed binary 
response is 

ݕ  ൌ ቈ
1	if	ݕ

∗  ߬	
0	if	ݕ

∗ ൏ ߬
. (4)

In practice, one typically deals only with the threshold, 
߬ , assuming the intercept, ߥ , in Equation 3 to be zero 
(Takane & Leeuw, 1987; Kamata & Bauer, 2008). 

Several studies applied, examined, and compared 
the CFA frameworks and methods to IRT-based 
methods. Takane and Leeuw (1987) analytically 
explained the equivalent relation between the FA and 
(unidimensional) IRT approaches, and several other 
studies including Reise et al. (1993) empirically showed 
the similarities between the two approaches using real 
data. A more direct comparison can be made between 
MIRT and FA approaches; in fact, earlier MIRT models 
such as those that Bock and Aitken (1981), Samejima 
(1974), and McDonald (1967) proposed clearly showed 
that the MIRT and FA share virtually identical 
mathematical models (Reckase, 2009).  

CAT and Missing Mechanism 

With the emergence of IRT, which enables tests to 
be analyzed and constructed at the item level, and the 
help of modern computers that are powerful enough to 
administer tests adaptively on the fly, computerized 
adaptive testing (CAT) has quickly become one of the 
most popular modes of testing. In CAT, test items that 
are expected to exhibit the highest information (or are 
expected to have the most relevant difficulty level) for 
each individual examinee are selected and administered 
adaptively based on examinee’s performance on 
previously administered items (Lord, 1980). As a result, 
CAT usually exhibits measurement efficiency that 
exceeds that of tests not adaptively administered: 
equivalent or higher measurement quality with fewer test 
items (Weiss, 1974, 1982). Computerized adaptive 
testing for multidimensional cases (e.g., 
multidimensional adaptive testing or MAT) has 
developed naturally as the unidimensional IRT was 
extended to the multidimensional IRT (Reckase, 2009; 
Segall, 1996, 2000; Veldkamp & van der Linden, 2002).  

With CAT/MAT, test developers always pretest, 
precalibrate, and preanalyze operational test items 
before adding them to an operational item bank, and 
typically use examinees’ response data from operational 
administrations only for scoring. It is expected that 
response data from operational CAT administrations 
will contain useful information for continuous quality 
control of CAT programs, used, for example, to monitor 
for item parameter drifts by recalibrating items and 
reevaluating the latent structures using SEM. Such 
applications, however, have not yet been extensively 
studied. Response data from adaptive testing have not 
been used much with SEM analyses largely because of 
the unique missingness in the response matrix of CAT. In 
CAT, each examinee responds only to a fraction of the 
test items contained in the entire item pool. This makes 
the full response matrix (an n × m matrix with n being 
the total number of examinees and m being the total 
number of items in the item pool) very sparse. In high-
stakes CAT programs, the item exposure rate usually is 
controlled to be minimal (often smaller than 0.1 to 0.2) 
for test security purposes, which makes the full response 
matrix extremely sparse. For a response matrix with such 
an extreme level of sparseness, most traditional methods 
for dealing with missingness of data become impractical, 
for example, the listwise deletion and the pairwise 
deletion for old FA approaches based on the least square 
method and its variations.  
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The emergence of the full information maximum 
likelihood (FIML) method—simply known as the 
maximum likelihood (ML) method—completely 
changed the way we deal with missing data because it 
does not require a complete response matrix with no 
missing data (Bartholomew, 1980; Enders & Bandalos, 
2001; Graham, 2009; Schafer & Graham, 2002). Several 
estimators—the marginal maximum likelihood (MML) 
method (Bock & Aitkin, 1981; Bock, Gibbons, & 
Muraki, 1988) and the expectation-maximization (EM) 
algorithm (Little & Rubin, 1987; Schafer, 1997)—were 
developed and used recently in several widely-used SEM 
software programs including Mplus (Muthén & Muthén, 
2010), LISREL (Jöreskog & Sörbom, 2006), and Amos 
(Arbuckle, 2006). The FIML methods require a less 
restrictive “missing at random” (MAR) assumption, 
where the missingness depends on observed data but 
not on unobserved data. They also are known to result 
in unbiased estimates under both MAR and “missing 
completely at random” (MCAR) scenarios, where the 
missingness depends neither on observed nor 
unobserved data (Rubin, 1976; Enders & Bandalos, 
2001; Graham, 2009). 

The missingness of the response matrix in 
(unidimensional) CAT was often seen as satisfying MAR 
because the item selection process depends on 
examinees’ observed performance on previous items 
(i.e., observed data) not on examinees’ performance on 
unadministered items (i.e., unobserved data). With the 
ignorability by satisfying MAR, items and examinees can 
be calibrated using the MML method based on CAT 
data unless the CAT administration is extremely optimal 
at a true latent trait (Glas, 1988, 2010; Han, Guo, 
Talento-Miller, & Rudner, 2011). 

In MAT, the item selection process considers more 
than one latent trait at a time. Unless the MAT is based 
on a completely noncompensatory MIRT model, or 
there is zero covariance among latent traits, or the item 
selection algorithm is focused solely on a single factor 
(e.g., the general factor in the bi-factor model approach), 
one can assume that an examinee’s proficiency on one 
trait is related to other traits. This piece of information—
the covariance matrix of latent traits—weighs heavily in 
MAT, and, as a result, an examinee’s observed 
performance on one trait can affect the item selection 
process for items measuring other traits in MAT. In 
other words, the missingness of the MAT response data 
cannot be guaranteed to uphold the MAR assumption 
and it may be more appropriate to consider it as a 
“missing not at random” (MNAR) case, where the 

missingness depends on both observed and unobserved 
data.  

The object of this study, then, is to evaluate the 
potential impact that violations of MAR in MAT may 
have on model estimation with SEM using the FIML 
(more specifically, MML) method.  

Method 

MAT Simulations 

Our study involved conducting a series of MAT 
simulations. Three hundred test items were generated 
based on the multidimensional compensatory 2PL 
(MC2PL) model, in which the exponent of Equation 2 
was reparameterized to െܑ܉

′ીܒ  ݀ . The d-parameters 
(i.e., threshold parameters) were drawn from a normal 
distribution, and the actual sample mean was –0.313 
with a standard deviation (SD) of 1.032. The test was 
designed to measure two latent traits—F1 and F2. The 
300 items were classified into one of five groups by the 
a-parameter values (i.e., factor loadings). Group 1 items 
were loaded only on a single factor (either F1 or F2), 
 

F1

Items 1 - 10
Items 11-80; 

91-100;
101-300

Items 81-90

F2

Figure 1. The structure of the test with two latent 
traits. 

and Group 2 items were loaded primarily on one factor 
and slighted on the other factors. Group 3 items were 
loaded and moderated on both factors but slightly more 
on one factor than the other. Group 4 items were loaded 
equally on both factors. The final group of items—
Group 0—was loaded only on a single factor (similar to 
the Group 1 items) and fixed to be loaded only on the 
corresponding factor during model estimation. The a-
parameter values are reported in Table 1. The overall 
latent structure of the items in the item pool is shown in 
Figure 1. 
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Ten thousand test simulees with two latent traits 
were generated. The person parameters for the first trait 
(θ1) were sampled from a standard normal distribution; 
the actual sample mean was 0.006 with the variance of 
0.998. The person parameters for the second trait (θ2) 
were generated to correlate with θ1 at the correlation 
coefficient of 0.710; the actual sample mean of θ2 was 

0.000 with the variance of 1.986. The sample covariance 
between θ1 and θ2 was 1.000. 

In the simulations, 30 items were adaptively 
administered to each simulee. Two different item 
selection conditions were studied. In the first MAT 
condition, the items were selected based on the 
maximized determinant of posterior information (MDPI) 

Table 1. List of Item Parameters and Groups 

Item ID ܉ሺሻ ܉ሺሻ Group+ Item ID ܉ሺሻ ܉ሺሻ Group+ 
1,101,201 2.000 0.000 0 (for 1); 1(for rest) 51,151,251 0.900 1.100 3 
2,102,202 2.000 0.000 0 (for 2); 1(for rest) 52,152,252 0.900 1.100 3 
3,103,203 2.000 0.000 0 (for 3); 1(for rest) 53,153,253 0.900 1.100 3 
4,104,204 2.000 0.000 0 (for 4); 1(for rest) 54,154,254 0.900 1.100 3 
5,105,205 2.000 0.000 0 (for 5); 1(for rest) 55,155,255 0.900 1.100 3 
6,106,206 2.000 0.000 0 (for 6); 1(for rest) 56,156,256 0.900 1.100 3 
7,107,207 2.000 0.000 0 (for 7); 1(for rest) 57,157,257 0.900 1.100 3 
8,108,208 2.000 0.000 0 (for 8); 1(for rest) 58,158,258 0.900 1.100 3 
9,109,209 2.000 0.000 0 (for 9); 1(for rest) 59,159,259 0.900 1.100 3 
10,110,210 2.000 0.000 0 (for 10); 1(for rest) 60,160,260 0.900 1.100 3 
11,111,211 1.500 0.000 1 61,161,261 0.500 1.500 2 
12,112,212 1.500 0.000 1 62,162,262 0.500 1.500 2 
13,113,213 1.500 0.000 1 63,163,263 0.500 1.500 2 
14,114,214 1.500 0.000 1 64,164,264 0.500 1.500 2 
15,115,215 1.500 0.000 1 65,165,265 0.500 1.500 2 
16,116,216 1.500 0.000 1 66,166,266 0.500 1.500 2 
17,117,217 1.500 0.000 1 67,167,267 0.500 1.500 2 
18,118,218 1.500 0.000 1 68,168,268 0.500 1.500 2 
19,119,219 1.500 0.000 1 69,169,269 0.500 1.500 2 
20,120,220 1.500 0.000 1 70,170,270 0.500 1.500 2 
21,121,221 1.500 0.500 2 71,171,271 0.000 1.500 1 
22,122,222 1.500 0.500 2 72,172,272 0.000 1.500 1 
23,123,223 1.500 0.500 2 73,173,273 0.000 1.500 1 
24,124,224 1.500 0.500 2 74,174,274 0.000 1.500 1 
25,125,225 1.500 0.500 2 75,175,275 0.000 1.500 1 
26,126,226 1.500 0.500 2 76,176,276 0.000 1.500 1 
27,127,227 1.500 0.500 2 77,177,277 0.000 1.500 1 
28,128,228 1.500 0.500 2 78,178,278 0.000 1.500 1 
29,129,229 1.500 0.500 2 79,179,279 0.000 1.500 1 
30,130,230 1.500 0.500 2 80,180,280 0.000 1.500 1 
31,131,231 1.100 0.900 3 81,181,281 0.000 2.000 0 (for 81); 1(for rest) 
32,132,232 1.100 0.900 3 82,182,282 0.000 2.000 0 (for 82); 1(for rest) 
33,133,233 1.100 0.900 3 83,183,283 0.000 2.000 0 (for 83); 1(for rest) 
34,134,234 1.100 0.900 3 84,184,284 0.000 2.000 0 (for 84); 1(for rest) 
35,135,235 1.100 0.900 3 85,185,285 0.000 2.000 0 (for 85); 1(for rest) 
36,136,236 1.100 0.900 3 86,186,286 0.000 2.000 0 (for 86); 1(for rest) 
37,137,237 1.100 0.900 3 87,187,287 0.000 2.000 0 (for 87); 1(for rest) 
38,138,238 1.100 0.900 3 88,188,288 0.000 2.000 0 (for 88); 1(for rest) 
39,139,239 1.100 0.900 3 89,189,289 0.000 2.000 0 (for 89); 1(for rest) 
40,140,240 1.100 0.900 3 90,190,290 0.000 2.000 0 (for 90); 1(for rest) 
41,141,241 1.200 1.200 4 91,191,291 1.100 1.100 4 
42,142,242 1.200 1.200 4 92,192,292 1.100 1.100 4 
43,143,243 1.200 1.200 4 93,193,293 1.100 1.100 4 
44,144,244 1.200 1.200 4 94,194,294 1.100 1.100 4 
45,145,245 1.200 1.200 4 95,195,295 1.100 1.100 4 
46,146,246 1.200 1.200 4 96,196,296 1.000 1.000 4 
47,147,247 0.750 0.750 4 97,197,297 1.000 1.000 4 
48,148,248 0.750 0.750 4 98,198,298 1.000 1.000 4 
49,149,249 0.750 0.750 4 99,199,299 1.000 1.000 4 
50,150,250 0.750 0.750 4 100,200,300 1.000 1.000 4 
+ Items were classified into one of five groups according to the latent structure: Group 1 items were loaded only on a single factor; 
Group 2 items were loaded primarily on one factor; Group 3 items were loaded slightly more on one factor than the other; Group 4 
items were loaded equally on both factors; Group 0 items were loaded only on a single factor (like Group 1 items) and were fixed to be 
loaded on the corresponding factor during model estimation. 
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criterion (Segall, 1996). The MDPI item selection 
method looks for item i that maximizes the determinant 
of posterior information matrix,	|ܫ|ௌೖషభ|, which can be 
expressed as 

 
หܫ|ௌೖషభห ൌ ଵିߔ  ∑ ܹ∈ௌೖషభ 

ܹ , 
(5)

 where ିߔଵ is the inverse of the prior covariance matrix, 
ܵିଵ is the a set of administered items before k-th item 
administration, and ܹ is the information matrix of item 
i. For more information about the MDPI, readers are 
referred to Segall (1996, 2000). For the second MAT 
condition, the Kullback-Leibler information (KLI) 
measure (Cover & Thomas, 1991; Kullback, 1959) was 
used as the item selection criterion. This approach was 
originally proposed by Chang and Ying (1996) for 
unidimensional CAT applications, but it’s also directly 
applicable in multidimensional cases. For MAT, the KLI 
item selection criterion was defined by 

 

ሺીሻܭ

ൌ න …න ሺી෩||ીሻ݀ી෩ܭ
ఏವାఋ

ఏವିఋ

ఏబାఋ

ఏబିఋ
, (6)

where D was the number of dimensions, and δ specified 
the range of the moving average, which was set to 3 √݇⁄  
in this study. ܭሺી෩||ીሻ can be computed by 

 
ሺી෩||ીሻܭ 	ൌ ܲሺીሻ log ቂ

ሺીሻ

ሺી෩ሻ
ቃ  ሾ1 െ

ܲሺીሻሿ log ቂ
ଵିሺીሻ

ଵିሺી෩ሻ
ቃ.

(7)

In practice, the integrals of Equation 6 are replaced 
by summations across quadrature points.  

To control the item exposure rate, the fade-away 
(FA) method (Han, 2012) was applied after the eligible 
items were ordered either by the MDPI or the KLI 
criterion. In the FA item exposure control method, each 
eligible item was inversely weighted by the actual 
exposure rate and a target exposure rate. As a result, 
excessively exposed items were suppressed from item 
selection, whereas less used items were actively 
promoted for selection. A test server updated the item 
exposure information via a computer network.  

The FA method proved effective not only in 
limiting the excessively exposed items but also in 
promoting underused items. For this study, this feature 
was important because it ensured similarity in the 
number of responses for each item across the item pool. 
(For more information about the FA item exposure 

control, readers are referred to Han, 2012). Content 
balancing was not implemented in the research design to 
avoid making it too complex. After each item 
administration, the interim latent trait estimate (ߠୗೖ) was 
computed using the maximum a posteriori (MAP; i.e., 
the Bayesian modal) estimation with the Newton-
Raphson method.  

In addition to the two MAT conditions (MDPI and 
KLI) described above, two other conditions also were 
studied as baselines. In the first of these baseline 
conditions, which kept all other environments the same, 
item selection was completely random and the 
missingness in the response matrix held the MCAR. For 
the second baseline condition, investigators generated 
full-response matrices (with no missing data), also 
keeping all other environments the same. Simulations 
for each condition were replicated 30 times. 

Model Estimation and Evaluation 

The SEM model (Figure 1) was estimated using the 
software package, Mplus 6.12 (Muthén & Muthén, 2010). 
For the model specification, the Group 0 items were set 
to load only on either F1 or F2 (Items 1 to 10 were set 
to load on F1, and Items 81 and 90 were set to load on 
F2). To avoid the indeterminacy of the latent structure 
and scale, the variance values for each trait were set to 
the true sample variances—VAR(θ1) = 0.996 and 
VAR(θ2) = 1.986—instead of fixing factor loadings (i.e., 
a-parameter) on some items to 1, for example. The mean 
values for the latent traits also were fixed to the true 
sample means—Mean(θ1) = 0.006 and Mean(θ2) = 0.000. 
The two latent traits (F1 and F2) were specified to be 
correlated, as shown in Figure 1, but the covariance 
between them was set to be estimated freely as were the 
item parameters (slopes and thresholds). To deal with 
the dichotomous responses, we used the logit link 
option in Mplus. The model also used the marginal 
maximum likelihood (i.e., “MLR” in Mplus) estimation with 
robust standard errors based on a numerical integration 
algorithm with a collection of iterative procedures 
including the expectation-maximization (EM) algorithm 
(Dempster, Laird, & Rubin, 1977) with the Quasi-
Newton and Fisher scoring optimizations.  

Once the model parameters and latent scores were 
estimated, the parameter recovery was evaluated based 
on the Pearson correlation coefficients between the true 
parameters and estimates as well as on the bias and mean 
absolute error (MAE) statistics. A visual investigation on 
scatter plots was also conducted to evaluate the 
appropriateness of Pearson correlation coefficient as a 
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criterion. For item parameter estimates, the parameter 
recovery was also evaluated for each item group. To 
understand the more practical implications of the item 
parameter recovery, the multidimensional 
discrimination index (MDISC; Reckase & McKinley, 
1991), and the multidimensional difficulty index 
(MDIFF; Reckase, 1985), were computed and evaluated.  
For the model fit comparison between the MAT 
condition and the “random item selection” condition 
(RAN), we investigated the Akaike information criterion 
(AIC) and the Bayesian information criterion (BIC) 
statistics.  

Results 

MAT Administration 

The final estimates on simulees’ latent traits (ી) were 
computed using the MAP method within the MAT 
administration/simulation. As reported in Table 2, the 
estimation biases for all four administration conditions: 
(a) all item administration (ALL) resulting in a full-
response matrix without missing data, (b) random item 
selection (RAN) resulting in missingness holding 
MCAR, and MAT conditions (c) with MDPI and (d) 
with KLI resulting in missingness violating MAR, were 
very small (> –0.1 and < 0.1). The estimation errors 
based on the mean absolute error (MAE) were much 
smaller with ALL than with RAN, because in ALL, each 
simulee responded to all 300 items in the item pool, 
whereas each simulee in the RAN and MAT conditions 
responded to only 30 items. The MAEs under both 
MAT conditions were larger on both latent traits than 
the ones from ALL but smaller than the one from RAN 
because of the efficiency of adaptive testing. The 
correlation between the true parameter values and 
estimates also showed a similar pattern among the four 

ALL, RAN, and MAT conditions. The ALL condition 
resulted in the highest correlation between the true and 
the estimated θ (0.981 and 0.976 for θ1 and θ2, 
respectively), showing the best parameter recovery 
performance among the studied conditions. The RAN 
condition, on the other hand, showed the lowest 
correlation coefficient (0.912 and 0.917), as one would 
expect when the number of test items dropped from 300 
to 30. Both MAT conditions, under which each 
examinee was administered 30 items the same as in the 
RAN condition, resulted in correlation coefficients that 
were lower than the ones from ALL but moderately 
higher than RAN. Again this is indicative of improved 
measurement precision due to the efficiency of adaptive 
testing. The correlation coefficient between the 
estimates on the two latent traits (θଵ,	θଶ) was very close 
to the true value (0.710) with ALL (0.706). With the 
RAN and MAT (MDPI) conditions, it was slightly 
overestimated (0.733 and 0.740, respectively), and with 
the MAT (KLI), the correlation was moderately 
overestimated (0.782). 

Table 2 also displays the factor scores based on the 
SEM approach from Mplus. It should be noted that these 
factor scores were based on new item parameter 
estimates from the SEM analysis. The MAP estimation 
shown earlier did not involve estimating item parameters 
but rather used the item parameter data in the item pool. 
Unlike the final θ estimates using MAP, therefore, it is 
possible that the estimation errors in the factor scores 
from the SEM analysis potentially could have been 
compounded with the item parameter estimation errors.  

In Table 2, the factor score results closely resembled 
the MAP estimation results— the score recovery was the 
best with ALL and the worst with RAN, and the ones 
with the MAT conditions were in-between. The 

Table 2. Recovery of Latent Trait Scores 

Estimation Condition Bias(ߠଵ) Bias(ߠଶ) MAE(ߠଵ) MAE(ߠଶ) Corr.(ߠଵ, ,ଵߠ).Corr (ଶߠ	,ଶߠ).ଵ) Corrߠ  (ଶߠ

Final ી  
based on 

MAP 

ALL .007 .015 .123 .180 .981 .976 .706 

RAN .016 .027 .313 .421 .912 .917 .733 

MAT(MDPI) .015 .035 .242 .367 .946 .937 .740 

MAT(KLI) .010 .024 .255 .364 .941 .937 .782 

SEM 

ALL –.006 –.010 .121 .175 .982 .978 .718 

RAN .000 .000 .301 .399 .913 .920 .776 

MAT(MDPI) .001 .000 .231 .301 .951 .954 .773 

MAT(KLI) –.012 –.020 .263 .353 .938 .941 .766 
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correlation coefficients between the final estimates 
based on the MAP and the factor scores from the SEM 
were 0.98 or above across the studied conditions. The 
only noteworthy difference between the SEM results 
and the MAP results was the correlation coefficient 
between the estimates on the two latent traits (θଵ,	θଶ). 
When the MAP was used, the correlation between θଵ 
and 	θଶ under RAN was 0.733, which was fairly close to 
the true value (0.710). When the SEM was used, the 
correlation under RAN changed substantially to 0.776, 
which could be the result of relatively larger estimation 
of factor scores with RAN compared with the other 
conditions.  

In terms of item exposure control and item pool 
usage, each item was used 10,000 times in ALL because 
all items were administered to the total of 10,000 
simulees. In RAN, the item exposures ranged between 
994 and 1,005. In MAT (MDPI) with the FA item 
exposure control, the minimum exposure was 947 and 
the maximum exposure was 1,201, which indicated the 
exposure rate was effectively controlled well under the 
target of 0.2. In MAT (KLI) with the FA exposure 
control, the minimum/maximum observed exposures 
were 580 and 1,637, respectively, which were still well 
under the exposure target of 0.2. This also indicated that 
each test item generated at least 580 responses across the 
studied conditions, which were sufficient for stable SEM 
estimation.  

SEM Estimation 

There were 881 free parameters to be estimated in 
the SEM model, regardless of the missingness 
conditions. According to both the AIC and BIC index 
value, ALL showed the largest index values, but 
comparisons among RAN, MAT (MDPI), and 
MAT(KLI), which had similar levels of response data 
(i.e., same level of missingness), were the main focus. 
Overall, RAN resulted in a much better fit to the model 
than the two MAT conditions. Table 3 shows the 
estimated covariance between the latent traits (F1 and 
F2). The covariance was underestimated in all four 
studied conditions, and MAT (MDPI) showed the 
largest difference from the true sample covariance of 
1.000. The other conditions (ALL, RAN, and MAT 
(MDPI)) came close to the true sample covariance.  

Table 3. Goodness of Fit Statistics and 
Estimated Covariance Between Latent 
Traits 

Condition AIC BIC 
Estimated 
Covariance 

(F1,F2) 
ALL 1875059 1881411 .976 

RAN 239625 245977 .945 

MAT 
(MDPI) 

303908 310260 .988 

MAT (KLI) 334756 341108 .867 

The last process evaluated was the recovery of item 
parameters. As show in Table 4, the d-parameter 
(threshold) was reasonably well recovered under all 
studied conditions. The ALL and RAN conditions 
resulted in more than 0.99 for the correlation between 
the true and estimated d-parameter. The MAT 
conditions, where the MAR assumption was not held, 
still showed very high correlation (> .95). The scatter 
plot of the true and estimated d-parameter 
 

Table 4. Recovery of Item Parameters by 
Correlation Between the True Parameter Values 
and Estimates 

Parameter 
/ Index 

Condition 
Correlati
on (true, 

est.) 
Bias MAD 

d ALL .999 .042 0.049 

 RAN .991 .051 0.128 

 MAT (MDPI) .965 .014 0.204 

 MAT (KLI) .956 .133 0.250 

 ሺሻ ALL .998 -.039 0.046܉

 RAN .973 -.160 0.182 

 MAT (MDPI) .926 -.033 0.164 

 MAT (KLI) .882 -.157 0.245 

 ሺሻ ALL .999 -.060 0.063܉

 RAN .980 -.192 0.203 

 MAT (MDPI) .839 -.064 0.187 

 MAT (KLI) .793 -.228 0.310 

MDISC ALL .978 -.082 0.082 

 RAN .762 -.284 0.288 

 MAT (MDPI) .246 -.074 0.239 

 MAT (KLI) .305 -.367 0.390 

MDIFF ALL .999 -.017 0.031 

 RAN .993 .001 0.079 

 MAT (MDPI) .876 .019 0.131 

 MAT (KLI) .615 .001 0.196 
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(Figure 2), again verified the high level of d-parameter 
recovery—all item parameter estimates were extremely 
close to the symmetric reference line (black dashed line) 
regardless of the studied condition and there were no 
outliers that raised particular concerns.  

The recovery of ܉ሺሻ and ܉ሺሻ (slope parameters) 
however, differed greatly across the studied conditions. 
With ALL, both ܉ሺሻ and ܉ሺሻ were extremely well 
recovered with the correlation coefficient between the 
true and estimated exceeding 0.99, and there was 
practically no estimation bias (< ± 0.1). The RAN 
condition also resulted in good recovery for the slope 
parameters (r(a,܉ො) > 0.97), but the parameters overall 
were slightly underestimated (-.160 for ܉ሺሻ and -.192 for 
 ሺሻ). As mentioned earlier, this mainly was due to the܉
compounded problem with estimating the correlation 
between (θଵ,	θଶ) when the estimates on the latent traits 
were relatively less accurate compared with the other 
conditions (Table 2). Based on the bias and MAE 
statistics on ܉ሺሻ and ܉ሺሻ, the estimation errors 
observed with RAN resulted mainly from the systematic 
errors. Both MAT (MDPI) and MAT (KLI) showed 
much lower correlation efficient values (as low as .79), 
indicating the MML estimation method struggled to 

produce stable ܉ሺሻ and ܉ሺሻ	estimates when the MAR 
assumption was not held.  

To evaluate ܉ሺሻ and ܉ሺሻ simultaneously, MDISC 
(often interpreted as the multidimensional 
discrimination index; Reckase & McKinley, 1991) also 
was computed for each condition. With ALL, the 
recovery of MDISC again was good (r = 0.978). As 
shown in Figure 3, ALL resulted in estimated MDISC 
values that were extremely close to the true values (i.e., 
close to the symmetric reference (dashed) line). With 
RAN, the correlation coefficient (r = .762) was lower 
than ALL, but, as shown in Figure 3, the deviation of the 
estimated MDISC looked fairly consistent despite a 
moderate negative bias (-0.284). With the two MAT 
conditions, however, the recovery of MDISC was very 
poor according to the correlation coefficients (0.246 and 
0.305 for MAT (MDPI) and MAT (KLI), respectively). 
Figure 3 reveals that the estimated MDISC under both 
MAT conditions was very inaccurate across the level of 
true MDISC.  

The final evaluation was of the recovery MDIFF 
index. The MDIFF index offers valuable information 
about multidimensional item difficulty (Reckase, 1985) 

 

 

Figure 2. Recovery of b parameter values. 
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Figure 3. Recovery of MDISC values. 

 

Figure 4. Recovery of MDIFF values. 
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and is critical as a statistic that summarizes all d-, a_((1)), 
and a_((2))  parameters of the MC2PL model. With ALL 
and RAN, the recovery of MDIFF index was nearly 
perfect with no meaningful estimation bias and a 
correlation efficient that exceeded 0.99. Under MAT 
(MDPI) and MAT (KLI), however, the correlation 
between the true and estimated MDIFF was much 
lower—0.876 and 0.615 for MAT (MDPI) and MAT 
(KLI), respectively. Interestingly, as shown in Figure 4, 
those items whose true MDIFF was near zero under the 
MAT conditions tended to have more outliers with 
extremely large estimation errors, and most of those 
outliers belonged to Group 3 or 4 and were items with 
similar or the same ܉ሺሻ, and ܉ሺሻ	parametersx 

Discussion and Conclusion 

Based on the results presented in Tables 2 to 4 and 
Figures 2 to 4, , it is apparent that the violation of the 
MAR assumption due to the nature of the MAT and its 
item selection algorithm caused the MML estimator to 
perform poorly, especially as seen in the comparisons of 
both MAT conditions to RAN. The reason for the poor 
performance of the MML estimation was unclear, 
particularly regarding the items loading similarly or 
equally on two factors (Groups 3 and 4) under MAT. It 
assuredly will require further investigation.  

The findings of this study hold several important 
implications for MAT program developers. For 
(unidimensional) CAT, literature suggested that the use 
of adaptively administered response data for item 
recalibration under the MML method can be 
accomplished effectively with the MAR assumption 
(Glas, 2010; Han et al., 2011). The findings of this study 
suggest, however, that this may not be a valid practice 
for MAT. For example, some item parameter drift 
detection techniques involving item recalibration should 
not be used in MAT. 

Another observation is that although the MML 
estimation resulted in large estimation errors under 
MAT, it did not necessarily lead to any meaningful 
systematic bias in the overall item parameters. As a 
result, the latent trait score estimates based on the 
estimated SEM model were still computed fairly 
accurately even under MAT conditions (Table 2). This 
implies that if enough items across latent traits are being 
measured and the majority of these items are not loaded 
similarly or equally on multiple factors (unlike the Group 
3 or 4 items in the study), SEM-based analyses on the 
MAT response data may still offer fairly unbiased 
information about the overall test (e.g., MDIFF) and the 

latent structure (e.g., covariance among factors). We 
recommend, however, that researchers and practitioners 
not rely heavily on the individual item level estimates 
based on MAT response data because of the potential 
for large estimation errors. If enough data are available, 
multiple cross validation on parameter estimates is 
always recommended as it is for all other SEM-based 
analyses. 
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