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Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in 
the researcher’s toolkit:  being able to predict important outcomes that are not continuous in nature.  
While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are 
binary or categorical in nature.  These outcomes represent important social science lines of research:  
retention in, or dropout from school, using illicit drugs, underage alcohol consumption, antisocial 
behavior, purchasing decisions, voting patterns, risky behavior, and so on.  The goal of this paper is 
to briefly lead the reader through the surprisingly simple mathematics that underpins logistic 
regression:  probabilities, odds, odds ratios, and logits.  Anyone with spreadsheet software or a 
scientific calculator can follow along, and in turn, this knowledge can be used to make much more 
interesting, clear, and accurate presentations of results (especially to non-technical audiences).  In 
particular, I will share an example of an interaction in logistic regression, how it was originally 
graphed, and how the graph was made substantially more user-friendly by converting the original 
metric (logits) to a more readily interpretable metric (probability) through three simple steps. 

 

Use of logistic regression has been growing 
over recent years as more social scientists are trained 
in the procedure.  In the last few years, popular 
statistics books have incorporated chapters on 
logistic regression (Cohen, Cohen, West, & Aiken, 
2002; Field, 2009; Pedhazur, 1997; Tabachnick & 
Fidell, 2001), and some standalone books have been 
published with the social scientist in mind (Menard, 
2002).  Unfortunately, reviews of application of 
logistic regression show some continuing 
misunderstanding of this important and fun 
technique, even in the biomedical sciences 
(Holcomb Jr, Chaiworapongsa, Luke, & Burgdorf, 
2001).  In particular, many who wish to understand 
logistic regression are not clear on how odds ratios 
are calculated, what a logit is, how to convert 
between probabilities and odds and logits, and how 
this can dramatically improve the comprehensibility 
and communication clarity of results from logistic 

regression analyses.  The goal of this paper is to 
briefly (and gently) walk readers through the 
mathematics of how these things are calculated, and 
how this knowledge can be used for the benefit of 
the reader.   

The example I will use throughout this paper 
comes from the National Education Longitudinal 
Study of 1988 (NELS88) from the National Center 
for Educational Statistics (http://nces.ed.gov/ 
surveys/nels88/), a survey of students in 8th grade in 
the US in 1988.  These students were followed for 
many years on thousands of variables, similar to 
other studies from NCES.  In particular, we will 
predict DROPOUT before completing 12th grade 
(1=yes, 0=no)1 from a variable I calculated called 
POOR (1= the student falls below the average 

                                                 
1 For those of you who are interested, I considered students 
who dropped out and returned as dropouts as well. 

http://nces.ed.gov/%20surveys/nels88/
http://nces.ed.gov/%20surveys/nels88/
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family income, or 0= the student falls above the 
average family income).2 

Probabilities, conditional probabilities, 
and odds 

If you are like most, the thought of calculating 
odds and probabilities may make you cringe or bring 
memories of slogging through endless problems 
from your introduction to statistics class(es).  I will 
try to make this as painless as possible, because (a) I 
really don’t like slogging through endless example 
calculations either, and (b) these are relatively simple 
concepts that are actually pretty fun once you 
understand them.   

Let us begin our example of looking at student 
dropout from high school and family income.  I 
have presented a crosstabulation of the variables in 
Table 1.  We will start with simple counts of 
students in each group, and quickly use those 
numbers to calculate complex things like odds ratios 
and logits.   

Table 1 Crosstabulation of family income and 
dropout 

 
DROPOUT 

Total 
Conditiona

l prob. 
Odds 

Odds 
ratio No Yes 

POOR 
Yes (1) 7312 1244 8556 0.145 0.170 5.67 

No (0) 7821 233 8054 0.029 0.030  

Total 15133 1477 16610    

 

Looking at the row labeled “Total,” you can see 
that 1477 out of our sample of 16610 were classified 
as having dropped out.  The probability of an event 
is calculated as the frequency of the event divided by 

                                                 
2 A brief note on interpretation:  I am using this public data for 
demonstration purposes only.  I intentionally did not weight 
the data or do any of the methodologically important steps 
necessary to appropriately use data from this type of complex 
multistage sample for drawing substantive conclusions. 
Therefore, you should not draw any substantive conclusions 
about dropout and family income based on these data.  They 
are for illustrative purposes only.  For more on the importance 
of weighting complex samples such as this, I will refer you to 
my paper on the topic:  
http://pareonline.net/pdf/v16n12.pdf, (Osborne, 2011) 

the total observations (in this case, 1477 dropouts 
out of 16610 total students).   

Probability of dropout (Pdropout ) = number 
dropouts / total students 

Pdropout = 1477 / 16610 

Pdropout =  0.0889 

Thus, in the overall sample, 8.89% of the 
sample dropped out, giving us a probability of 
dropout of 0.0889.  When there are two categories 
(as with this dropout/retained variable), the 
probability of a student falling into the “retained” 
category is (1- Pdropout ):  

Probability of retained (1-Pdropout ) = number 
retained / total students or 1- Pdropout 

1-Pdropout = 15133 / 16610  or 1- 0.0889 

1-Pdropout =  0.9111 

Conditional probabilities.  While it is 
important to know the overall dropout (or 
retention) rate, in Table 1 it is clear that there are 
more students from “poor” households dropping 
out of school, and fewer from “not-poor” 
households.  Hopefully you are beginning to think 
about what percent of each group dropped out, or 
what is the probability that a student from a 
particular group dropped out.  The probability of 
dropout within a group is called a conditional 
probability.  Thus, for example, we can calculate the 
conditional probability of dropout for students 
coming from “poor” (below-average income) 
households.  In this group, 1244 students dropped 
out (from a total of 8556), yielding a conditional 
probability of 0.145 .  Likewise, we can calculate the 
conditional probability for those students coming 
from households with above-average income (233 
students in this group dropped out from a total of 
8054, yielding a probability of 0.029).  In other 
words, by knowing one piece of information about a 
student’s background, we have a more nuanced view 
of dropout probability.  Students coming from 
below-average income households are much more 
likely to drop out than students coming from above-
average income households.   

In fact, those of you with a background in OLS 
regression might find it interesting to note that 

http://pareonline.net/pdf/v16n12.pdf
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when you have dichotomous variables in OLS 
regression, with both variables coded 0 and 1, the 
conditional probabilities of dropout are the 
predicted variable.  Putting the exact same data into 
an OLS regression analysis produces the following 
results: 

Table 2: OLS regression results of the same data 

 

Unstandardized 
Coefficients 

Standard-
ized Coeff 

t Sig. 

B 
Std. 

Error 
Beta 

 
(Constant) .029 .003  9.318 <.001 

poor .116 .004 .204 26.923 <.001 

 

And the following prediction equation: 

Conditional probability of dropout = 0.029 + 
0.116 (Poor) 

As you can see from Table 2,, when the IV is 0 
(not poor), the conditional probability is 0.029, 
which matches our calculated conditional 
probability in Table 1, above.  Likewise, when 
POOR=1, the predicted probability is 0.029 + 
0.116, or 0.145, which again matches the conditional 
probability we calculated. 

Before the widespread availability of logistic 
regression, OLS regression of this type was one of 
the few options available to researchers wanting to 
study questions such as this.  Unfortunately, it 
cannot be considered a best practice as the 
assumptions are difficult to match, and the 
predicted probabilities can become impossible when 
the IV is continuous (i.e., below 0 or above 1.0).   

A brief thought experiment on the logistic 
curve.  From these data and common sense, we can 
see something that is usually presented in 
discussions of logistic regression but not delved into 
deeply:  the logistic curve.  If poverty was strongly 
related to the probability that a student would drop 
out, the conditional probability of dropout would 
increase as poverty increased, but at some point, 
increased poverty doesn’t substantially increase the 
probability of dropout.  There may be a threshold 
above which the probabilities don’t change 

substantially.  Conversely, as you move downward 
toward very low poverty (increasing affluence), the 
probabilities might quickly asymptote toward 0.  
The probability of dropping out might be similar if a 
student’s family makes $100,000.00 per year or 
$100,000,000.00, but it might make a large 
difference in dropout probabilities if the family 
makes $25,000.00 or $35,000.00.  This theoretical 
relationship is presented below in Figure 1.  As you 
can see, there is a relatively narrow window of 
poverty where changing makes a large difference, 
and outside that window, the probabilities don’t 
change a great deal.  In this fictitious example, when 
poverty (on whatever scale we are using) reaches 
1.40, the probability of a student dropping out is 
about .80. conversely, at -1.40, the probability is 
about .20.  Beyond these points, the slopes flatten 
out, giving less change in probability despite rather 
large changes in X. 
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Figure 1.  Hypothetical logistic curve relating 
poverty to probability of dropout 

 

Think about this relationship in another way.  
Let’s imagine that we were looking at the dosage of 
a hypothetical drug and the probability that we 
could cure a disease.  The hypothetical drug is very 
effective and has no known side effects.  If x is 
dosage and y is the probability of cure, you might 
well get a similar curve.  At very low doses, there are 
very small probabilities of cure, but as the doctors 
increase the dosage, there will come a point where it 
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begins becoming effective, and as dosage increases 
(to a point) probability of cure will also increase.  
Then at some point, the benefit of increasing the 
dosage will level off as probability of cure reaches a 
maximum threshhold and increasing beyond that 
point will not materially increase the probability.   

The benefits of odds.   So one reason we 
don’t use OLS regression in this sort of example is 
that we can get impossible predicted probabilities 
(below 0 or above 1.0).  We can partly get around 
the issue of impossible values if we look at odds 
rather than probabilities.  There are drawbacks to 
odds—such as being difficult to accurately 
interpret—but their benefits are that they only range 
from 0.00 to infinity.  Conditional odds are 
calculated as the probability of that event divided by 
the probability of the event not happening: 

Odds(dropout) =  probability of dropout/ 
probability of not dropping out. 

Thus, as you can see in Table 1, the odds of a 
student from a non-poor family dropping out are 
about 0.03, and the odds of a student from a poor 
family dropping out are 0.17.  But odds are not 
perfect—predicted conditional odds can still be 
impossible—they go below 0.00.  So the solution 
mathematicians and statisticians have come to is to 
take the natural logarithm of the odds, which has 
the benefit of having no restriction on minimum or 
maximum values.  But before we move beyond 
odds, let’s stop at the most commonly reported 
index of effect in logistic regression, the odds ratio. 

The odds ratio.  The conditional odds we have 
been discussing are the odds that an outcome (i.e., 
dropping out) will happen given a particular value of 
another variable (i.e., being below average in family 
income).  As you can see in Table 1, those are 
interesting, but without something to compare it to, 
interpretation is difficult.  So the odds ratio is used 
in logistic regression to represent the ratio of the 
conditional odds of the outcome at one level of x 
(for example, 1) relative to the conditional odds of 
the outcome at another level of x (for example, 0).  
In this way, the odds ratio (literally, a ratio of the 
odds of an outcome for two groups)  helps us 
capture the effect of the independent variable.  In 
our example in Table 1, we only have two levels of 

x:  poor or not poor (1 or 0).  If we calculate the 
ratio of those two odds, we get an odds ratio of 5.67 
(0.17/0.03).  the interpretation is straightforward 
(although as I discussed in (Osborne, 2006) there 
are common ways to misinterpret this number).  In 
this example, the odds of students from “poor” 
households dropping out are 5.67 times that of 
students from “not poor” households.  This is not a 
surprising statistic, given what we know of the 
importance of poverty in education.   

In general odds ratios are calculated as the 
change in odds for every 1.0 increase in the IV.  In 
the case of binary IVs, it is the comparison of those 
in the “1” group to those in the “0” group.  In the 
case of a continuous IV, it would be the change in 
odds for each increase of 1.0 in the IV.   

So to summarize, we have used simple division 
to move from numbers in boxes to the relatively 
important odds ratio statistic.  Obviously things get 
more complex when there are multiple IVs in the 
equation, but conceptually everything is as simple as 
how we have discussed it thus far.   

The logit.  The natural logarithm of the odds is 
called the logit—the term that logistic regression 
derives its name from.  Now we come to the crux of 
the issue—the initial question that prompted me to 
investigate this issue —what is the thing that logistic 
regression is really predicting?  What is it exactly that 
we are graphing if we graph results from a logistic 
regression, and how do we interpret it coherently? 

For those of you who are more than a few years 
removed from high school mathematics, let’s do a 
brief and painless review of a logarithm before 
continuing.  A logarithm is actually a class of 
mathematical operations where numbers as we are 
used to them can be represented by other bases.  A 
logarithm is the power (exponent) a base number 
must be raised to in order to get the original 
number.  Any given number can be expressed as y 
to the x power in an infinite number of ways.  For 
example, if we were talking about base 10, 1 is 100, 
100 is 102, 16 is 101.2, and so on.  Thus, log10(100)=2  
(100=102) and log10(16) = 1.2 (16= 101.2).  However, 
base 10 is not the only option for logarithms—you 
can literally use any number, although base 10 is one 
of the more common.  Another common option is 
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the Natural Logarithm, where the constant e 
(2.7182818…) is the base.3  In this case the natural 
log of 100 is 4.605 (100 = e4.605).   

Table 3. Examples of logarithms 

Base: 106 10,000 100 1 0.01 0.0001 10-6 

2 19.93 13.28 6.64 0 -6.64 -13.28 -19.93 

e 13.81 9.21 4.60 0 -4.60 -9.21 -13.81 

3 12.58 8.38 4.19 0 -4.19 -8.38 -12.58 

4 9.97 6.64 3.32 0 -3.32 -6.64 -9.97 

5 8.58 5.72 2.86 0 -2.86 -5.72 -8.58 

10 6.00 4.00 1.00 0 -1.00 -4.00 -6.00 

 

As you can see in Table 3, the same number 
can be represented in a variety of ways across a 
variety of bases.  Perhaps more germane to this 
discussion is the natural logarithm, of base e.  If you 
notice, the natural logarithm of numbers above 1.0 
grows from 0 toward infinity as the numbers being 
log transformed get larger.  Interestingly, as 
numbers go from 1 toward 0, the log of those 
numbers becomes moves toward infinity in the 
negative direction (the log of 0 or a negative number 
is undefined).   

You may also notice an interesting pattern in 
these numbers—the log of 100 and the log of 0.01 
are identical except for the sign, as are the logs of 
10,000 and .0001, and 1,000,000 and 0.000001.  This 
is because in exponents, raising something to a 
negative power (n-1) merely means to calculate 1/n.  
Thus, the interesting property of logs is that they 
“pivot” at 1.0—are essentially symmetrical around 
1.0, and the log of 100 and 1/100 being identical 
except for the sign.  This is an important revelation 

                                                 
3 Sometimes referred to as Euler’s number, but usually credited 
to Bernoulli, who attempted to solve the following formula 
which was applied to calculations of compound interest:  

  e has applications in many fields beyond 
economics and statistics, including being particularly useful in 
calculus, probability theory, physical sciences, and beyond.  It 
has been calculated to a trillion digits thus far, and like pi, is an 
enigmatic and interesting number.   

that will help with interpreting logistic regression 
output where odds ratios are below 1.0. 

Summarizing so far 

We started off with a hand calculation of simple 
probabilities and simple odds, and moved into the 
shortcomings of OLS regression in predicting 
dichotomous variables—aside from violations of all 
sorts of assumptions (usually), you can get predicted 
conditional probabilities (outside the 0 to 1 
acceptable range) and conditional odds that are 
impossible (below 0.00).  To handle these 
shortcomings, the natural logarithm of the odds can 
conceivably range from -∞ to ∞.  Thus, if we use 
the logit (natural logarithm of the odds ratio) as our 
dependent variable we no longer face the issues that 
probabilities or odds have given us.  The dependent 
variable then becomes logit(y), and the simple 
regression equation becomes: 

Logit (y) = a + b1x1 

which is the form that logistic regression takes.  
So with some division and a simple conversion of 
an odds ratio to a natural logarithm, we get a logit 
that solves the initial problem of having predicted 
probabilities or odds that are outside the possible 
range.  There are a lot of technical details about why 
logistic regression uses maximum likelihood 
estimation rather than ordinary least squares 
estimation, but those issues are beyond the intended 
scope of this paper.  There are two important things 
to note:  (a) OLS regression is not appropriate under 
most circumstances when DVs are not continuous 
(technically, ordinal or interval), and (b) even when 
these assumptions of OLS regression are met, OLS 
regression and logistic regression using maximum 
likelihood estimation will produce identical 
coefficients (e.g., Menard, 2002).  Thus, there seems 
to no significant drawback to using logistic 
regression where appropriate.   

Still more fun with logits, odds, and 
probabilities 

The logit, this metric of logistic regression, is the 
natural logarithm of the odds of something 
happening (whatever is 1 when the dependent 
variable is coded 0 and 1).  The log of a number is 
difficult for most people who are not professional 
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mathematicians to comprehend in a deep way (or in 
an accurate way).  So in logistic regression you are 
going to get these logits as the intercept and 
coefficients.  But most statistical packages also 
provide odds ratios (sometimes abbreviated “OR,” 
or in SPSS, labeled “Exp (B)”) to make 
interpretation a bit simpler.  It is important to 
recognize that these are all essentially the same bit of 
information, presented in slightly different form.  If 
you have followed to this point, you can see each is 
a simple mathematical transformation of the other.  
Because of this, it is also relatively simple to reverse 
the process, and in reversing the process, we can 
bring significant clarity (and accuracy) to reporting 
our logistic regression findings.  We can start with 
logits (again, the natural log of the odds of an 
outcome) and work our way back to conditional 
probabilities, which are generally easier for people to 
understand.  This is particularly true for those of 
you who will be communicating to non-technical 
audiences (practitioners, policymakers, or the public) 
and is even useful when talking to other researchers 
who may not be as well-versed in logistic regression 
as you are. 

From logit to odds ratio.  Most statistical 
programs will present both logits and odds ratios.  
Below is a sample of the output from SPSS for this 
same data: 

Table 4. SPSS logistic regression output for POOR 
and DROPOUT analysis 

 
B S.E. Wald df Sig. 

Odds 
ratio 

 
Poor 1.742 .073 566.339 1 <.001 5.711 

Constant -3.514 .066 2793.147 1 <.001 .030 

Starting with the odds ratios, the constant is the 
predicted odds when X=0 (when students are not 
coming from poor households).  The 0.03 should 
look familiar—in Table 1 we calculated the odds of 
dropping out when when POOR = 0 to be 0.03.  
This is the same number.  And the logit for the 
constant (intercept) is -3.51, the natural log of 0.03.  
In other words, this is the natural log of the odds of 
dropping out if you are in the “0” category on the 
independent variable.   

Now let’s look at the variable of interest, 
POOR.  The odds ratio is 5.71—which is within 
rounding error of what we calculated by hand.  
Converting to logits, the natural log of 5.71 is 1.742, 
which is what we see under the “B” column.  If you 
have a calculator that can handle natural logs, 
exponents, and such (or access to Excel or similar 
spreadsheet programs) I encourage you to play with 
the output from your statistical software like this to 
help cement your understanding of the relationships 
between the numbers you are seeing on your output. 

So to convert any logit to an odds ratio, we 
reverse the process.  To get the natural log of a 
number, we raise e to a particular power.   

Natural log of 5.71= e1.74 

And thus we say the natural log of 5.711 is 1.74.  
To reverse this, moving from logit to odds ratio, we 
exponentiate the logit—in other words to convert 
from logit to odds ratio we raise e to the logit 
power:4 

e1.74 = 5.71 

The importance of this seemingly simple 
process will hopefully become clear in a moment—
but it clarifies why SPSS calls the odds ratio 
EXP(b)—if you exponentiate b you get the odds 
ratio. 

Converting from odds ratio to conditional 
probability.  In the same way we converted from 
conditional probability to odds ratio, we can reverse 
this process as well through two steps.  Recall that 
to get from conditional probability to odds, we 
computed  

conditional odds = P(dropout)/1-P(dropout)    
[=0.145/(1-0.145)  or =0.029/(1-0.029)] 

and then to compute an odds ratio, we divided 
one conditional odds by the other (0.17/0.03 = 
5.67).  To reverse engineer the process we can 
multiply the odds ratio by the conditional odds for 
the intercept (in the SPSS output this is the odds 
ratio multiplied by the EXP(B) constant, or 5.71 * 

                                                 
4 Note that there is minute rounding error in all these 
calculations.  If you are using a scientific calculator, excel or 
some similar process, you use the EXP(x) command, where x 
is the logit you want to convert back to an odds ratio. 
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0.03, which gets us back to 0.17, the conditional 
odds for the group of interest).  To get from 
conditional odds to conditional probabilities divide 
the conditional odds by 1+ conditional odds: 

Probability (dropout) = conditional odds / (1+ 
conditional odds) [0.17/(1+0.17)] 

which leaves us with 0.146, which is within 
0.001 rounding error of the original conditional 
probability we started off with back in Table 1.   

More routinely, we will have predicted scores 
(predicted logits) for a group that we want to 
convert to a predicted conditional probability.  
Using the logistic regression equation from Table 4: 

Logit’ = -3.514 + 1.742(POOR) 

We can calculate a predicted logit for poor 
students as -1.772.  We can collapse all the steps 
above into one simple equation to convert predicted 
logits to conditional probabilities: 

Conditional probability of (Y=1) =  

Probability (dropout)  = exp(-1.772)/(1+exp(-
1.772) 

Probability (dropout)  = 0.145 

 

which gets us back to the original hand-calculated 
conditional probability of students from poor 
households dropping out of high school.  Likewise, 
we could perform the same calculation on the 
predicted logit of students from non-poor 
households and get back to the original conditional 
probability of that group as well. 

Benefits of conditional probabilities.  So 
why go through all these mathematical 
machinations?  We already have what we want to 
know when we perform a logistic regression—what 
variables are significant predictors of the outcome, 
and the magnitude of the relationship (as well as 
direction), right?  Yes, except that most of your 
audience won’t intuitively understand odds ratios or 
logits.  If you have an interaction effect or 
curvilinear effect in logistic regression and want to 
graph it, it is accurate and appropriate to graph it in 
logits, and explain what they are (natural logarithm 

of the odds).  But what if you could graph the 
results as conditional odds or conditional 
probabilities (i.e., the probability that something will 
happen at a particular point of the independent 
variable for a particular group)?  Wouldn’t that be 
simpler to understand than the natural logarithm of 
the odds of the dependent variable being 1.0 at a 
particular point on the X axis?   

Advantages of graphing logistic 
regression interactions as conditional 

probabilities 

For this graphing example we are going to look at 
more data from NELS88—in this case, we will look 
at the same DV—DROPOUT—as a function of 
family socioeconomic status (SES, a continuous 
variable converted to z-scores so that the mean is 
0.00 and the SD is 1.0) and student composite 
achievement test scores from 8th grade (ACH, also 
converted to z-scores).5  A brief summary of the 
results from SPSS are presented in Table 5.   

  

Table 5. SPSS logistic regression output predicting 
DROPOUT from ACH, SES 

 
B S.E. Wald df Sig. 

Odds 
ratio 

 

ACH -1.174 .055 459.395 1 <.001 .309 

SES -0.857 .054 251.593 1 <.001 .429 

ACH x 
SES 

-.209 .051 16.597 1 <.001 .811 

Constant -3.174 .054 3458.32 1 <.001 .042 

 

As you can see in Table 5, student achievement 
has a significant effect on DROPOUT, in that for 
every one standard deviation increase in 
achievement, the odds of dropping out decreases 
(logit = -1.17, OR= 0.31).  SES also has a significant 
effect, in that for every one standard deviation 

                                                 
5 A brief digression on continuous variables:  I think it is most 
appropriate to convert all continuous variables to z-scores as 
(a) it centers them all at 0, which is valuable when looking at 
interactions, and (b) it converts them all to the same metric so 
that it is more straightforward to compare effects across 
variables. 
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increase in SES, the odds of dropping out decreases 
(logit = -0.86, OR=0.42).  You can see by 
comparing logits6 that ACH has a stronger effect on 
dropout than SES, but there is also a significant 
interaction between achievement and socio 
economic status.  To explore the nature of this 
interaction, we can plot the interaction.  This 
analysis gives us a prediction equation of: 

 
 Logit(Y=1) = -3.174 – 1.174(ACH) -
0.857(SES) -0.209(ACH*SES) 
 

Choosing -2 to represent “low” and +2 to 
represent  “high” for both IVs (again, because they 
are z-scores, that represents 2 SD below and 2 SD 
above the mean, which are reasonable to graph), we 
produce the following predicted logits, presented in 
Table 6 and graphed in Figure 2.   

 

As you can see in Figure 2, logits remain 
relatively high for low SES students while logits 
drop for high SES students.  High achieving 
students tend to have lower logits and the effect of 
SES appears to be stronger on them.  From this 
graph, we would say that the natural log of the odds 
of dropping out tends to decrease as family SES 
increases, but that effect appears to be stronger for 
high achieving students.  One of the things that is 
striking is about this graph is that low-SES students 
appear to drop out at relatively high rates regardless 
of achievement, and that for high-SES students, 

                                                 
6 Which is only possible because all continuous variables were 
standardized as z-scores 

there appears to be a large gap between low- and 
high-achieving students.   

What is striking about this graph is that it does 
not necessarily reflect what one sees in actual 
probabilities of dropout.  The same data, graphed in 
0.5 standard deviation increments and graphed in 
dropout probabilities separately by high- and low- 
achieving students (merely grouped into those 
below the mean and those above the mean for 
purposes of this exploration;  note that there were 
too few high-achieving students at -2 SD or lower to 
graph) reveals a more intuitive and very different 
picture.  
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Figure 2: Interaction of achievement and family 
SES in logits 
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Figure 3: Observed probability of dropout 

Table 6. Predicted logits and conversion to predicted 
probabilities 

Group  
Predicted 

Logits 
Odds 
Ratio 

Conditional 
Prob 

Low ACH, Low SES 
 

 
0.088 1.092 0.522 

Low ACH, High SES 
 

 
-1.74 0.176 0.149 

High ACH, Low SES 
 

 
-3.008 0.049 0.047 

High ACH, High SES 
 

 
-8.036 0.00032 0.00032 
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Converting Figure 2 to a more 
interpretable metric 

I believe this highlights a second issue in using 
logits as a metric in graphing:  logarithms can 
minimize very large differences (in log10 for 
example, the difference between 1000 and 10 is the 
difference between 3 and 1) and can also make small 
differences apparently large, especially as numbers 
asymptote toward 0 (in log10 again the difference 
between 0.01 and 0.000001 is the difference 
between -2 and -6).  In other words, logits can make 
what for our purposes are very small differences in 
probabilities and make them look large, when 
graphed, and can minimize what are large 
magnitudes of difference.  In the observed data, 
there is a real difference between high- and low-
achieving students in dropout rates, and there is a 
real effect of family SES.  Furthermore, there is an 
interaction between the two, but looking at the 
actual probabilities of dropout, it appears that 
achievement becomes more important as family 
SES decreases, and less important as family SES 
increases, which is a bit different than what we 
would conclude from Figure 2, looking at logits.   

In Table 6 I have a brief summary of the 
calculations I used to convert these four logits to 
conditional probabilities, using the shortcut equation 
presented above.   

Conditional probability of (Y=1) =  

The same data converted to predicted 
probabilities (rather than logits) are presented in 
Figure 4.  In my opinion, Figure 4 is a much better 
representation of the pattern of dropout in the 
observed data, and at the same time is easier for 
readers to interpret.  For example, high achieving 
students have a lower probability of dropout 
regardless of SES, and low-achieving students have 
higher probability of dropout regardless of SES, but 
that difference is substantially more magnified for 
lower-SES students than for high-SES students.  
This interpretation is more closely aligned with the 
actual data.  Further, the predicted probabilities are 
not far from the actual probabilities at -2 and 2 SD.  

If I had modeled a curvilinear relationship it is likely 
that the observed dropout probabilities would have 
been closer to the predicted dropout probabilities. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

Low SES High SES

low
ACH

High
ACHP
ro

b
ab

ili
ty

 o
f 

d
ro

p
p

in
g 

o
u

t

 

Figure 4: Interaction of achievement and SES 
predicting dropout graphed as probabilities 

 

Summary 

Once you understand some simple math of 
probability, odds, and logits, and how to convert 
between them, it becomes relatively straightforward 
to present the results from logistic regression 
analyses (particularly graphs) in metrics that 
consumers of your research can easily understand—
conditional probabilities.   

This is just one simple example, and it may not 
always make sense to make this conversion from 
logit to predicted probability.  I think in the social 
sciences, it is more likely that this is a useful way to 
present the data, but researchers need to be 
thoughtful and careful about making decisions in 
presenting their data and results so that it is most 
easily understood and most likely to accurately 
represent the data to the reader. 
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