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A vertical scale, in principle, provides a common metric across tests with differing difficulties (e.g., spanning 
multiple grades) so that statements of absolute growth can be made. This paper compares 16 states’ 2007-2008 
effect size growth trends on vertically scaled reading and math assessments across grades 3 to 8. Two patterns 
common in past research on vertical scales, score deceleration (grade-to-grade growth that decreases over 
time) and scale shrinkage (variability in scale scores that decreases from lower to higher grades), are 
investigated. Pervasive, but modest, patterns of score deceleration are found for both math and reading. 
Limited evidence of scale shrinkage was found for reading, and virtually no evidence was found for math.  In 
addition, linear regression was used to show that little of the considerable variability in the growth effect sizes 
across states could be explained by readily identifiable characteristics of the vertical scales. However, many 
scale characteristics were not well documented in available technical reports. The most important of these 
characteristics, along with their implications for interpretations of growth, are discussed. The results serve 
both as a normative baseline against which other scaling efforts can be compared.  

 

American states and their school districts are 
increasingly implementing accountability policies that 
focus not only on levels of student achievement, but also 
on growth.  To some extent this represents a reaction to a 
flaw in the No Child Left Behind legislation, something 
that seems to have been at least tacitly acknowledged by 
the federal government when it initiated the Growth 
Model Pilot Project in 2005 (U.S. Department of 
Education, 2005).  The requirement for “clear approaches 
to measuring student growth” (U.S. Department of 
Education, 2009, p. 9) in the Race to the Top (RTTT) 
competition suggests that growth modeling will play a 
prominent role when the Elementary and Secondary 
Education Act is eventually reauthorized.  This move 
towards growth modeling implies a desire to make absolute 
statements about how much any given student has learned 
in the subject domains of math and/or reading from one 
grade to the next.  Such statements can only be directly 
supported when test scores have been vertically scaled.  

A vertical scale places the scores of different tests 
onto a common metric so that, in principle, comparisons 
can be made between scores that span multiple grade 
levels. At present, two of the assessment consortia that 
were funded through RTTT grants are either considering 
(Partnership for the Assessment of Readiness for College 
and Careers), or are committed to (Smarter-Balanced) the 
development of vertical scales.  One of the main 
motivations for to the development of these vertical scales 
is to support direct inferences about student growth. 
Although many states have already applied the 
methodology of vertical scaling to their assessment 
systems, it is not always clear whether this is being done 
with an eye toward modeling growth.  To date there have 
been no efforts made to compare, across states, the 
patterns of growth in math and reading that are implied by 
preexisting vertical scales.  This stands in stark contrast to 
the periodic efforts made to rank and compare states with 
regard to the obtained levels of student academic 
achievement (e.g., state NAEP results). 
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In this paper, we use vertically scaled test scores from 
students in 16 states during the 2007-08 school year to 
compare trends in grade to grade growth, in an effect size 
metric.  As part of this comparison, we examine the extent 
to which the scales exhibit two related patterns that have 
previously been identified in the literature: score 
deceleration (grade-to-grade growth that decreases over 
time; Yen, 1986) and scale shrinkage (variability in scale 
scores that decreases from lower to higher grades; Camilli, 
1988; Camilli, Yamamoto, & Wang, 1993; Camilli, 1999; 
Yen, 1986; Yen & Burkett, 1997). We also use a 
regression-based approach to examine the amount of 
variability in the growth trajectories that is explained by 
readily identifiable characteristics of the vertical scales. By 
conducting what amounts to a meta-analysis of growth 
trajectories, we provide a normative baseline against which 
both contemporary and future vertical scaling efforts can 
be compared.  A key point we will emphasize is that there 
is considerable variability in the growth effect sizes that 
are observed across states.  This can complicate the use of 
“average” growth trends to evaluate whether the estimated 
effect of an educational intervention is practically 
significant (Hill et al, 2008).  

Methods 

Data 

Between the Fall of 2008 and the Fall of 2009 we 
visited the web sites for 24 states that had been reported 
to have vertical scales in the annual “Quality Counts” 
issue produced by Education Week in 2008.  For five of 
these states we found no information to support the 
assertion that any of their tests had been vertically scaled. 
As part of our search process we also examined the 
websites of the 26 states reported as not having vertical 
scales by Education Week, and found that two other states 
did in fact have vertical scales.  This left us with a total 
population of 21 states with vertical scales spanning a 
minimum of grades 3 through 8 in math and reading.   

We subsequently reviewed the 2007-081 technical 
manual and/or interpretive guide associated with each 
state’s criterion-referenced assessment.  From these 
publicly available documents, we compiled the mean scale 
scores and standard deviations for each state’s math and 
reading assessments in grades 3 through 8.  There were 

                                                 
1 If the test was administered in the Fall we used the 2007 
technical manual and if it was administered in the Spring we 
used the 2008 technical manual, so that all information came 
from the 2007/2008 school year. Due to issues of availability, 
we used data from 2007, the 2006/2007 school year, for West 
Virginia (Spring). 

seven states for which the descriptive statistics were not 
publicly and electronically available; we made formal 
requests for this information from each state’s department 
of education, and, in some cases, their test vendors.  
Despite our best efforts, there were five states for whom 
we were unable to obtain any descriptive statistics related 
to their vertical scales. Ultimately, we were able to collect 
data for 16 states: Arizona, Colorado, Delaware, Florida, 
Idaho, Illinois, Indiana, Missouri, New Mexico, North 
Carolina, North Dakota, Oregon, South Dakota, West 
Virginia, Wisconsin and Wyoming. In addition to the 
descriptive statistics, we also gathered information on 
variables that are generally considered relevant to the 
creation and maintenance of a vertical scale (Briggs & 
Weeks, 2009; Kolen & Brennan, 2004): the response 
model used for the item calibration (Rasch Model/Partial 
Credit Model vs. Three Parameter Logistic 
Model/Generalized Partial Credit Model), test 
administration date (Fall vs. Spring), whether the test 
reported a single score for reading or both reading and 
writing, and the age of the vertical scale (i.e., the number 
of years over which the scale has been maintained). 
However, there are a variety of variables that are also very 
relevant to the vertical scaling process that we were not 
able to obtain, a limitation to which we return in our 
discussion section.  

In this paper we standardize gains from grade-to-
grade such that for a given test subject (math or reading), 
the growth for state i (i = 1, 2, …, 16) from grade g to g+1 
(g = 3, 4, …, 7) is characterized by the effect size 

ܻ ൌ
ሺାଵሻߠ̅ െ 	ߠ̅
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where the subscript p (p = 1, 2, …, 5) indicates one 
of five adjacent grade pairs between grades 3 and 8, 

i(g1)  is the mean scale score reported for the higher 

grade for grade pair p, ig  is the mean scale score reported 

for the lower grade, and ̂ 2  is the reported variance of 
the scale scores. These effect sizes are nested within states, 
so for each of the 16 states there are five effect size 
statistics for a total of 80 grade-pair effect sizes in each 
subject.   

We later use ܻ as the dependent variable in a meta-
analytic regression, with effect sizes within states as the 
units of analysis and state-specific design factors as 
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predictor variables.  These predictor variables are as 
follows2: 

1. Time. The variable “Time” in our regressions 
takes on values {0, 1, 2, 3, 4} with 0 representing the 
effect sizes, or growth, from grades 3 to 4, 1 representing 
growth from grades 4 to 5, and so on up until the Time 
variable takes on a value of 4 for growth from grades 7 to 
8. 

2. Fall vs. Spring Administration. Growth based 
on grade to grade comparisons from tests that are 
administered during the spring has a different 
interpretation relative to tests that are administered in the 
fall. For example, the effect size computed from a fourth 
grade and fifth grade test that are both administered in the 
spring represents growth that occurred mostly in fifth 
grade, while fall administration in the same grades 
represents growth the occurred mostly in the fourth grade. 
Three out of the 16 states in our samples tested students 
in the fall rather than the spring. For the regression 
analysis the dummy variable, the variable “Fall”, takes a 
value of 1 when the test was administered in the fall and 0 
otherwise.  

3. Tests that Combine Reading and Writing. 
Scales created from tests that combine items assessing 
both reading and writing might represent a different 
construct than scales created from tests that only assess 
reading comprehension. We have designated these 
combined reading and writing tests as measuring English 
Language Arts (the variable “ELA” in our subsequent 
regression analysis, which takes a value of 1 when reading 
and writing tests have been combined and 0 otherwise).  
There were three states for whom this designation applied. 

4. IRT Model.  Our choice to include the IRT 
model used to create the vertical scale stems from work 
which suggests that systematic differences between Rasch 
and 3PL scalings may exist (Briggs & Weeks, 2009; Yen & 
Burket, 1997). For the regression analysis we created a 
variable, 3PL, which takes the value of 1 when the 3PL 
model was used for scale calibration and a 0 when the 

                                                 
2 We also examined another continuous variable, scale age, 
which is the number of years since the scale was initially 
established. We had hypothesized that scale age might be a 
proxy for item parameter drift (e.g., Bock, Muraki, & 
Pfeiffenberger, 1988), however this variable lacked predictive 
power in our regression. Because of this finding, combined with 
the complexity added to interpretation of the regression results, 
we excluded this variable from our analysis. 

state used the Rasch model3.  Nine out of the 16 states 
considered here used the 3PL model.  

Results 

Growth in Effect Size Units 

Figure 1 below provides a graphical representation of 
growth patterns across the 16 states for reading and math 
respectively; Table 1 presents the corresponding 
descriptive statistics. As is evident in the plots and tables, 
there is substantial variability in effect sizes both within 
and between adjacent grade-pairs.  

There is evidence of growth deceleration in both 
subjects. In reading, there is a significant drop in growth 
(0.21 effect size units) from grades  3-4 (mean effect size 
= 0.55) to growth in grades 4-5  (0.34). However, the size 
of this drop is partially due to the influence of Wyoming, 
which has a pattern of effect sizes that is a good deal more 
variable than the patterns found in other states. If this 
state is excluded, the sharp drop in growth from grade 4-5 
to 3-4 becomes less pronounced (from a decrease of 0.21 
to a decrease of 0.12) while the decrease in growth from 
grades 4-5 to 5-6 becomes more pronounced (0.06 to 
0.10).  In the remaining grades mean growth is mostly 
constant, regardless of the inclusion or exclusion of 
Wyoming. In math, there is no pronounced drop in 
growth from grades 3-4 to grades 4-5, however, in 
contrast to reading, there are gradual decreases from 
grades 5 to 8. To summarize growth trends with a single 
statistic, we regressed, for each state, effect sizes on time. 
The resulting slopes show clear evidence of downward 
trends (in reading 15 of the 16 slopes are negative and in 
math 14 of the slopes are negative), although the 
magnitudes of these slopes are small (see Appendix B for 
plots of these regressions). The average slope in reading 
was -0.05 with an SD of 0.04, which translates into an 
average decrease of 0.20 effect size units across grades 3 
to 8. In math the average slope was -0.06 with an SD of 
0.05, for a total effect size decrease of 0.24 across grades 3 
to 8. The slopes and intercepts from these within-state 
regressions have a strong negative relationship (r = -0.79 
in reading and -0.87 in math), indicating that states with 
vertical scales with above average growth from grades 3 to 
4 are also those with above average amounts of growth 
declines. Another finding worth noting is that the slopes  

                                                 
3 In many of the states considered, the underlying tests 
consisted of mixed format items.  In such instances, a 
combination of either the 3PL and Generalized Partial Credit 
Model (GPCM) or Rasch and Partial Credit Model (PCM) were 
used to calibrate the scale.  We used “3PL” and “Rasch” as 
shorthand for such scenarios. 



Practical Assessment, Research & Evaluation, Vol 17, No 14 Page 3 
Dadey & Briggs, Growth Trends From Vertical Scales 
 
are rather strongly correlated across subjects (r  = 0.73), 
while the intercepts are not (r = 0.23). Thus the increase 
or decrease in growth for states between reading and math 
is associated, but the amount of initial growth is not 
Overall, the reading and math effect sizes were equally 
variable, with average SDs across grade-pairs of 0.18 and 
0.17 respectively. However, the trends in these SDs differ. 

In the 3 to 4 and 4 to 5 grade pairs, the variability in effect 
sizes is much larger for reading than it is for math; yet as 
of the grade 5 to 6 pairing, the SD in math is much larger 
than the SD in reading (0.25 in math and 0.14 in reading). 
In the final two grade pairings (6 to 7 and 7 to 8) there is 
no real difference in the variability by test subject. 

Figure 1. Effect Size Trajectories over 16 States for Reading and Math. Note: The large red dots represent the 
mean ES across the 16 states within each grade pair.  The horizontal bars represent +/- 1 SD of the ES.  

 
 

Table 1.  Descriptive Statistics for Effect Sizes in Reading and Math 

 Grade-Pair 
 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 
Reading      

Min 0.33 -0.20 -0.04 0.11 0.00 
Mean1 0.55 0.34 0.28 0.32 0.29 
Median 0.51 0.33 0.30 0.31 0.29 
Max 1.29 0.67 0.51 0.54 0.66 
SD 0.23 0.21 0.15 0.14 0.18 
      

Math      
Min 0.27 0.31 0.06 0.04 0.15 
Mean 0.53 0.48 0.39 0.33 0.33 
Median 0.53 0.45 0.41 0.34 0.28 
Max 0.77 0.72 0.84 0.58 0.59 
SD 0.17 0.11 0.23 0.16 0.14 

Notes: N = 16. Excluding Wyoming, which has a highly variable effect size pattern, the mean 
effect sizes in grade pairs 3-4 to 7-8 are 0.50, 0.38, 0.27, 0.33 and 0.29, respectively. 
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Scale Shrinkage 

To characterize the extent to which scale shrinkage is 
evident across grades in a given state, we express the grade 
4 to 8 SDs as a proportion of the grade 3 SDs. Figure 2 
plots the results in reading and math for each state. 
Several trends are evident. First, from visual inspection, 
one would be hard-pressed to conclude that there are 
signs of widespread scale shrinkage. While many states 
have SDs that decrease over time, the decreases tend to be 
very small (the average decrease in SD from grades 4 to 8 
is -0.08 for both reading and math). Second, scale 
shrinkage occurs more often in reading than math. Visual 
inspection of Figure 2 bears this finding out, as well as 

analyses we conducted by regressing each state’s SD trend 
on time. In reading, 9 of the 16 slopes were negative while 
in math 5 slopes were negative. Third, all of the standard 
deviation patterns are non-monotonic – displaying 
“spikes” or “dips” for certain grades. 

Explaining Variability in Effect Sizes 

We now examine how much of the between state 
variability in the effect sizes can be accounted for by 
variables that capture certain methods used by each state 
to establish and maintain their vertical scales. The results 
from regressing the grade-pair effect size statisticsYip  on 

the predictors above are shown in Tables 2 and 3.  

 

Figure 2. Scale Score Standard Deviations (expressed as ratio grade 3 SD). States with strong visual evidence of scale 
shrinkage are shown in red, while the remaining states are shown in grey  
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Table 2. Regressions for Reading. 

  Model 
Predictor (1) (2) (3) (4) (5) 
 Intercept 0.462 * 0.452 * 0.475 * 0.483 * 0.477 * 
 Time -0.053 * -0.048 * -0.054 * -0.045 + -0.042 + 
 Fall  0.049   0.041 
 ELA   -0.070  -0.048 
 3PL    -0.038 -0.025 
 Time*Fall  -0.025   -0.021 
 Time*ELA   0.006  0.010 
 Time*3PL    -0.014 -0.016 
       
Statistic      
 RMSE 0.191 0.193 0.192 0.190 0.195 
 R2 0.136 0.141 0.149 0.165 0.172 
 R2 ∆ from Base Model  0.005 0.013 0.029 0.036 
Notes: + p < 0.10, * p < .05, N = 80  

 

Table 3.  Regressions for Math. 

  Model 
Predictor (1) (2) (3) (4) 
 Intercept 0.522 * 0.471 * 0.486 * 0.448 * 
 Time -0.055 * -0.043 * -0.042 * -0.033 + 
 Fall  0.269 *  0.264 * 
 3PL   0.064 0.043 
 Time*Fall  -0.067 *  -0.065 * 
 Time*3PL   -0.023 -0.018 
      
Statistic     
 RMSE 0.164 0.153 0.165 0.154 
 R2 0.189 0.317 0.200 0.322 
 R2 ∆ from Base Model  0.128 0.011 0.133 
Notes: + p < 0.10, * p < .05, N = 80 

 

The base model in each table (model 1) only includes 
the time variable as a predictor.  These models accounts 
for 14% and 19% of the variability in effect sizes in 
reading and math respectively.  For reading (Table 2), the 
intercept of 0.462 represents the average grade 3 to 4 
growth across the 16 states, and the slope coefficient of    
-0.053 represents the average change in growth across 
adjacent grade pairings from grades 4 to 8.  In other 
words, without knowing anything else about a state’s 
vertical scale, one would predict that growth in reading 
from grades 3 to 4 would be about 0.462 effect size units 

and growth from grades 4 to 5 would be 0.409.  
Cumulatively, the model predicts that growth in reading 
will decline to 0.250 effect size units by grades 7-8.  For 
math, the intercept and slope for model 1 are 0.522 and    
-0.055, which translates into a predicted decline to 0.302 
by grades 7-8. The two base models suggest the same 
basic trend of linear growth declines in reading and math. 
However, there is a large degree of imprecision in these 
predictions: the root mean square error for the base 
regression in is 0.191 effect size units in reading and 0.164 
in math. 
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Subsequent models in reading (models 2-4) show the 
marginal impact of adding an additional predictor variable 
to the base model.  In reading these variables are Fall, 
ELA and 3PL that were described above.  Each variable is 
added to the base model as both a main effect (influencing 
the interpretation of average grade 3 to 4 growth, i.e., the 
intercept) and as an interaction with the time variable 
(influencing the interpretation of the grade to grade 
growth trend, i.e., the slope).  Finally, model 5 includes all 
covariates together in a full specification. In reading, none 
of covariates have a statistically significant4 impact on 
either the intercept of the slope, and the full model only 
increases R2 from the base model from 0.136 to 0.172.   

We followed a similar process for our math 
regressions, in this case adding two new covariates to the 
model, Fall and 3PL.  In contrast to reading, the Fall 
variable has a significant impact on the interpretation of 
the intercept and the slope when added to the base model.  
Under model 2, the 13 states that test their students in the 
spring have base growth of 0.471 effect size units; the 3 
states that test their students in the fall have base growth 
of 0.740 effect size units.  In addition, because they start 
with higher base growth, the deceleration trend for these 3 
states is much stronger at -0.110.  This is about two and 
half times larger than the trend of states testing students in 
the spring (-0.043).  As we noted earlier, states testing 
students in the fall are really testing growth that had 
occurred a year prior than is indicated by the grade pair.  
So for these states, the intercept is more properly 
understood as growth from grade 2 to 3 rather than 
growth from grade 3 to 4.  The results here are consistent 
with the notion that growth deceleration in math is 
strongest in the early elementary grades. For math, going 
from the base model to the full model increases R2 from 
0.189 to 0.322, primarily due to the impact of including 
the Fall variable.  

                                                 
4 The reader will note that in presenting our results we do not 
emphasize tests of homogeneity and statistical significance as is 
typical in other meta-analytic contexts (i.e., Hedges & Olkin, 
1985).  This is because in the present context, the effect sizes 
being computed within a given state are based on the entire 
population of test-takers, so there is little sense in characterizing 
this as a source of sampling variability.  At the state level, one 
might imagine a hypothetical population of states that could 
have developed vertical scales, but it is quite a stretch to suggest 
that the 16 included in the present study represent a random 
sample from this hypothetical population.  Hence while we do 
flag predictor variables with conventional p-values less than 0.10 
or 0.05 when presenting our results, this should be taken with a 
grain of salt.  Our emphasis is on statistical description rather 
than statistical inference (Briggs, 2005). 

 Discussion  

It is not entirely clear how one should interpret the 
large degree of unexplained variability in growth patterns 
between and within states evident in our meta-analysis. 
On the one hand, we might assume that scores along each 
state’s vertical scale are intended as measures of the same 
general reading and math “constructs.”  After all, many of 
these vertical scales have been developed by the same 
testing contractors, often using the same anchor items 
from nationally normed vertical scale batteries.  If the 
constructs being measured were comparable, then it 
would be natural and desirable to speculate about possible 
reasons that growth across grades in one state is larger in 
magnitude than growth across grades in another. Perhaps 
one state has stronger curricula than the other, better 
professional development for its teachers, etc.  On the 
other hand, although the higher order subject standards 
for students (i.e., number sense, algebra, geometry & 
measurement, etc.) are often very similar from state to 
state, the specific indicators used to design test items may 
well differ dramatically, as can the alignment of each 
state’s test to the enacted curricula in the elementary and 
middle school grades.   

To the extent that the reading and math constructs 
measured by each state test are operationally defined 
through the alignment of test items to the content 
standards, then growth will only have a similar operational 
definition with respect to the way that linking items have 
been selected to overlap across adjacent grades.  The 
growth that is observed from grade to grade in a given 
state will depend largely upon the design principles that 
were used to select linking items (e.g., are items chosen to 
be representative of the content domains for each of two 
adjacent grades, or a common domain that overlaps across 
multiple grades?), and the extent to which these linking 
items are representative of the content domain and also 
instructionally sensitive (e.g., are items chosen to represent 
content that teachers emphasize in the enacted 
curriculum?).  Defining and coding state-level variables 
that capture these sorts of design differences was not 
possible when conducting our secondary data analysis of 
publicly available reports. This is an obvious limitation to 
our study, but also reflection of the quantity and quality of 
information provided by states in the publically available 
documentation of their vertical scaling process.  It is 
worth keeping in mind that in many cases, states did not 
publicly report the grade to grade means and SDs that 
were needed for us to compute growth in effect size units, 
and even after repeated requests, five states with vertical 
scales were unable to provide us with these summary 
statistics.   
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Although a priori design decisions are quite likely to 
explain a considerable amount of the variability in grade to 
grade growth patterns across vertical scales, so do the 
decisions that are made by psychometricians when 
calibrating and scaling vertically linked tests (Schafer, 
2009).  Briggs & Weeks (2009) show that choice of IRT 
model, linking approach, estimation method, and the 
interactions between these factors can have significant 
impacts on the magnitude of growth in effect size units 
when the factors are used in combination on the same 
longitudinal set of item responses.  Weeks (2011) 
demonstrates that growth interpretations can be distorted 
when the dimensional composition of a construct, that 
shifts over time, is modeled as though it were 
unidimensional (see also Martineau, 2004).  And Harris 
(2007) points out that the maintenance of a vertical scale 
over time through horizontal equating can lead to shifts in 
grade to grade growth that are at least in part a reflection 
of equating errors.  To this list we add another 
psychometric practice that has not received as much 
attention in the literature, but which figured prominently 
in the scaling approaches described for two of the states in 
our sample: nonlinear transformations of the vertical 
scale. 

Kolen & Brennan (2004) have argued that it is 
reasonable to nonlinearly transform a vertical scale so long 
as the state has developed a “conceptual definition of 
growth” and communicated this to the test developer:  

The theta scale also can be nonlinearly transformed 
to provide for growth patterns that reflect the kind of patterns 
that are expected [emphasis added].  Consider a situation in 
which a test developer believes that the variability of scale 
scores should increase over grades.  If the variability of 
the theta estimates is not found to increase over grades, a 
nonlinear transformation of the ability scale might be used 
that leads to increased variability. (p. 393) 

Instances of these sorts of practices were readily 
found in the technical manuals of two of the states in our 
sample. When vertical scales were being established in 
each of these two states it was found empirically that the 
mean scale scores in a higher grade were lower than those 
found in the immediately adjacent lower grade after the 
tests were vertically linked.  Rather than report these 
results, the states—in consultation with their test 
contractors—decided to adjust the upper grade scale 
scores so that the reported mean was that which would 
have been observed if successive grade means followed a 
polynomial trend.  In other words, the vertical scales were 
nonlinearly transformed.  If, in fact, nonlinear 
transformations are deemed admissible when vertical 

scales are being established, then it follows that it would 
be possible to engineer any pattern of effect sizes that 
would be desired.  This suggests that the underlying scales 
have only ordinal properties, making it potentially 
meaningless to compare grade to grade growth trends in 
terms of magnitude, e.g. in effect size units, across 
different scales.  There is considerable confusion in the 
psychometric literature as to whether the use of IRT 
methods will produce a score scale with interval properties 
(Ballou, 2009; Briggs, 2010; in press; Michell, 1990; 1999; 
Yen, 1986).  As it turns out, interval properties are quite 
critical if ones wishes to make comparisons of growth 
across states in terms of absolute differences in 
magnitudes.   

Implications for Practice 

In summary, the trends found in this analysis are 
consistent with the assertion that, on average, growth on a 
vertical scale in math and reading appears to decrease as 
students move from the early grades of elementary school 
to the last grade of middle school. An nonparametric 
examination of effect size trends indicates a roughly 
constant deceleration of effect sizes in math, while in 
reading there is a more rapid deceleration between grades 
3-4 to grades 4-5 followed by a flat trend of no 
acceleration or declaration. However, part of this rapid 
deceleration can be explained by a single outlying state 
(Wyoming), with a grade 3 to 4 effect size of 1.3 followed 
by a grade 4 to 5 effect size of -0.20.  When we use a 
regression analysis to summarize grade to grade growth 
trends we find evidence for cumulative effect size declines 
in math and reading of about 0.25 from grades 3-4 to 7-8.  
A very small amount of the total variability in effect sizes 
could be explained by our state-level variables (up to an 
additional 4% in reading and 13% in math).  Interestingly, 
we found that controlling for whether or not a state tested 
its students in the fall or spring of a given grade had a 
significant impact on growth interpretations for math, but 
not for reading.  This finding of no impact when 
controlling for fall testing for reading vertical scales is 
surprising as previous research has found strong evidence 
of growth deceleration occurring in the earliest grades of 
schooling (Hoover, 1984).  Finally, our analysis finds 
limited evidence of scale shrinkage in reading, and almost 
none in math. 

At a minimum, our results provide a normative 
context that any state with a vertical scale could use to 
compare a given growth pattern with the patterns that 
have been observed in other states. For example, a quick 
perusal of Figure 1 makes clear that Wyoming has a 
growth pattern between grades 3 and 5 that is well outside 
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the range of 15 other states.  A result such as this might be 
grounds for a state’s director of assessment and testing 
contractor to engage in some detective work to better 
understand why their growth appears so unusual.   

However, beyond this normative baseline, caution 
must be used when interpreting and generalizing these 
results. Hill et al. (2008) have recommended the use of 
grade to grade gains (in effect size units) from vertically 
scaled assessments as a basis for evaluating the practical 
significance of an educational intervention.  The logic here 
is that the average grade to grade gains along a vertical 
scale can be interpreted as the magnitude of achievement 
growth that would be observed as a consequence of all the 
different factors that cause students to learn. Given this, 
one would expect any single intervention to have an effect 
on achievement that is some proportion of this average.  
If the proportion is large, one would conclude that the 
intervention has an effect that is practically significant.  
Our meta-analysis points to a potential flaw in taking this 
approach, in that it uses national averages which indicate 
more stability in grade to grade growth than is warranted 
empirically in any given state. Consider a hypothetical 
reading intervention that produces an effect size of 0.20 
from grade 7 to 8. For Arizona, this effect size is almost 
twice the state’s grade 7 to 8 growth of 0.13, hence we one 
might conclude that the impact of the intervention is not 
just practically significant, but dramatically so. However, 
the same results would be given a much different 
interpretation in New Mexico, where the state’s average 
growth from grade 7 to 8 growth is 0.59. Furthermore, the 
use of grade to grade effect sizes for assessing practical 
significance assumes that these magnitudes have an 
absolute interpretation. As we have noted in the previous 
section, such an interpretation becomes problematic if the 
scales have been manipulated in a matter (i.e., subjected to 
nonlinear transformations) that presumes they only 
communicate ordinal information.  

There are some clear advantages, in principal, to 
having a vertical score scale.  First, only a vertical scale 
makes it possible to directly compare student growth in 
terms of criterion referenced changes in magnitude.  
Second, in a computer adaptive testing context a vertical 
scale facilitates out of level testing. Third, having item 
difficulty estimates across grades located on a single 
continuum makes it easier to set proficiency cutpoints 
coherently during standard-setting. And fourth, the 
biggest potential advantage is that grade to grade gains 
from a vertical scale can serve as a basis for evaluating 
whether standards, curriculum and instruction, and 
assessment appear to be properly aligned across grades.  
When low or even negative mean growth is observed, it 

provides a clear signal that something is amiss. In the 
absence of a vertical scale, such misalignment may be 
harder to detect. 

However, it is also important to note that a vertical 
scale is not necessary for many common uses of test 
scores, including purposes of educational accountability. 
For example, a vertical scale is generally not necessary 
when test scores are being used to evaluate teachers 
and/or schools with a value-added model (Briggs & 
Domingue, in press). In these contexts, a variety of 
alternative approaches can also be employed to make 
normative statements about student growth. A prominent 
example is the student growth percentile approach 
popularized by Betebenner (2009). Another alternative to 
vertical scales, growth scales (Schafer & Twing, 2006; 
Schafer, 2006), relies on vertically articulated content 
standards (Ferrara, Johnson & Chen, 2005) to make 
statements about student growth.   
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Appendix A: Scale Score Effect Sizes and Standard Deviations, with Corresponding Predictor Variables 

 

Table 1A. Effect Sizes and Standard Deviations for Reading Scale Scores with Corresponding Predictor Variables, Ordered From Largest to Smallest Mean Effect Size 
Across Grades. 

 
Effect Size 

Standard Deviation  
(as ratio of grade 3 SD) 

Predictor Variable* 

 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 SD Mean 4 5 6 7 8 3PL Fall Age ELA 

New Mexico 0.685 0.667 0.316 0.478 0.685 0.153 0.547 0.947 0.966 0.867 0.952 1.015 0 0 3 0 
Delaware 0.611 0.586 -0.035 0.383 0.611 0.286 0.441 0.913 0.918 0.816 0.934 0.949 0 0 9 0 
Wyoming 1.294 -0.202 0.461 0.110 1.294 0.560 0.401 0.913 0.845 0.950 0.914 0.869 0 0 3 0 
North Carolina 0.598 0.482 0.316 0.287 0.598 0.136 0.399 0.849 0.790 0.807 0.773 0.739 1 0 2 0 
North Dakota 0.729 0.316 0.417 0.514 0.729 0.268 0.395 1.088 1.206 1.077 1.093 1.158 1 1 3 0 
Idaho 0.333 0.497 0.280 0.436 0.333 0.085 0.390 0.885 0.839 0.838 0.985 0.905 0 0 -- 0 
Oregon 0.547 0.286 0.395 0.536 0.547 0.195 0.368 0.946 0.834 0.853 0.860 0.794 0 1 2 0 
South Dakota 0.370 0.200 0.505 0.309 0.370 0.111 0.340 0.995 0.933 1.031 0.962 0.862 0 0 6 0 
Florida 0.573 0.145 0.248 0.304 0.573 0.159 0.325 0.905 0.880 0.912 0.738 0.622 1 0 7 0 
Indiana 0.342 0.323 0.320 0.450 0.342 0.105 0.318 0.943 0.924 0.861 1.086 0.792 1 0 6 1 
Missouri 0.505 0.471 -0.006 0.138 0.505 0.232 0.313 0.896 0.898 0.892 0.881 0.894 1 0 2 1 
Illinois 0.416 0.443 0.289 0.151 0.416 0.122 0.308 0.969 0.923 0.864 0.941 0.766 1 0 2 0 
Wisconsin 0.425 0.177 0.391 0.219 0.425 0.108 0.297 1.171 1.153 1.214 1.201 1.289 1 1 3 0 
West Virginia 0.518 0.284 0.255 0.260 0.518 0.137 0.292 0.963 0.927 0.935 1.017 0.966 1 0 4 1 
Colorado 0.437 0.410 0.223 0.155 0.437 0.126 0.289 0.743 0.838 0.781 0.773 0.755 1 0 6 0 
Arizona 0.347 0.345 0.168 0.326 0.347 0.104 0.264 0.959 0.890 0.918 0.963 1.061 0 0 3 0 
*Notes: 3PL = 1 for the 3PL/GPCM, 0 otherwise; Fall = 1 for a Fall Test Administration, 0 otherwise; Age is the scale age (in years); ELA = 1 if the assessments were a 
combination of reading and writing, 0 if the assessment tested reading only. 
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Table 2A. Effect Sizes and Standard Deviations for Math Scale Scores with Corresponding Predictor Variables, Ordered From Largest to Smallest Mean Effect Size 
Across Grades. 
 

 
Effect Size 

Standard Deviation 
(as ratio of grade 3 SD) 

Predictor Variable* 

 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 SD Mean 4 5 6 7 8 3PL Fall Age 

North Dakota 0.747 0.724 0.840 0.402 0.364 0.268 0.615 0.892 0.831 0.969 0.926 1.070 1 1 3 
Idaho 0.524 0.563 0.624 0.271 0.592 0.085 0.515 0.892 0.870 0.963 0.864 0.901 0 0 -- 
Wisconsin 0.770 0.568 0.436 0.430 0.169 0.108 0.475 1.023 1.095 1.047 1.005 1.123 1 1 3 
West Virginia 0.770 0.568 0.436 0.430 0.169 0.137 0.475 1.023 1.095 1.047 1.005 1.123 1 0 4 
Oregon 0.703 0.578 0.233 0.579 0.268 0.195 0.472 1.004 0.981 1.073 1.031 1.140 0 1 2 
Indiana 0.445 0.307 0.673 0.301 0.418 0.105 0.429 1.021 1.002 1.000 1.041 1.257 1 0 6 
Missouri 0.633 0.459 0.416 0.065 0.499 0.232 0.414 0.926 1.103 1.114 1.121 1.067 1 0 2 
South Dakota 0.380 0.406 0.629 0.380 0.248 0.111 0.409 0.901 0.883 0.914 0.977 0.955 0 0 6 
New Mexico 0.316 0.589 0.061 0.441 0.547 0.153 0.391 1.048 0.945 0.969 1.030 0.901 0 0 3 
Arizona 0.636 0.411 0.287 0.450 0.154 0.104 0.388 1.074 1.089 1.160 1.091 1.174 0 0 3 
Florida 0.377 0.424 0.058 0.562 0.433 0.159 0.371 0.872 0.813 0.885 0.702 0.597 1 0 7 
Illinois 0.447 0.397 0.398 0.260 0.336 0.122 0.368 0.947 0.977 0.977 0.993 0.944 1 0 2 
North Carolina 0.631 0.497 0.118 0.265 0.250 0.136 0.352 0.959 0.948 0.969 0.979 0.918 1 0 2 
Delaware 0.536 0.439 0.326 0.040 0.278 0.286 0.324 0.912 0.897 0.908 0.980 0.998 0 0 9 
Wyoming 0.266 0.311 0.493 0.238 0.242 0.560 0.310 1.117 1.098 1.024 1.049 1.066 0 0 3 
Colorado 0.292 0.410 0.230 0.148 0.271 0.126 0.270 0.854 0.786 0.818 0.796 0.804 1 0 6 

*Notes: 3PL = 1 for the 3PL/GPCM, 0 otherwise; Fall = 1 for a Fall Test Administration, 0 otherwise; Age is the scale age (in years). 
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Appendix B: Plots of Within State Regressions 

Figure 1B. Wainer Plots - Within State Effect Size Regressions on Time for ELA. 

 
Figure 2B. Wainer Plots - Within State Effect Size Regressions on Time for Math (Note, Wyoming and West Virginia’s slopes 
have been jittered slightly to prevent overplotting). 

 
Note: These plots were inspired by a suggestion from Howard Wainer, so we call them “Wainer Plots.” On the left hand side of the panel 
we plot the results from within state regression of time (1 to 5) on grade to grade effect sizes.  The x-axis represents the estimated 
intercept, and the y-axis represents the estimated slope.  The negative slope indicates that states with higher intercepts tend to have 
stronger growth deceleration. The solid dots represent states using the 3PL/GPCM to calibrate their vertical scale; the empty dots 
represent states that used the Rasch Model/Partial Credit Model.  There appears to be a slightly steeper negative relationship for the 
3PL/GPCM.  The right hand side of the panel displays the within state growth trend lines.  
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Appendix C: Scale Score Standard Deviations (Relative to Grade 3 SD)  

 
Figure 1C. Standard deviations in Math and Reading, Ordered by Evidence of Scale Shrinkage, From Most to Least (in Terms 
of Magnitude of Within State Regression of SD on Time). 
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