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This paper provides a conceptual, empirical, and practical guide for estimating ordinal reliability coefficients 
for ordinal item response data (also referred to as Likert, Likert-type, ordered categorical, or rating scale item 
responses). Conventionally, reliability coefficients, such as Cronbach’s alpha, are calculated using a Pearson 
correlation matrix. Ordinal reliability coefficients, such as ordinal alpha, use the polychoric correlation matrix 
(Zumbo, Gadermann, & Zeisser, 2007). This paper presents (i) the theoretical-psychometric rationale for 
using an ordinal version of coefficient alpha for ordinal data; (ii) a summary of findings from a simulation 
study indicating that ordinal alpha more accurately estimates reliability than Cronbach’s alpha when data 
come from items with few response options and/or show skewness; (iii) an empirical example from real data; 
and (iv) the procedure for calculating polychoric correlation matrices and ordinal alpha in the freely available 
software program R. We use ordinal alpha as a case study, but also provide the syntax for alternative 
reliability coefficients (such as beta or omega). 

 
Reliability is an important source of evidence when 

establishing the validity of the inferences one makes 
based on scores from tests and measures (e.g., Kane, 
2006; Zumbo, 2007). Throughout, we use the term ‘test’ 
to refer to any type of quantitative, multi-item 
measurement, such as tests, scales, and surveys in the 
social sciences. There are, of course, multiple definitions 
and types of reliability (e.g., internal consistency, retest, 
inter-rater), and multiple ways of obtaining reliability 
coefficients or indices (e.g., via different estimation 
methods and by using correlation or covariance 
matrices). Given the importance and the complexities of 
the concept(s) of reliability, the field has witnessed 
recurring debates on the interpretations and purposes of 
different types of reliability, on the advantages and 
disadvantages of different reliability indices, and on the 
methods for obtaining them (e.g., Bentler, 2009; Cortina, 
1993; Revelle, & Zinbarg, 2009; Schmitt, 1996; Sijtsma, 
2009).  

A topic that has attracted particular attention in the 
psychometric literature is Cronbach’s alpha (Cronbach, 
1951), which remains the most widely and frequently 
used reliability index (Sijtsma, 2009). Some of this 

attention has been motivated by the fact that Cronbach’s 
alpha has repeatedly been misinterpreted and misused 
(cf. Cortina, 1993; Schmitt, 1996; Sijtsma, 2009)—as 
noted by Cronbach himself (2004). In addition, some of 
the attention has centered on the question of whether 
there are some alternative reliability coefficients, such as 
omega, that may be more appropriate under certain 
circumstances (Revelle & Zinbarg, 2009; Zinbarg, 
Revelle, Yovel, & Li, 2005). 

Some of the debates on reliability indices and on 
Cronbach’s alpha have been fairly technical, including 
Cronbach’s original paper (1951; see also, for example, 
Bentler, 2009; Green & Yang, 2009a, 2009b; Lord & 
Novick, 1968; Sijtsma, 2009). The implications of those 
technical debates are, however, not just of interest to a 
technical audience, but are critically relevant to 
practitioners and researchers in the social sciences in 
general. In fact, using Cronbach’s alpha—or any other 
reliability coefficient—under circumstances that violate 
its assumptions and/or prerequisites might lead to 
substantively deflated reliability estimates (e.g., Gelin, 
Beasley, & Zumbo, 2003; Maydeu-Olivares, Coffman, & 
Hartmann, 2007; Osburn, 2000). A substantively deflated 
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estimation of a test’s reliability, in turn, might potentially 
entail some misinformed inferences, such as discarding a 
test due to its seemingly low reliability.  

 

Purpose of the paper 
In this paper, we provide a tutorial for when and 

how to calculate ordinal reliability coefficients—rather 
than non-ordinal coefficients, such as Cronbach’s 
alpha—for the very common scenario that one’s data 
come from measurements based on ordinal response 
scales (e.g., rating scales or Likert-type response formats).  

We focus on ordinal alpha, which was introduced by 
Zumbo, Gadermann, and Zeisser (2007), and which was 
shown to estimate reliability more accurately than 
Cronbach’s alpha for binary1 and ordinal response scales. 
We focus on alpha because it is the most widely used 
reliability coefficient, and because it is useful to use a 
familiar scenario as a concrete example. We note, 
however, that our discussion applies to other reliability 
coefficients as well. In other words, the rationale for 
using an ordinal version of a reliability coefficient is not 
restricted to alpha, but is equally valid for other reliability 
coefficients, such as McDonald’s omega or Revelle’s beta 
(please see Zinbarg et al. (2005) for a description of the 
omega and beta reliability coefficients). 

The main purpose of this paper is to (i) provide 
researchers and practitioners with the psychometric and 
conceptual rationale for when, why, and how to use 
ordinal reliability coefficients, (ii) present an empirical 
example that illustrates the degree to which Cronbach’s 
alpha and its ordinal equivalent can differ, and (iii) 
present step-by-step practical instructions and an 
example for how to compute ordinal alpha and other 
reliability coefficients, such as ordinal beta and ordinal 
omega, in the freely available software package R 
(http://www.R-project.org).  

 
Coefficient alpha for ordinal data: 

psychometric rationale 
Ordinal alpha is conceptually equivalent to 

Cronbach’s alpha. The critical difference between the 
two is that ordinal alpha is based on the polychoric 
correlation matrix, described in detail below, rather than 
the Pearson covariance matrix, and thus more accurately 
estimates alpha for measurements involving ordinal data. 

                                                 
1 A special case of coefficient alpha is KR-20, which is 
computed from binary data. 

In general, the computation of coefficient alpha 
involves the matrix of correlations or covariances among 
all items of a scale. For Cronbach’s alpha, the Pearson 
covariance matrix is routinely used; for example, as a 
default in statistical software programs, such as SPSS and 
SAS. An important assumption for the use of Pearson 
covariances is that data are continuous, and if this 
assumption is violated, the Pearson covariance matrix 
can be substantively distorted (e.g., Flora & Curran, 
2004). In social science measurement, it is very common 
to use the Likert-type item response format. (For 
example, respondents are asked to indicate their level of 
agreement with an item by choosing one of a given 
number of ordered response categories, e.g., with five 
categories ranging from ‘strongly agree’ to ‘strongly 
disagree’.) The data arising from such items are not 
continuous, but ordinal; however, they are often treated 
as if they were continuous; that is, they are treated “as if 
the data had been measured on an interval scale with 
desired distributional properties” (p. 443, Olsson, 1979).  

It has been shown that the Pearson correlation 
coefficient severely underestimates the true relationship 
between two continuous variables when the two 
variables manifest themselves in a skewed distribution of 
observed responses. A tetrachoric/polychoric 
correlation, on the other hand, more accurately estimates 
the relationship of the underlying variables (Carroll, 
1961). Accordingly, for ordinal data, the method of 
choice is to use the polychoric correlation matrix. Based 
on this argument, Zumbo et al. (2007) introduced a 
coefficient alpha for ordinal data—ordinal alpha—that is 
derived from the polychoric correlation matrix.  

It needs to be noted that ordinal alpha, in line with 
the longstanding psychometric tradition of interpreting 
ordinal responses as manifestations of an underlying 
variable, is focusing on the reliability of the unobserved 
continuous variables underlying the observed item 
responses. Using a polychoric matrix for calculating 
alpha thus represents an underlying variable approach to 
covariance modeling of ordinal data. That is, when using 
a polychoric correlation matrix, an item’s observed 
responses are considered manifestations of respondents 
exceeding a certain number of thresholds on that item’s 
underlying continuum. Conceptually, the idea is to 
estimate the thresholds and model the observed cross-
classification of response categories via the underlying 
continuous item response variables. Formally, the 
observed ordinal response for item j with C response 
categories, where the response option c = 0, 1, 2, …, C-1, 
is defined by the underlying variable y* such that  
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cy j =    if   1
*

+<< cjc y ττ , 

where 1, +cc ττ are the thresholds on the underlying 
continuum, which are typically spaced at non-equal 
intervals and satisfy the constraint 

∞=<<<<=∞− − cc ττττ 110 L . The underlying 
distribution does not necessarily have to be normally 
distributed, although it is commonly assumed so due to 
its well understood nature and beneficial mathematical 
properties (cf. Liu, Wu, & Zumbo, 2010).  

In summary, ordinal reliability coefficients may 
differ from their non-ordinal counterparts because of 
their scaling assumptions. The non-ordinal coefficients 
focus on the reliability of the observed scores by treating 
the observed item responses as if they were continuous, 
whereas the ordinal coefficients focus on the reliability of 
the unobserved continuous variables underlying the 
observed item responses. In this way, the ordinal 
coefficients are nonparametric reliability coefficients in a 
nonlinear classical test theory sense (Lewis, 2007). 

 
Review of findings from a simulation study 

Zumbo et al. (2007) present findings from a 
simulation study that compared ordinal alpha and 
Cronbach’s alpha for all combinations of the following 
conditions:  

(i) The theoretical reliability of a test was simulated 
so that it was .4, .6, .8, or .9. As Zumbo et al. 
(2007) note, the theoretical reliability was 
determined in reference to the underlying 
continuum of variation. 

(ii) The number of response options of the items was 
set to 2, 3, 4, 5, 6, or 7. 

(iii) The amount of skewness of the data was set to 0 
or –2.  

For all conditions, the number of items (p) was set 
to 14. We reanalyzed the data from Zumbo et al.’s (2007) 
simulation study, which invoked a paradigm introduced 
by Zumbo and Zimmerman (1993), specifying the 
underlying continuous scale as the reference for the 
theoretical reliability. Figure 1 illustrates the degree of 
underestimation of the theoretical reliability by 

Cronbach’s alpha and ordinal alpha, for those different 
conditions, respectively. In Figure 1, the degree to which 
ordinal alpha as well as Cronbach’s alpha accurately 
estimate or underestimate the theoretical reliability of the 
underlying variable is illustrated in terms of an attenuation 
index, which is calculated by the following formula 
(Equation 1):  

Percent attenuation    =    [100 * (alpha – theoretical 
reliability) / theoretical reliability)] 

In equation 1, alpha denotes either ordinal alpha or 
Cronbach’s alpha. When alpha is equal to the theoretical 
reliability, the term becomes zero, indicating no 
attenuation. The more alpha diverges from the 
theoretical reliability, the closer the term gets to (-100), 
which would indicate the highest possible degree of 
attenuation.  

The graphs in Figure 1 indicate that ordinal alpha 
provides a suitable estimate of the theoretical reliability, 
regardless of (i) the magnitude of the theoretical 
reliability, (ii) the number of scale points, and (iii) the 
skewness of the scale point distributions. The accuracy 
of Cronbach’s alpha, on the other hand, decreases (i) as 
the skewness of the scale items increases, (ii) as the 
number of response options becomes smaller, and (iii) as 
the theoretical reliability of the scale is lower. 

The findings from the simulation study thus 
corroborate the general psychometric recommendation 
to use a polychoric correlation matrix for ordinal data, 
and they indicate that ordinal alpha is an unbiased 
estimator of the theoretical reliability for ordinal data (at 
least for scenarios like or similar to those tested in the 
simulation study). If one assumes that the observed item 
responses are manifestations of a continuous underlying 
item response variable, particular care should be taken in 
the interpretation of Cronbach’s alpha, especially when 
one has very few item response options and/or highly 
skewed observed item responses. In those cases, 
Cronbach’s alpha is a substantially attenuated estimate of 
the lower bound of the reliability of the underlying item 
response variables, whereas ordinal alpha tends to 
estimate this reliability more accurately—as the 
polychoric correlations correct for the attenuation caused 
by the scaling of the items (cf. Carroll, 1961). 
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Illustration of an example 
We now provide an example that illustrates the 

potential for a large discrepancy between ordinal alpha 
and Cronbach’s alpha, using real data. The data are from 
a sample of 43,644 kindergarten children (48% girls; Mage 
= 5.7 years), and were collected with the Early 
Development Instrument (EDI; Janus & Offord, 2007). The 
EDI is a teacher-administered rating scale with 103 
ordinal/binary items on children’s developmental status 
in Kindergarten (see also Guhn, Janus, Hertzman, 2007; 
Guhn, Zumbo, Janus, & Hertzman, 2011). For our 
example, we used data from the physical independence 
subscale of the EDI. This subscale is composed of 3 
binary items, which are scored as 0 (no) and 1 (yes). 
From a statistical point of view, the binary case can be 
thought of as a special case of ordinal data, and therefore 
the same methods apply here. Table 1 shows the means, 

standard deviations, skewness, and kurtosis for the 3 
items. Table 2 shows the Pearson correlations, Pearson 
covariances, and polychoric/tetrachoric correlations for 
the three items, the average correlations/covariance, and 
the respective alphas. Table 3 shows the factor loadings, 
communalities, and uniquenesses for the 3 items, and the 
alphas, calculated based on a factor analysis model, and 
using the matrix of the (i) Pearson correlations, (ii) 
Pearson covariances, or (ii) polychoric correlations2, 
                                                 
2 We note that the term polychoric correlation refers to all 
correlations based on ordinal variables that measure an 
(assumably) continuous underlying variable. In the special case 
that this involves two dichotomous/binary variables, the term 
tetrachoric correlation is used. Because the tetrachoric correlation 
is a special case of the polychoric correlation, calculating a 
polychoric correlation for binary variables is, in fact, equivalent 
to calculating a tetrachroic correlation; see Uebersax, 2006. 
 

 

Figure 1: Percent attenuation of Cronbach’s alpha and ordinal alpha  
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respectively. As can be seen in Table 1, the skewness and 
kurtosis of these three items are very high.  

Table 1: Means, standard deviations, skewness and 
kurtosis of the three items of the physical independence 
subscale of the EDI 

Item 
Would you say this child … 

Mean 
(SD) 

Skew 
(SE) 

Kurtosis
(SE) 

… is independent in 
washroom habits most of the 
time (item 1) 

.98 
(.12) 

-7.9 
(.03) 

59.9  
(.07) 

… shows an established hand 
preference (item 2) 

.98 
(.16) 

-6.1 
(.03) 

34.9  
(.07) 

… is well coordinated (moves 
without running into things) 
(item3) 

.92 
(.28) 

-3.0 
(.03) 

  7.2  
(.07) 

The results in Table 2 illustrate the degree to which 
the polychoric/tetrachoric correlations differ from the 
Pearson correlations in this case. The differences are all 
statistically significant (as tested via a Fisher z-
Transformation; cf., Cohen, Cohen, West, & Aiken, 
2003), and also substantial in their magnitude. If one 
applies the guidelines provided by Cohen (1988), the 
Pearson correlation coefficient for items 1 and 2 
(rPearson=.23) is considered a small-medium effect, whereas 
the size of the polychoric correlation coefficient for the 
same two items (rPolychoric=.63) is considered to indicate a 
large effect. 

Table 2: Polychoric and Pearson 
correlations/covariances, and alphas for the physical 
independence subscale items 

 Items  
1,2 

Items 
1,3 

Items 
2,3 

Average 

Pearson correlation (r) .23 .25 .30 .26
Covariances (cov) .004 .008 .013 .0085
Polychoric/tetrachoric 
correlation3 (r) 

.63 .65 .68 .65
 

 Item 1 Item 2 Item 3
Variances (var) .015 .024 .074 .038
Standardized alpha α = (k* raverage)/(1+(k-1) * raverage) = 

(3*.26)/(1+(3-1)*.26) = .51 
Cronbach’s (raw) alpha α = (k* covaverage)/(var+(k-1) * covaverage) 

= (3*.0085)/(.038+(3-1)*.0085) = 
.46  

Polychoric ordinal 
alpha                                

α = (k* raverage)/(1+(k-1) * raverage) = 
(3*.65)/(1+(3-1)*.65) = .85 

k: number of items in the scale 

                                                 
3 Polychoric covariances are equal to polychoric correlations, 
as they are based on standardized variables. 

Table 3 shows that, for this example, the factor 
loadings (λ) obtained from a factor analysis of the 
Pearson correlation or covariance matrices are 
substantially lower than those obtained from a 
polychoric correlation matrix. Correspondingly, these 
differences are reflected in the communalities (h2) and 
uniquenesses (u2). In some cases, differences in Pearson-
based loadings versus polychoric correlation-based 
loadings might lead to different decisions about which 
items to include or not to include in one’s factor 
model—for example, if item loadings, respectively, fall 
below or above a commonly used convention to only 
consider items with factor loadings greater than .40 
(Ford, MacCallum, & Tait, 1986).  

In addition, ordinal alpha and Pearson covariance-
based (Cronbach’s/raw) alpha are substantially different 
(.46 versus .85, respectively), with a percent attenuation 
of (-46). (The table provides the factor model-based 
formula for the 1-factor model for calculating alpha4; cf. 
McDonald, 1985). Typically, the psychometric literature 
(e.g., Nunnally, 1978) recommends that alpha for a scale 
should not be smaller than .70 when used for research 
purposes, at least .80 for applied settings, and greater 
than .90 or even .95 for high-stake, individual-based 
educational, diagnostic, or clinical purposes. In our 
example, interpreting the reliability of the physical 
independence scale by using ordinal versus Cronbach’s 
alpha would make a difference with regard to these 
conventional recommendations. 

General procedure for computing ordinal 
reliability coefficients in R 

To calculate ordinal reliability coefficients, one 
needs to estimate a polychoric correlation matrix, and 
then calculate the reliability coefficient from the 
polychoric correlation matrix. In this paper, we show 
how to calculate these steps in the statistical software 
package R (R Development Core Team, 2011). There are 
alternative options for obtaining ordinal reliability 
coefficients, but the procedure in R has the following 
advantages: (1) Recent advancements and newly installed 
applications in R (Fox, 2005, 2006, 2011; Revelle, 2011) 
allow one to obtain polychoric correlations, ordinal 
reliability coefficients, and corresponding (ordinal) item 
statistics in a few simple steps; (2) R can be downloaded 
for free, and can be installed for Windows, Unix (Macs), 

                                                 
4 By using this formula, readers who obtain the polychoric 
correlation matrix in MPlus or PRELIS/LISREL (via a 1-
factor EFA with categorical data, see syntax in Elosua Oliden 
& Zumbo, 2008) may calculate ordinal alpha.  
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and Linux operating systems; (3) A graphic user interface 
developed for R—R Commander (Fox, 2005, 2006)—
allows one to easily import data files in textfile, URL, 
clipboard, Minitab, SPSS, or Stata format into R; (4) The 
procedures to obtain polychoric correlation matrices in 
(proprietary) software programs—such as MPlus, SAS, 
Stata, and PRELIS/LISREL—involve more elaborate 
syntax (or additional macros) 5, and/or one would have 
to calculate ordinal reliability “by hand” once the 
polychoric correlation matrix is obtained; (5) Some 
widely used statistical software packages (e.g., SPSS) do 
not produce a polychoric correlation matrix.  

We note that one limitation of using ordinal 
reliability coefficients may arise from the procedure with 
which the polychoric correlation matrix is calculated: 
Depending on the nature of the data as well as on the 
estimation method that is employed (i.e., whether 
correlations are calculated pair-wise for variables or 
simultaneously for the entire matrix), the correlation 
matrix may be non-positive definite which is not an issue 
when one calculates the Pearson correlation matrix from 
the same data, in the case of no missing data (Rigdon, 
1997; Wothke, 1993). We note that R simultaneously 

                                                 
5 For example, for SAS, see 
http://www.ats.ucla.edu/stat/sas/faq/tetrac.htm, and for 
STATA, see 
http://www.ats.ucla.edu/stat/stata/faq/tetrac.htm.  
 

estimates polychoric correlations from the entire data 
matrix, and we did not encounter this problem with the 
data used for this study. However, this limitation may 
arise in other software environments (i.e., with other 
estimation methods) or with other data. On that note, it 
should also be mentioned that the estimation of 
polychoric correlation matrices for scales containing a 
relatively large number of items may require substantial 
time/computer processing power. 

In the remainder of the paper, we provide an 
example for how to calculate ordinal reliability 
coefficients with a data set that is included in the R 
software. We also provide instructions for preparing and 
importing data from other sources into R, so that 
researchers can easily calculate ordinal reliability 
coefficients in R for data files that already exist in the 
databases of their respective software programs.  

R can be downloaded at the R website, 
http://www.R-project.org. Appendix A provides a 
description for downloading and installing R, and lists a 
number of useful online resources. Once R is 
downloaded, starting R will open the R menu and 
console, and one can install and load so-called R 
packages—installing specific packages will allow one to 
conduct specialized analyses, such as, in our case, 
calculating polychoric correlation matrices, ordinal 
reliability coefficients, and ordinal item statistics. The 
packages that need to be installed for our purpose are 
psych (Revelle, 2011), and GPArotation (Bernaards & 

Table 3: Item characteristics, ordinal alpha, Cronbach’s alpha, and discrepancy 
 Pearson correlation matrix Pearson covariance matrix  Polychoric matrix 
 λ h2 u2 λ h2 u2 λ h2 u2 
Item 1 .44 .19 .81 .46 .21 .79 .78 .60 .40 
Item 2  .53 .29 .71 .49 .24 .76 .81 .66 .34 
Item 3 .57 .32 .68 .48 .23 .77 .84 .71 .29 
Average .51 .27 .73 .475 .23 .77 .81 .66 .34 

Formula for alpha based on a 1-factor model (cf. McDonald, 1985) 
α = [ k / (k-1) ] * [ ( k * (λaverage)2 – h2average ) / ( k * (λaverage)2 + u2average ) ] 

Standardized αPearson correlations  [ 3/(3-1) ] * [ ( 3*(.51)2 – .27 ) / ( 3*(.51)2 + .73 ) ]  = .51  

Cronbach’s (raw) αPearson covariances [ 3/(3-1) ] * [ (3*(.475)2 – .23 ) / (3*(.475)2 +.77 ) ]  = .46 

Ordinal αpolychoric correlations [ 3/(3-1) ] * [ ( 3*(.81)2 – .66 ) / ( 3*(.81)2 + .34 ) ]  = .85 

Percent attenuation:  (100 * (Cronbach’s alpha – Ordinal alpha) / ordinal alpha) = (100 * (.46 - .85)/.85) = - 46 
λ: Factor loading;  h2: Communality (for a 1-factor model h2 = λ2);  u2: Uniqueness (u2 = 1 - h2);  k: number of items on the scale 
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Jennrich, 2005). Once R and the required packages 
within R have been installed and loaded, we suggest 
closing R, and opening a new session, so that the 
following example can be replicated by readers in a 
manner that represents a typical new session in R.  

In Appendix B, we present the syntax that needs to 
be typed (not copied and pasted6) into the R console 
(which opens when R is started) to run the example. 
Please note that (i) the syntax is entered after the greater-
than sign (>) that always appears on the last line of the R 
console (i.e., the syntax file), (ii) R is case sensitive, and 
(iii) the return key needs to be pressed at the end of each 
syntax command to run the command. Please also note 
that the #-signs in our example are not part of the 
syntax, but simply indicate that we inserted an 
explanatory comment. In the syntax, bolded font 
indicates necessary steps, and regular font indicates steps 
that are optional, but will help to obtain commonly 
requested information in the context of calculating 
ordinal reliability coefficients. 

 

Importing data into R via the graphic user 
interface R Commander 

Once the R package Rcmdr has been installed and 
loaded, the syntax command library (Rcmdr), entered into 
the R console, will open the graphic user interface, R 
Commander (see Fox, 2005 for a tutorial on R 
Commander). R Commander lets you import data in the 
following file formats: url, textfile (e.g., ASCII), 
clipboard, SPSS/PASW, Stata, and Minitab. Here, we 
briefly delineate the procedure for importing an SPSS 
file: In the menu of the graphic user interface R 
Commander, which is located on the top, click on ‘Data’, 
then on ‘Import data’, and then on ‘from SPSS data 
set…’. In the window that opens (‘Import SPSS Data 
Set’), highlight the word ‘Dataset’ (in the box ‘Enter 
name for data set’), choose and type a name under which 
you wish to save the dataset to be imported (e.g., mydata), 
and click ‘OK’. This opens your computer’s directory. 
Choose the dataset to be imported (e.g., spssdatafile.sav), 
and click on ‘Open’. Please note that unless one wishes 
to create a new data frame7 in R, (i) the imported dataset 

                                                 
6 Please note that copying syntax into the R console sometimes 
leads to error messages. 
7 It is possible to import data sets, and to then create subsets—
so-called data frames (using the syntax command data.frame—
in R, in order to conduct analyses, such as calculating ordinal 
alpha, for a subset of the imported items/data (see, e.g., 
http://cran.r-project.org/doc/manuals/R-intro.html)).  

should only contain the items of the scale for which the 
reliability coefficient(s) is to be computed, (ii) the items 
should have ordinal data with consecutive numbers (e.g., 1, 2, 
3; or 0, 1, 2, 3, 4)—so if, for example, an ordinal variable 
is coded as 10, 20, 30, 40, 50, it should be recoded to 1, 
2, 3, 4, 5; otherwise, R will produce erroneous results, (iii) 
item labels should be a maximum of 8 characters long, 
(iv) the SPSS column ‘Values’ should be set to ‘None’ for 
all items (so that all values are displayed as numbers, not 
as text/response categories), (v) the SPSS column 
‘Missing’ should be set to ‘None’ for all items, (vi) 
missing data should be empty cells (in R, cells with 
missing data will then appear as NA), not numerical 
values, such as 88 or 999, and (vii) the SPSS column 
‘Measure’ should be set to ‘Ordinal’. Once the data file is 
imported, clicking on ‘View data set’ in the menu will 
display the imported data file. As a last step, entering the 
syntax command attach (mydata) into the R console will 
attach the imported data set (in this case, mydata) to the 
current R session. Then, the syntax for calculating 
ordinal reliability coefficients, as described above, can be 
used for the imported dataset. 

 

Conclusions 
We recommend considering ordinal, polychoric 

correlation-based versions of reliability coefficients, such 
as alpha or omega, when one’s data are binary and/or 
ordinal—that is, from Likert-type or mixed items, with 2 
to 7 response options. In so doing, one invokes an 
underlying continuous variable for each item and the 
reliability coefficient is then defined by the covariation 
among these underlying variables. In this light, it is useful 
to think of the tetrachoric and polychoric strategy as akin 
to a data transformation, so that one is quantifying the 
reliability of the item response data in this transformed 
metric.  

This recommendation is in line with general current 
thinking in the psychometric literature about using 
polychoric correlations for ordinal data (cf., Flora & 
Curran, 2004). Also, since the introduction of ordinal 
alpha by Zumbo et al. (2007), the use of a polychoric 
correlation-based version of alpha for ordinal or binary 
data has been applied elsewhere (e.g., Bentler, 2009, 
Green & Yang, 2009a). We reiterate that the strategy of 
using the polychoric correlation could be applied to any 
reliability estimate that can be computed from a 
correlation matrix. We provided the R syntax for alpha 
and alternative reliability coefficients, such as omega, but 
it needs to be noted that one could also compute an 
ordinal version of generalizability theory (e.g., G 
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coefficients) or test-retest reliability by using the 
polychoric correlation with the respective equations.  

For future research, it will be of particular interest 
to better understand the interdependent, interacting 
effects that a scale’s number of items, number of item 
response options, skewness, kurtosis, and factor 
structure have on ordinal alpha and Cronbach’s alpha, 
and the discrepancy between them. Our data suggest a 
diminishing return model with regard to the number of 
items and number of response options, and also indicate 
that item skewness is associated with the attenuation of 
Cronbach’s alpha. However, the exact nature of the 
multivariate relationship between these factors remains 
to be determined. 

We would like to conclude with a note of caution 
and with an endorsement of a unitary, holistic approach 
to validation. In a recent review (Cizek, Rosenberg, & 
Koons, 2008), it was found that a majority of articles in 
the social sciences that report on the ‘validity’ of tests 
rely on none (7%), one (29%), or two (33%) sources of 
evidence for ‘validity’. Cronbach’s alpha is the most 
commonly reported piece of validity evidence for tests 
(reported in 76% of the cases). This practice is not in line 
with current recommendations provided by the large 
scientific and professional associations in the 
psychological and educational fields (e.g., American 
Educational Research Association, American 
Psychological Association, & National Council on 
Measurement in Education, 1999). Furthermore, such 
practice is not in line with current scholarly thinking in 
the areas of reliability analysis, generalizability theory 
(Cronbach, Gleser, Nanda, & Rajaratnam, 1972; see also 
Brennan, 2001; Shavelson & Webb, 1991; Shavelson, 
Webb, & Rowley, 1989), and holistic perspectives on 
validity theory (e.g., Lissitz, 2009; Zumbo, 2007). Rather, 
a unitary, holistic perspective on validity emphasizes the 
importance (i) of uncovering and understanding multiple 
sources of measurement variance, and (ii) of validating 
the interpretations, meanings, inferences, and social consequences 
that are attributed to or based on measurement scores. In 
line with this thinking, we recommend using ordinal 
reliability coefficients for binary and Likert-type and 
mixed response data as one of several sources of 
information on a scale’s reliability and validity. 
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Appendix A 
Downloading and installing R and loading the R packages pscyh and Rcmdr 

R can be downloaded from the R website, at http://www.r-project.org/. The website provides background information 
on the R project, manuals, a FAQ page, the open access journal The R Journal, and links to multiple additional resources (e.g., R 
search; R conferences; related projects; see also Revelle, 2009a, and 2009b). The software can be downloaded by clicking on 
CRAN mirror, in the box Getting started. This opens the site CRAN Mirrors, on which users can choose an URL that is close to 
one’s (geographic) location. Clicking on the link for your location will open a page containing a text box entitled Download and 
Install R. Here, users may choose the “precompiled binary distributions of the base system and contributed packages” for 
Linux, Mac OS X, and Windows. Mac users, after clicking on Mac OS X, can download R under Files, by clicking on R-
2.##.#.pkg (latest version). Please note that you can choose between a 32- and a 64-version, and that this choice depends on the 
settings—under Applications  Utilities  Terminal—of your computer. Please refer to the frequently asked questions section, 
under the hyperlink R for Mac OS X FAQ, at http://cran.stat.sfu.ca/bin/macosx/RMacOSX-FAQ.html. Windows users can 
download R, by clicking on Windows, and then on base.  

Once R is installed, starting R opens the R menu and console, and the R packages and their dependencies that one needs for 
specific calculations—in our case, Rcmdr, psych, and GPArotation, and their dependencies—can be installed by clicking on the 
menu option Packages & Data, choosing Package Installer, and then clicking on Get List. In the list, highlight the needed package, 
and install it by checking the boxes At System Level (or At User Level) and Install dependencies, and by clicking Install Selected. Once 
R packages are installed and loaded, they become part of the R environment. However, every time R is started for a new 
session, and one wishes to use one of the packages, one needs to type in the syntax library, and specify the name of the package 
in parentheses—e.g., library (psych). For each package, users may open and/or download a pdf-format user manual 
(www.personality-project.org/R/psych.manual.pdf for the psych package; and http://cran.r-
project.org/web/packages/Rcmdr/Rcmdr.pdf for the R Commander;), and the R help function allows one to open package-
specific information in the R help window (by entering ??psych or ??Rcmdr into the R console, and then clicking on the 
respective package name in the list of help topics). 

Please note that R is an open source software program environment that develops quickly. Our syntax was developed and 
tested for R 2.14.0 (32 bit version) on a computer with a Mac OS X 10.6.8 and on a computer with a Windows 7 operating 
system.  
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Appendix B 

Syntax for calculating ordinal alpha and other ordinal reliability coefficients in R 

library(psych)  # This activates the R package8 ‘psych’ (Revelle, 2011) for the 
current session in R. 

data(bfi) # This loads the dataset bfi contained in the R package psych. 
attach(bfi) # This attaches the dataset bfi to the current session in R. 
bfi5items<-data.frame(N1,N2,N3,N4,N5) # This creates a new dataset, labeled bfi5items, containing only five 

(ordinal) variables, N1 to N5, of the original 15-item dataset bfi. 
describe(bfi5items)  # This describes the dataset bfi5items, providing descriptives, such 

as n, mean, sd, min, max, range, skew, and kurtosis.  
bfi5items # This displays the object/dataset called bfi5items. 
polychoric(bfi5items) # This provides the polychoric correlation matrix for the dataset 

bfi5items. 
cor(bfi5items, y=NULL, 
use="complete.obs", method=c("pearson”)) 

# This calculates the Pearson correlation matrix for the dataset 
bfi5items, only taking into account cases with complete data 
(“complete.obs”). 

cov(bfi5items, y=NULL, 
use="complete.obs", method=c("pearson”)) 

# This calculates the Pearson method covariance matrix for the 
dataset bfi5items, only taking into account cases with complete data 
(“complete.obs”). 

skew(bfi5items) # This provides the skewness for all items in the bfi5items dataset. 
kurtosi(bfi5items) # This provides the kurtosis9 for all items in the bfi5items dataset. 
scree(bfi5items) # This provides the scree plots of the eigenvalues for a factor 

analysis and a principal component analysis for the dataset 
bfi5items. 

examplename<-polychoric(bfi5items)  # This saves the polychoric correlation matrix, and 
corresponding tau values, under the name examplename. You may 
choose any name to save the matrix. (Note: R will not produce 
any output for this step.) 

alpha(examplename$rho) # This provides (raw and standardized) alpha, and corresponding 
item statistics, based on the data set or matrix that is specified in 
brackets. (The $rho command specifies that only the correlation 
matrix is used for the calculation, disregarding the tau values that 
are saved in conjunction with the matrix.) In the output of this 
calculation, alpha represents ordinal alpha, because it is based on 
the polychoric correlation matrix for the bfi5items dataset saved 
under the name examplename. One should obtain the following 
results as part of the R output: raw_alpha = .84; std.alpha = .84; 
average_r = .51. (Please note that raw alpha and standardized alpha 
are the same when they are calculated from a correlation matrix.) 

alpha(bfi5items) # This provides raw/Cronbach’s and standardized alpha of the 
object specified in brackets. In this case, the object is a data 

                                                 
8 As stated in the previous section, a package in R has to be installed once first, before it can be loaded for a current session in R. Please 
refer to Appendix A. 
9 Please note that, in R, the command for kurtosis is spelled without the final ‘s’ (i.e.: kurtosi). 
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matrix (bfi5items), and R therefore calculates raw/Cronbach’s and 
standardized alpha, respectively, from the Pearson covariance and 
the Pearson correlation matrices of the data set. This step, in 
combination with the previous one, will allow one to compare 
ordinal alpha with raw/Cronbach’s alpha. One should obtain the 
following results as part of the R output: raw_alpha = .81; std.alpha 
= .81; average_r = .47. 

fa(bfi5items) # This provides the factor loadings (MR1), communalities (h2), 
and uniquenesses (u2) for a 1-factor solution of the bfi5items data 
matrix. 

fa(examplename$rho) # This provides the factor loadings (MR1), communalities (h2), 
and uniquenesses (u2) for a 1-factor solution of the polychoric 
correlation matrix that was saved under the name examplename. 

guttman(examplename$rho)  # This provides alternative estimates of reliability for the data 
matrix that is specified in brackets (i.e., examplename$rho). In the 
R output, these estimates are labeled as beta, Guttman bounds 
L1, L2, L3 (alpha), L4 (max), L5, L6 (smc), TenBerge bounds 
mu0, mu1, mu2, mu3, alpha of the first PC (=principal 
component), and the “estimated greatest lower bound based upon 
communalities”. Since the specified data matrix is, in this case, a 
polychoric correlation matrix, all the reliability estimates represent 
ordinal versions. (We note that the guttman syntax command 
includes alpha (=L3) as one of the reliability estimates—however, 
the alpha syntax command provides additional item 
characteristics, such as the item-total correlations, that may be of 
interest to the user.) 

 [Further details and references with regard to the different 
reliability coefficients featured in the guttman command can be 
found in Revelle, 2011.]  

guttman(bfi5items) # Equivalent to the command above, this provides a list of 
alternative estimates of reliability for the data matrix specified in 
brackets. Since bfi5items is a raw data matrix, the reliability 
estimates represent, in this case, Pearson correlation based 
reliability estimates.  

omega(examplename$rho) # This provides the ordinal versions of the reliability coefficients 
omega (hierarchical, asymptotic, and total), because their 
calculation is based on the polychoric correlation matrix 
‘examplename’.  

omega(bfi5items) # This provides omega coefficients for the data matrix bfi5items. 
(For details, see Revelle, 2011.) 
 

Bolded font indicates necessary steps, and regular font indicates steps that are optional, but will help to obtain 
commonly requested information in the context of calculating ordinal reliability coefficients. 
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