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For several decades, the three-parameter logistic model (3PLM) has been the dominant choice for practitioners in 
the field of educational measurement for modeling examinees’ response data from multiple-choice (MC) 
items. Past studies, however, have pointed out that the c-parameter of 3PLM should not be interpreted as a 
guessing parameter. This study found logical, empirical evidence showing that neither the a-, b-, or c-
parameters of 3PLM can accurately reflect the discrimination, difficulty, and guessing properties of an item, 
respectively. This study reconceptualized the problem-solving and guessing processes with a modification of 
the 3PLM that eliminates ambiguity in modeling the guessing process. A series of studies using various real 
and simulated data demonstrated that the suggested model, in which the c-parameters were fixed at a 
computed probability for successful random guessing (i.e., c = 1 / k with k being the number of options), 
could provide a more feasible, stable, and accurate item estimation solution without sacrificing the model fit 
compared with a typical 3PLM. 
   
Ever since Birnbaum (1968) introduced the three-

parameter logistic model (3PLM), several studies have 
pointed out technical and theoretical issues regarding c-
parameter and its interpretation (Lord, 1974, 1975, 1980; 
Kolen, 1981; Holland, 1990; Hambleton, Swaminathan, 
& Rogers, 1991; San Martin, del Pino, & de Boeck, 
2006). Surprisingly, however, those studies have had little 
impact on the current use of 3PLM in the field. For 
example, it is often observed that imprudently 
interpreting c-parameter as a guessing parameter causes 
critical problems in test construction and standard 
setting. This study attempted to introduce a logical 
argument for reconceptualizing the guessing and the 
problem-solving processes and suggest an alternative 
model to 3PLM. Examples and discussions in this article 
revisit the implications of a-, b-, and c-parameters of 
3PLM and suggest practical solutions to avoid 
inappropriate use of the item parameters of 3PLM.  

The Guessing Parameter 
Multiple-Choice Type Item 

The field of educational testing has witnessed the 
successful development and implementation of many test 
item formats including short answer, multiple-choice, 
essay, and performance formats, as well as innovative 
new multimedia computer formats. For several decades, 

however, the dominant item format in educational 
testing has been multiple-choice. Since the multiple-
choice (MC) type item format is easy to administer and 
inexpensive to score (whether manually or using 
automated computer systems), it has remained the most 
popular choice from classroom tests to standardized 
large-scale assessments. Moreover, unlike other item 
formats, the scoring process for MC items does not 
involve raters, so there is no rater effect. No rater effect 
means one less source of measurement error.  

There is a critical downside to tests based on MC 
items, however—examinees can gain points by chance 
with successful guessing. Allowing examinees to guess to 
earn points could seriously threaten test validity and 
reliability because it would introduce another source of 
measurement error. Therefore, test developers have tried 
to discourage examinees from guessing an answer by 
imposing special testing policies (for example, assigning 
penalties to unsuccessful guesses, and/or giving partial 
points to omitted items) and/or by improving item 
content (for example, adding more incorrect item 
options attractive to low-proficiency examinees). It is 
nearly impossible, however, to completely prevent 
examinees from obtaining points through successful 
chance guesses on MC items. In fact, in some cases, test-
prep instructors may encourage examinees to make 
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guesses rather than omit questions. Thus, it is critical that 
statistical approaches take the guessing effect into 
account. 

The Three-Parameter Logistic Model (3PLM) 

Not long after the introduction of the first item 
response theory (IRT) model, which was of a normal ogival 
form, several variations were developed (Tucker, 1946; 
Lord, 1952; Rasch, 1960). Birnbaum (1968) came up with 
a logistic version of the IRT model that included three 
parameters: 
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where Pi(θ) is the probability of a randomly chosen 
examinee at proficiency level θ answering item i correctly, 
and ai, bi, and ci, are, respectively, the slope, location, and 
lower asymptote of an item response function (IRF) for item 
i. This model is called the three parameter logistic model 
(3PLM), and the three item parameters—a, b, and c—are 
often called by their practical interpretations: 
discrimination, difficulty, and guessing, respectively. 
Interpretations of a- parameters as item discrimination 
and b- parameters as difficulty have found general 
agreement in the field, but interpretation of c-parameter 
as “guessing” has generated considerable debate. 
Including c-parameter in the model was Birnbaum’s idea 
to allow for statistical adjustment of IRF for the non-
zero performance of low-proficiency examinees on 
multiple-choice (MC) items. Practitioners generally 
started calling c-parameter the “guessing parameter.” 
These c-parameter estimates, however, typically tend to 
be smaller than the value that would result if examinees 
answered an item correctly by random chance (Lord, 
1974), so the term “pseudo guessing parameter” was 
proposed as a more appropriate term for the c-parameter 
(Hambleton et al., 1991).  

What Is Guessing? 
In educational testing literature, guessing is 

presumed to occur when a test taker does not absolutely 
know the correct response but still tries to arrive at the 
right answer (Hutchinson, 1991; Maris, 1995; San Martin 
et al., 2006). There are several ways to conceptualize the 
process for problem solving and guessing and they 
revolve around the question of whether the guessing process 
(GP) comes before or after the problem-solving process 
(PSP).What is commonly found in the literature is the 
presumption that the guessing process is based on 

knowledge1 that is insufficient to complete the problem-
solving process successfully. In this conceptualization, 
the degree of incompleteness of knowledge would be 
associated with a test-taker’s proficiency being measured, 
so the GP becomes the interaction between test taker 
and item. Lord (1974) noted that c-parameter estimates 
were often smaller than the value that would result if a 
test taker guessed completely at random—probably 
because low-proficiency test takers were likely to exhibit 
a pattern of choosing attractive but incorrect choices. 
Taking this line of conceptualization a step further, San 
Martin et al. (2006) came up with the one-parameter logistic 
model with ability-based guessing, or 1PL-AG model, where 
the interaction between a person’s proficiency and 
guessing was taken into account. Interpreting the c-
parameter as an interaction between examinee and item 
rather than as one of item properties is problematic, 
however, because a- and/or b- parameters cannot be 
viewed purely as item properties—a- and b-parameter 
estimation is inseparable from c-parameter estimation. In 
theory, the item parameters of the 3PLM are 
independent of one another and independent of a 
person’s proficiency in the mathematical forms of the 
response models. But, when it comes to the parameter 
estimation procedure and the maximum likelihood 
algorithm attempts to find IRF best fitting to response 
data, the effect of person’s proficiency on the c-
parameter estimates would influence the other item 
parameter estimates, as well. In other words, it may be 
impossible in practice to disentangle the a- and b- 
parameter estimates from their interaction with a 
person’s proficiency unless we employ a different 
conceptualization of the guessing process that is free of 
interaction with individual proficiency. 

In conventional language, there are two kinds of 
guesses: random and logical. As the terms denote, a 
random guess is made completely at random and not 
based on any other information; whereas a logical guess 
is based on several sources of information, none of 
which alone or together are sufficient to lead directly to a 
correct response. The previous point of view on the 
guessing process (Hutchinson, 1991; Maris, 1995; and 
San Martin et al., 2006) regarded both random and 
logical guesses as outcomes of the guessing process and 
tried to parameterize and interpret the guessing process 
in the IRT models that way. Is it appropriate, however, in 

                                                 
1 In the IRT context, the term, ‘knowledge,’ is often used 
interchangeably with ability, proficiency, latent trait, 
and/or θ.  
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the IRT models, to treat a logical guess the same as a 
random guess?  

Problem-Solving Process and Guessing Process 

Item 1 in Table 1 shows a typical example of an MC 
question. To solve the problem, an examinee needs to 
find and count the prime numbers between 0 and 19. 
The examinee also is required to have the following 
knowledge: (a) a prime is a natural number, (b) a prime 
has only two natural number divisors that are 1 and itself, 
and (c) 1 is not a prime number by definition. Assume 
Examinee P knew all three pieces of knowledge. 
Examinee P would ‘probably’ be able to list natural 
numbers up to 19, to identify the primes (2, 3, 5, 7, 11, 
13, 17, and 19), and to count the primes. Item 1 offers 
five options (one correct answer and four distractors), so 
Examinee P would look for the answer ‘8’ among the 
options and choose the option ‘(b)’. In this case, 
Examinee P had complete knowledge for solving the 
problem and had no need to guess; it was obvious that 
Examinee P found the answer using the problem-solving 
process. Thus, Examinee P would find Item 1 exactly the 
same as Item 3, where the same question was asked but 
without the five options (i.e., Item 3 is a short-answer 
format) because the options for Item 1 had nothing to 
do with the examinee’s problem-solving ability. 

Table 1. Examples of Test Items 
Problem Choices Item Type

Item 1: 
How many 
primes are there 
less than 20? 

(a) 7 
(b) 8 
(c) 9 
(d) 18 
(e) None of 
above 

Multiple 
Choice 

Item 2: 
How many 
primes are there 
less than 20? 

(a) 0 
(b) 1 
(c) 8 
(d) 20 
(e) 190 

Multiple 
Choice 

Item 3: 
How many 
primes are there 
less than 20? 

N/A Short 
Answer 

 

Now take the example of Examinee L, whose 
knowledge of prime numbers was incomplete. Examinee 
L did not know that 1 was not a prime number by 
definition. Since this examinee’s knowledge was 
insufficient to solve the problem successfully, the 

examinee would go through the guessing process. Not 
knowing that 1 is not prime, Examinee L would come up 
with nine primes (1, 2, 3, 5, 6, 11, 13, 17, and 19) and 
would find the distractor ‘(c)’ of Item 1 to be the most 
attractive option. Therefore, it seems the degree to which 
distractors are attractive to an examinee depends on the 
level of completeness of an examinee’s knowledge 
relevant to the test item (Examinees P vs. L). This also is 
consistent with what the previous research has 
demonstrated (Lord, 1974, 1983; Hambleton et al. 1991; 
San Martin et al. 2006).  

Now assume there was a third examinee, Examinee 
R, with extremely low math proficiency. Let’s say 
Examinee R did not even know the mathematical 
meaning of the word ‘prime’ but still was trying to 
choose a correct answer for Item 1 by chance. Because 
Examinee R lacked even partial knowledge to make a 
logical guess at the correct answer, this examinee would 
be forced to guess randomly. With the random guessing 
process, the attractiveness of each option has no effect 
on the probability of successful guessing because the 
process does not involve interaction between the 
examinee’s partial knowledge and the content of the test 
item options. The probability of successful random 
guessing simply would be 1 / k, with k being the number 
of options. In this example, Examinees P, L, and R 
represent, respectively, the problem-solving process, the 
logical guessing process, and the random guessing 
process. To reflect each process correctly, then, the item 
response theory (IRT) model (Equation 1) should be 
revised to include the three different functions: 

'
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where '
is  is a certain point on the theta scale above 

which indicates the complete (or sufficient) knowledge to 
solve item i without guessing, and ''

is is a point below 
which indicates no (or not enough) knowledge to make 
any logical guess (i.e., no knowledge relevant to the 
content of item i including distractors). The guessing 
process is represented by the term γi , which is equal to 
1/ (1 exp( ))icαθ+ + , with α specifying the interaction 
between an examinee’s partial knowledge (θ) and item 
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guessing (ci). In fact, the second function for ' ''
i is sθ≤ <

is equivalent to the IRT model with ability-based 
guessing that San Martin et al. (2006) proposed. Each 
function of Equation 2 would appear to be a better 
representation than Equation 1 for the problem-solving 
process, the logical guessing process, and the random 
guessing process, respectively. The item response 
function based on Equation 2 is not necessarily a 
continuous curve but, rather, expected to be curvy step 
function jumping at '

is and ''
is . Equation 2 would not be 

practical, however, because the values for '
is and ''

is are 
unknown. 

Redefining the Problem-Solving and 
Guessing Processes 

Assume that Examinee L from the previous 
example, who had partial knowledge of prime numbers, 
was given test Item 2 instead of Item 1. As with Item 1, 
Examinee L would come up with nine primes at first 
(not knowing the number 1 is not a prime), but realizing 
that ‘9’ was not included in the answer options, would 
look over the five options and make a logical guess. 
Options (d) and (e) would be easy for Examinee L to 
eliminate because there are fewer than 20 natural 
numbers below 20. Options (a) and (b) would not be 
attractive either, because Examinee L already knew there 
were several primes. By eliminating those four 
distractors, Examinee L would be able to choose Option 
(c), the correct answer. Based on the original 
conceptualization for guessing, the process Examinee L 
used to answer Item 2 was guessing because the 
examinee’s knowledge of prime numbers was 
incomplete. If we redefine the problem-solving process, 
however, as ‘any logical approach to solve a given item’ 
and also redefine the guessing process as ‘making a 
completely random guess not based on any other 
information/knowledge,’ what Examinee L did with 
Item 2 can now be seen as the problem-solving process 
using partial knowledge. Within the new definitions, the 
examinee’s knowledge about what were incorrect 
answer(s), as well as what was a correct answer, can now 
contribute to the problem-solving process. In other 
words, eliminating distractors—one of the most popular 
strategies for solving MC items—can be explained by the 
problem-solving process, not by the guessing process. 
This substantially alters item analysis and item parameter 
interpretation.  

In traditional IRT-based item analysis, there is a 
tendency to analyze the question part and the multiple-
choice part (distractors) of an item separately. In such 

analysis, the question part is viewed as the factor 
contributing to the item difficulty, indicated by the b-
parameter; and the multiple choice part is often 
considered the factor influencing the c-parameter (the 
pseudo-guessing parameter). For example, the question 
part of Items 1 and 2 were identical (Table 1), but some 
changes were made to the distractors in Item 2 which 
rendered them less attractive to those examinees with 
incomplete knowledge. In traditional analysis, switching 
from Item 1 to Item 2 would cause the c-parameter value 
to increase because, with the elimination of the most 
attractive distractor, examinees would likely have a better 
chance of guessing successfully on the answer to Item 2 
On the other hand, in the newly defined concept of the 
problem-solving process, Item 2 as a whole, with all its 
distractors, required less knowledge to identify the 
incorrect answers, and was easier to solve than Item 1. In 
other words, an examinee’s partial knowledge plays a role 
in the problem-solving process in the new concept, 
whereas partial knowledge was seen only as contributing 
to the guessing process in the traditional analysis.  

The revised concept of the guessing process centers 
on making a completely random guess based on no prior 
information or knowledge. The probability of successful 
guessing depends neither on item content nor on the 
attractiveness of distractors. Since an examinee’s partial 
knowledge has nothing to do with the guessing process, 
the probability of successful guessing does not interact 
with examinee’s proficiency, either. In the new concept 
of the guessing process, the probability of successful 
guessing can be easily derived from the mathematical 
probability of guessing: 1/k, with k being the number of 
multiple choices in the item. The summary of the old and 
new ways to conceptualize the problem-solving and the 
guessing processes is shown in Figure 1.  

 

Fixed Guessing Three-Parameter Logistic 
Model (FG3PLM) 

The new concept for the problem-solving and 
guessing processes does not require a new mathematical 
model because the previous 3PLM (Equation 1) serves it 
quite well. The only change needed in the previous 
3PLM is the c-parameter, which now is not estimated 
from response data but rather computed and fixed to 
1/k to reflect the new guessing process (completely 
random guess). Although the new model reflects the 
same probability model (Equation 1) as the original 
3PLM, it should be denoted by the fixed guessing three-
parameter logistic model (FG3PLM) to distinguish its
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Newly Proposed Conceptualization of the Guessing Process and the Problem Solving Process

Traditional Viewpoint of the Guessing Process and the Problem Solving Process

Si
"Si

’

Examinee’s Knowledge
Relevant to Item i
(on the scale of θ)

Partial CompleteNone

Guessing 
Process 

(GP)

Randomly Guessing Logically Guessing Problem Solving

Examinee’s 
Expected Behavior

Si
"

Examinee’s Knowledge
Relevant to Item i
(on the scale of θ)

Partial Complete

Problem Solving Process 
(PSP)Guessing Process (GP)Examinee’s 

Expected Behavior

Problem Solving Process (PSP)

The GP is represented either by the pseudo-
guessing parameter (c-parameter) in 3PLM or by a 
function of c- parameter and examinee’s 
proficiency level in 1PL-AG.

The c-parameter heavily depends on the 
attractiveness of the distractors, which is 
interaction between the content of the distractors 
and examinee’s proficiency.

The probability of the successful 
PSP is expressed by a logistic 
function of a-, b- parameters 
and examinee’s proficiency.

The parameter estimates (a-
and b-) for the probability 
function of the PSP is influenced 
by the c-parameter estimates.

Since the GP does 
not use any partial 
knowledge/informati
on about the item, 
the c-parameter 
does not depend on 
contents or 
attractiveness of the 
distractors and is 
simply computed by 
1/k, with k being the 
number of multiple 
choice.

Since the logical guessing process is now a part of the 
PSP, the distractors are considered inseparatable from 
the question part of the item, and the attractiveness of 
the distractors is now explained as by item difficulty, 
which is the b-parameter. 

With the c-parameter being fixed to 1/k, the a- and b-
parameters are not influenced by the guessing process 
so more accurately reflect the problem solving process.

 

Figure 1. Two conceptualizations of the guessing and problem-solving processes 
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different concept of the guessing process and parameter 
estimation. In fact, fixing the c-parameter while 3PLM is 
estimated is not new in the field at all; practitioners do 
this quite often for practical reasons (for example, when 
estimating c-parameter is technically impossible)., This 
paper, however, focuses on both the theoretical and 
practical reasons why 3PLM might be inappropriate for 
use in educational measurement and why it should be 
replaced by FG3PLM even when 3PLM is technically 
possible to estimate.  

3PLM and FG3PLM 
Inappropriate Uses of 3PLM 

One reason for the IRT model’s rise in popularity in 
a relatively short time in the measurement field was that 
the item parameters were easy to interpret and useful for 
item analysis. In the earliest IRT models such as 2PLM 
and 1PLM, the b- and a-parameters could be interpreted 
as item difficulty and item discrimination in general. 2 
Once developed, 3PLM quickly became the dominant 
model for analyzing the MC item type because it often 
showed better model-data fit with MC items than did less 
flexible models such as 1PLM or 2PLM. In early usage of 
3PLM, the c-parameter was directly interpreted as a 
guessing parameter, but as later research revealed, the c-
parameter estimates tended to differ from those resulting 
when an examinee had made a completely random guess 
(Lord, 1974). A more appropriate term for c-parameter 
was proposed–‘pseudo-guessing parameter’ (Hambleton 
et al., 1991). The a- and b- parameters of 3PLM, 
however, are still widely called and interpreted 
respectively as item discrimination and item difficulty, as 
in 2PLM. This poses the question: “Should the a- and b-
parameters of 3PLM also be interpreted as ‘pseudo-
discrimination’ and ‘pseudo-difficulty’ parameters?” 

The fact that different combinations of a-, b-, and c-
parameters could result in similar IRFs for the part of the 
theta scale where the majority of test scores are 
distributed is well known in the field. Figure 2 presents 
an example of such a case in which the item parameter 

                                                 
2 Some experts may reasonably argue that those items 
that have the same b-parameters but different a-
parameters would result in different response probability 
(RP) across the theta scale. So the b-parameter can be 
interpreted as item difficulty only when 1PLM or the 
Rasch (1960) model is used. While that point of view is 
not invalid, the b-parameter of 2PLM still can be seen 
correctly reflecting item difficulty on average across theta 
scale. 

values for Items 1, 2, 3, and 4 differ substantially, even 
though the IRFs of those items resemble each other 
when –1< θ < 1 (the unshaded area), where a majority of 
examinees are found. On the other hand, even though 
Items 3 and 5 have the same value for the b-parameters, 
their IRFs show considerably different item 
characteristics, especially in terms of practical difficulty. 
Thus, a-, b-, and c-parameters of 3PLM should not be 
interpreted individually but rather analyzed together, for 
example, in a form of IRF. This example may be stating 
the obvious to those who have sufficient experience with 
3PLM, but applications and practices that use item 
parameters with 3PLM inappropriately are observed with 
some frequency in the field of educational and 
psychological measurement. For example, in an item 
analysis process, test items often are ordered by b-
parameter regardless of a- and c-parameters and 
inappropriately considered as if the items were sorted 
exactly by item difficulty. In differential item functioning 
(DIF) or item parameter drift (IPD) analyses, DIF detection 
methods originally developed for 1PLM—Chi-square 
tests for example (Lord, 1980)—are occasionally applied 
only to a- or b-parameters of 3PLM without an 
appropriate modification.  

In test equating, some of the linear transformation 
methods—the mean-mean and mean-sigma methods of 
Loyd & Hoover (1980) and Marco (1977)—use only a- 
and/or b-parameter estimates to compute the linking 
coefficients. Even with the test characteristic curve 
(TCC) methods (Haebara, 1980; Stocking & Lord, 1983), 
the linking coefficients are not applied to the c-parameter 
estimates, so these estimates are left untransformed 
(Han, Wells, & Hambleton, 2009). Unfortunately, some 
practitioners in the field habitually have used 3PLM item 
parameters inappropriately, unaware of or unconcerned 
about their consequences.  

Some misuse of item parameters, in fact, has had 
little impact and thus can be ignored. In other cases, 
however, the consequences for item evaluation are 
unacceptable. For example, the bookmark or item-
mapping methods (Lewis, Green, Mitzel, Baum, & Patz, 
1998) for standard setting could be a sound approach 
when 1PLM is used because items can be ordered 
correctly by difficulty using the b-parameter. When 
2PLM is used, items are ordered instead by location at 
RP = 0.67 according to P(θ) = (2 + c)/3 with c being zero 
because that is where items result in the maximum 
information (Huynh, 1998). With 3PLM, however, 
assuming c ≠ 0, the use of P(θ) = (2 + c)/3 would result 
in several different RP values for item evaluation unless 
all items had a common c-parameter value. To resolve 
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this issue in practice, c-parameter values of items often 
are simply adjusted to be zero (Cizek & Bunch, 2007; 
Lorié, Egan, Mercado, Brandstrom, & Tele’a, 2004). 
Such practice might be acceptable if c-parameter values 
were very close to zero and the differences in c-parameter 
values among items were negligible. For items whose c-
parameter values vary greatly from zero, however, 
adjusted IRFs could result in substantially deflated RP 
values and the order of items could be significantly 
changed. As a result, the cut scores determined by the 
RP value could be seriously misleading.  

Item 1 Item 2 Item 3 Item 4 Item 5 
a =   1.00 a =   1.10 a =   0.95 a =   1.10 a =   1.10 
b = –1.00 b = –0.90 b = –1.10 b = –0.80 b = –1.10 
c =   0.20 c =   0.25 c =   0.15 c =   0.33 c =   0.25 
Figure 2. An example of items resulting in similar 
IRFs 

The best way to prevent undesirable consequences 
of such misuse of the item parameters with 3PLM simply 
would be not to use or not to interpret the item 
parameters. Graphical analyses on IRFs could be used 
instead. Preventing the 3PLM item parameters from 
being interpreted, however, would substantially limit the 
utility of 3PLM. A more practical solution would be to 
replace the 3PLM with other models, the parameters of 
which can be interpreted. As discussed earlier, since the 
(random) guessing and problem-solving processes are 
conceptually distinguished in FG3PLM, and because the 
c-parameter of FG3PLM is fixed as long as the number 
of multiple choices is consistent, then the a-, b-, and c-
parameters can be directly interpreted as discrimination, 
difficulty, and guessing with FG3PLM. Thus, FG3PLM 
can be a viable alternative to 3PLM when each item 
parameter needs to be interpreted and used for other 
purposes.  

Utility Versus Flexibility 

The advantage that FG3PLM offers in allowing for 
more meaningful interpretation of the a-, b-, and c- 

parameters than found in 3PLM is offset by a possible 
tradeoff in flexibility. Since FG3PLM mathematically is a 
special case of 3PLM (even though each model starts 
from different conceptualizations of the problem-solving 
and guessing processes), the IRFs using FG3PLM would 
be less flexible than 3PLM and potentially would have a 
negative impact on the model-data fit. Therefore, the 
first research question to be answered is: “How different 
is FG3PLM from 3PLM in model fit with various 
educational data?” Several studies have examined the 
model fit comparing 3PLM with 2PLM and/or 1PLM 
(Swaminathan & Gifford, 1979; Hambleton & Murray, 
1983; Hambleton et al., 1991). These studies concluded 
that 3PLM provided much better model fit over 2PLM 
and/or 1PLM. Other studies compared 3PLM with other 
IRT models similar to FG3PLM in equating context with 
simulated data (Marco, Wingersky, & Douglass, 1985; 
Way & Reese, 1991), but few studies actually applied 
both 3PLM and FG3PLM to various educational data 
and evaluated model fit.  

The first study (Study 1) of this paper will apply 
both 3PLM and FG3PLM to three different sets of 
response data from various educational settings and 
testing populations and examine their differences in 
terms of model-data fit.  

Stability and Accuracy 

Several parameter estimation techniques with 
3PLM, such as joint maximum likelihood estimation 
(Birnbaum, 1968; Lord, 1974, 1980) and marginal 
maximum likelihood estimation, or MMLE (Bock & 
Lieberman, 1970; Bock & Aitkin, 1981), were developed 
and became available with computer programs. An 
extensive number of studies followed that further 
contributed to existing knowledge about parameter 
estimation with 3PLM (Lord, 1975; Lord, 1983; Thissen 
& Wainer, 1982; Wingersky & Lord, 1984; Lord & 
Wingersky, 1985; Baker, 1967, 1986; McKinley & 
Reckase, 1980; Swaminathan & Gifford, 1986). This 
research mainly studied model-data fit, parameter 
recovery, and/or standard error and bias of estimation. 
Studies found several factors that affected the estimation 
results (e.g., sample size, test length, item characteristics, 
and distributions). One issue raised repeatedly by several 
studies was the difficulty of estimating the c-parameters 
of 3PLM. 

Estimating the c-parameters (which are derived 
from the lower asymptote of an item characteristic 
function) is hard to do in practice, especially when an 
item is either very easy (low b-parameter) and/or does 
not discriminate well (low a-parameter) due to the fact 
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that there are few examinees at the point on the theta 
scale defined by the lower asymptote (Lord, 1975, 1980; 
Baker 1967; McKinley & Reckase, 1980). As a result, c-
parameter estimates tend to be less stable, with 
substantially larger standard errors, than a- and b-
parameter estimates, considering the difference in scale 
of each parameter. Despite these technical difficulties, 
3PLM has been used as a primary IRT model for MC 
items because it results in much better model fit than 
found with 2PLM or 1PLM.  

If the first study in this paper were to show that 
FG3PLM resulted in acceptable model fit with various 
MC item data, then it would be used to solve the 
problems with the c-parameter estimation of 3PLM. With 
FG3PLM, c-parameters are computed based on what is 
already known—the number of answer options of an 
MC item—so there would be no stability issues in the c-
parameter estimation. All response data could be used to 
estimate a- and b-parameters, resulting in more stable a- 
and b- parameter estimation than with 3PLM.  

The second study (Study 2) in this paper, therefore, 
will employ a series of simulation studies to evaluate the 
estimation stability (i.e., standard error of estimation) of 
both 3PLM and FG3PLM in various conditions 
including number of options of MC items, sample size, 
shape of distribution, model choice, and sparseness of 
response matrix. Study 2 will also examine the estimation 
accuracy (i.e., bias of estimation) with both models.  

Study 1: Model Fit Study With Real Data 
Sets 

Research Design 

This study analyzed real data sets from three 
different testing programs to evaluate model-data fit with 
3PLM and FG3PLM. The first response data set (Data 
Set 1) came from a statewide 10th-grade geometry 
assessment given as a high school graduation 
requirement. The test consisted of 31 MC items and was 
administered to 6,123 examinees. Each item had four 
options. The second data set (Data Set 2) was from 
another statewide assessment, a third-grade English 
Language Arts (ELA) exam given as part of the “No 
Child Left Behind” (NCLB) federal testing requirements. 
This test consisted of 40 MC and two open-response 
(OR) items and was administered to about 70,000 
examinees. Each MC item had four options. The third 
data set (Data Set 3) was from a verbal exam 
administered through a computerized adaptive testing 
(CAT) program as a graduate-level standardized 
admissions test. The CAT data consisted of hundreds of 

items, and a test tailored to each examinee consisted of 
41 MC items, some of which were calibrated and equated 
using the fixed common item parameter (FCIP) method.3 
Only those nonoperational, pretest items, which were 
not adaptively administered, were included in the analysis 
after the item calibration. Only a portion of the item set 
was administered to each individual examinee and the 
full response matrix was 77.6 % sparse with about 17,000 
examinees. Each MC item had five options.  

For Data Sets 1 and 2, PARSCALE (Muraki & 
Bock, 2003) computer software was used to estimate 
item parameters with 3PLM and FG3PLM.4 PARAM-
3PL (Rudner, 2005) was used for Data Set 3. As for 
FG3PLM, c-parameters for MC items were fixed to the 
statistical probability of getting points completely by 
random guessing (i.e., 0.25 for the first and second data 
sets, which had four options, and 0.20 for the third data 
set, which had five options).  

To evaluate data-model fit of the three data sets 
with 3PLM and FG3PLM, chi-square statistics were 
used, as well as visual investigation of the raw and 
standardized residual plots using computer software 
ResidPlots-2 (Liang, Han, & Hambleton, in press). Chi-
square statistics were computed as follows: 

 
∑
= −

−
=

K

j ijij

ijijj
i EE

EON

1

2
2

)1(
)(

χ  (3)

where Nj is the number of examinees in score 
interval j; Oij is the observed proportion of examinees in 
interval j who answer item i correctly; and Eij is the 
probability based on the model in interval j answering 
item i correctly. Degree of freedom equals number of 
score intervals minus the number of parameters being 
estimated. The study also evaluated standard error (SE) 
of estimation for each item parameter to examine 
stability of item parameter estimation. 

Results 

Table 2 displays item parameter estimates for 3PLM 
and FG3PLM with Data Set 1(10th-grade geometry test). 

                                                 
3 This data set is not used to calibrate the operational 
item parameters for that program. 
4 The item parameters were estimated using the MMLE 
method with the logistic model based on a scale constant 
of 1.7. A log-normal distribution and a normal 
distribution were used as prior distributions for a- and b-
parameters, respectively. No distribution was assumed 
for c-parameters.  
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The average of c-parameter estimates with 3PLM was 
0.251, which was very close to 0.250 with FG3PLM. The 
mean differences in a- and b- parameter estimates 
between 3PLM and FG3PLM were also minimal (< 0.1). 
The standard errors (SE) of item parameter estimation, 
however, differed moderately between 3PLM and 
FG3PLM, considering the scales of each parameter. 
Since the c-parameter was not estimated but fixed with 
FG3PLM, the mean SE for the c-parameter was zero, 
while it was 0.030 with 3PLM. The mean SE values for 
the a- and b-parameters were also larger with 3PLM than 
with FG3PLM probably because of the SE of c-
parameter estimation. 

Table 2. Comparisons of Item Parameter Estimates 
Between 3PLM and FG3PLM  

 
Para-
meter Model Mean SD Mean

(SE)
SD
(SE)

Data Set 1 
6,123 

Examinees 
(Grade 10) 

31 MC 
Items 

a 
3PLM 1.154 0.447 0.066 0.018

FG3PLM 1.094 0.478 0.050 0.022

b 
3PLM 0.066 1.043 0.101 0.191

FG3PLM 0.020 1.064 0.041 0.037

c 
3PLM 0.251 0.089 0.030 0.048

FG3PLMb) 0.250 0.000 0.000 0.000

Data Set 2 
70,282 

Examinees 
(Grade 3) 

40 MC + 2 
OR Items 

a 
3PLM 1.301 0.367 0.020 0.006

FG3PLM 1.087 0.324 0.013 0.004

b 
3PLM –0.653 0.388 0.018 0.008

FG3PLM –0.815 0.499 0.010 0.004

ca) 
3PLM 0.260 0.071 0.011 0.003

FG3PLMb) 0.250 0.000 0.000 0.000
Data Set 3 

17,023 
Examinees 
(Higher Ed) 

78 Items 
(77.6% 
sparse) 

 

a 
3PLM 1.118 0.582 0.135 0.107

FG3PLM 1.063 0.568 0.128 0.099

b 
3PLM –0.206 1.014 0.061 0.027

FG3PLM –0.223 1.020 0.064 0.028

c 
3PLM 0.198 0.137 0.029 0.012

FG3PLMb) 0.200 0.000 0.000 0.000

a) Only MC items were included in the statistics. 
b) Standard error of c-parameter estimation was all zero with 
FG3PLM because c-parameters were not estimated but fixed to 
either 0.25 or 0.20 in accordance with the number of options of 
the MC items. 

Figure 3 summarizes the chi-square fit indices for 
each item.5 The changes in model-data fit from 3PLM to 
FG3PLM were minimal for most items. Items 3 and 23 

                                                 
5 The significance test using the chi-square fit statistics 
was skipped in this study because the chi-square test is 
not effective (resulting in a high Type I error rate) when 
the sample size is large. 

showed substantial increases in the chi-square value with 
FG3PLM. As shown in Figure 4, Item 3 with FG3PLM 
had moderate raw residuals in the lower theta area due to 
some observed data that were not along the expected 
IRF. On the other hand, Item 3 had much smaller 
residuals with 3PLM because the lower asymptote of the 
IRF could be adjusted by a much smaller c-parameter 
estimate (0.088) for 3PLM. Item 23, the c-parameter 
estimates of which were 0.091, also showed the residual 
patterns similar to Item 3. Thus, it seemed that 
substantial changes in chi-square fit index between 3PLM 
and FG3PLM tend to occur when c-parameter estimates 
for 3PLM are much lower than ones for FG3PLM. To 
understand the overall residuals across items, the 
frequency distributions of standardized residuals for 
3PLM and FG3PLM were compared. In Figure 5, 
FG3PLM showed slightly more negative standardized 
residuals than 3PLM, but the overall difference between 
3PLM and FG3PLM was not very meaningful. In short, 
the differences in item parameter estimates and model fit 
between 3PLM and FG3PLM with Data Set 1 were 
minimal except for the two items.  

Figure 3. Data-model fit indices (chi-square) for items of 
test data 1. 

With Data Set 2 from the third- grade ELA exam, 
the average c-parameter estimate with 3PLM was 0.260, 
which differed slightly from 0.250 with FG3PLM (Table 
2). It should be noted that the average of a- parameter 
estimates also differ by 0.214 between 3PLM and 
FG3PLM and was consistent with van der Linden and 
Hambleton’s results (1997),where small changes in the c-
parameter could be compensated by small changes in the 
a-parameter. There also were moderate differences in the 
average b-parameter estimates between models, probably 
because partial knowledge was reflected in the c-
parameter estimates with 3PLM (San Martin et al., 2006). 
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and systematic errors. RMSE and BIAS were computed 
as follows (e.g., for a-parameter): 
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where irâ  and ia  represent the a-parameter 
estimate of rth replication and true value for item i, 
respectively. R represents the number of replications. 
The 40 MC items were classified into three groups by 
true b-parameter value or difficulty (e.g., the 10 easiest 
items, the 10 hardest items, and the 20 items in the 
middle) and also by true a-parameter value 
(discriminating power). The item parameter estimation 
results were summarized by group to investigate the 
effect of item characteristics on parameter estimation. 
The effect of test length was also studied. The original 40 
items were used twice to simulate the conditions with a 
doubled test length (80 items), and, at the same time, to 
control other extraneous factors. Table 4 shows the 
statistics for the true characteristics of the items grouped 
by difficulty or discrimination. The data simulation was 
accomplished using computer software WinGen (Han, 
2007), and each condition was replicated 100 times. 
PARSCALE (Muraki & Bock, 2003) computer software 
was used to estimate item parameters with 3PLM and 
FG3PLM.7 The total number of simulations in the study 
was 38,400 (= 4 sample sizes x 3 true c-parameter values 
x 2 distributions x 4 sparseness x 2 test length x 2 IRT 
models x 100 replications).  

                                                 
7 The choice of estimation method and option was 
consistent throughout the analyses of the real and 
simulation data. The convergence criterion for the EM 
cycle was to reach 0.01 (change in log likelihood value) 
within 1,000 iterations. Unsuccessful item calibrations 
due either to nonconvergence or mathematical error 
were summarized separately and excluded from the main 
results. The option for examinee distributions (normal or 
uniform) was chosen in accordance with corresponding 
true distribution and the scale of estimates was also 
transformed accordingly for comparison with the true 
parameters.  

Table 4. Descriptive Statistics for True Item Parameters for 
Each Item Group 

Items 
Grouped by 

Discriminating 
Power 

N Para-
meter Mean SD Min Max 

Lower 10 a 0.707 0.135 0.466 0.865
b 0.116 1.079 –2.166 1.319

Mid 20 a 1.235 0.234 0.888 1.625
b –0.164 1.004 –2.277 2.180

Higher 10 a 2.346 0.450 1.688 3.152
b –0.058 1.219 –1.677 2.467

Items 
Grouped by 
Difficulty N

Para-
meter Mean SD Min Max 

Easier 10 a 1.523 0.787 0.682 3.152
b –1.423 0.521 –2.277 –0.899

Mid 20 a 1.331 0.540 0.466 2.628
b –0.001 0.448 –0.835 0.485

Harder 10 a 1.337 0.812 0.531 2.787
b 1.154 0.660 0.553 2.467

Total 40 a 1.381 0.667 0.466 3.152
b –0.068 1.057 –2.277 2.467

 

Feasibility 

To evaluate the feasibility of using the models in practice, 
Study 2 investigated the percentage of cases with 
successfully converged item calibration across 100 
replications within each condition. The first thing to 
notice in Figure 10 is the difference between 3PLM and 
FG3PLM. The 3PLM simulations yielded a low 
percentage of successful item calibrations, especially 
when the sample size was small (e.g., n = 300), the theta 
distribution was normal, and/or the true c-parameter was 
large (e.g., c = 0.50). On the other hand, FG3PLM 
showed much a higher convergence rate across 
conditions even with smaller samples (n = 300, 600). 
Regarding the shape of distribution, both 3PLM and 
FG3PLM worked much better with the uniform 
distribution than with the normal distribution. In 
particular, the convergence rate of 3PLM with the 
uniform distribution was dramatically improved 
compared with the normal distribution conditions when 
the sample size was relatively small. This was due to a 
greater number of individuals with a lower proficiency 
level under the uniform distribution compared with the 
same sample size under the normal distribution. This was 
consistent with what Lord and Wingersky (1985) 
discovered. When c = 0.50, however, the improvement
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Figure 10. Percentage of successfully converged estimations

 

of the convergence rate with 3PLM under the uniform 
distribution was limited. Test length heavily influenced 
the convergence rate with 3PLM as well. Under the 
studied conditions, the convergence rate with 3PLM 
dropped when the test length changed from 40 to 80. 
With FG3PLM, the effect of test length on the 
convergence rate was small. The impact of the sparseness 
of response matrices on the convergence rate was also 

studied under each condition, but there were heavy 
interactions among sample size, test length, and 
sparseness, and it was hard to identify the consistent 
main effect of sparseness across conditions.  

The findings shown in Figure 10 lead to the 
conclusion that the applications with 3PLM would be 
feasible only when MC items having a sufficient number 
of options (i.e., c < = 0.25) are calibrated with a large 
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sample (> 1,000) or with a uniformly distributed sample. 
In addition, the convergence rate with 3PLM was heavily 
influenced by the interactions between test length and 
sparseness of a response matrix. FG3PLM turned out to 
be a much more feasible application even with a small 
sample size; plus it worked well with MC items that had 
few options (e.g., c = 0.50 like the true-false item type). 

Stability of Item Parameter Estimation 

The stability of item parameter estimation was 
evaluated based on the standard errors of estimation 
(SEE). As shown in Figure 11, the choice of model had 
the greatest impact on the SEE. Throughout the studied 
conditions, FG3PLM resulted in much lower SEEs 
compared with 3PLM, even with small samples. Since c-
parameters were fixed with FG3PLM, SEEs for c-
parameters were always zero. Although the a-parameter 
estimates were known to be closely related to c-parameter 
estimates (Lord, 1975), it was noteworthy that the SEEs 
for a-parameter did not seem to be influenced by the 
SEEs for c-parameter. In other words, there was no 
meaningful difference in the SEEs for a-parameter 
between 3PLM and FG3PLM. Instead, the SEEs for b-
parameter were dramatically increased as the SEEs for c-
parameter got larger with 3PLM, especially when the 
sample size was small and/or the sparseness was serious. 
It also should be noted that the SEEs with 3PLM were 
substantially lowered when the sample was uniformly 
distributed.  

In conclusion, 3PLM could result in relatively stable 
item estimates only when the sample size was very large 
(> 2,000) and the sparseness of the response matrix was 
none to minimal. On the other hand, FG3PLM offered 
very stable parameter estimation even with smaller 
samples (> 600) with moderate sparseness (25% to 75%). 
Test length and true c-parameter value showed little 
impact on the parameter estimation stability across the 
studied conditions.  

Accuracy of Item Parameter Estimation  

Study 2 assessed the accuracy and bias of item 
parameter estimation using the BIAS statistic (Equation 
5). As with a-parameter estimation, the sample 
distribution seemed to cause significant differences in 
BIAS (Figure 12). When the samples were normally 
distributed, the a-parameter estimates became more 
accurate as the sample size increased regardless of the 
choice of response model. When the sample distribution 
was uniform, however, the a-parameters were 

substantially underestimated with both 3PLM and 
FG3PLM, even with a large sample size. On the other 
hand, the c-parameter estimates were much less biased 
with the uniform distribution compared with the normal 
distribution (3PLM). As for the b-parameter estimates, 
the shape of distribution did not seem to be an 
important factor. Rather, the bias of b-parameter 
estimates varied greatly across sample size and choice of 
the response model. The bias in the b-parameter 
estimation was minimized when the sample size was 600 
or larger with FG3PLM or when it was 2,000 with 
3PLM. The sparseness of response matrix seemed to 
influence the bias of the item parameter estimates, but it 
was difficult to interpret because of the complicated 
interactions among the other factors.  

To conduct a deeper investigation of the main 
causes of the bias of the item parameter estimates, all 40 
items were classified into one of three groups either by 
true a- parameter (discrimination) or by true b-parameter 
(difficulty) value (Table 4). As shown in Figure 13, the 
bias in a-parameter estimates was minimal and not 
meaningfully different across the studied conditions 
when the true item discrimination was low to mid-range. 
For those items with higher discrimination, however, the 
a-parameter estimates tended to be substantially 
underestimated when the sample was too small 
(< 2,000) or when the response matrix was severely 
sparse (> 50%). This probably was due to the fact that 
the a-parameter scale is logarithmic, which means both 
the systematic and random errors of a-parameter 
estimation became larger as the parameter value 
increased. Also, it should be noted that the a-parameters 
were noticeably underestimated when the sample was 
uniformly distributed. In terms of choice of IRT model, 
there seemed to be no meaningful difference between 
3PLM and FG3PLM.  

Figure 14 shows the bias of the b-parameter 
estimates. When the sample was normally distributed, the 
bias was minimized with FG3PLM with the sample size 
equal to or larger than 600 regardless of the true item 
discrimination and difficulty. With 3PLM, on the other 
hand, the b-parameter estimates exhibited a large degree 
of bias, even with the large sample (n = 2,000) when the 
true item discrimination was not in the mid-range and/or 
the true item difficulty was lower. This result is similar to 
the findings on 3PLM in Thissen and Wainer (1982). 
When the sample distribution was uniform, however, 
both 3PLM and FG3PLM yielded b-parameter estimates 
that were either overestimated for harder items or
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Figure 11. Stability of item parameter estimation with 3PLM and FG3PLM 
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Figure 12. Accuracy of item parameter estimation with 3PLM and FG3PLM 
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Figure 13. Bias of a-parameter estimation by item discrimination and difficulty 
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underestimated for easier items. It is important for 
practitioners to keep in mind that when the shape of 
proficiency distribution is (or at least expected to be) 
close to a rectangle (like the uniform distribution), the 
chance of obtaining biased b-parameter estimates could 
be considerable both for easier and harder items. 

Last, we see the bias of the c-parameter estimates, as 
illustrated in Figure 15. Since the c-parameters were not 
estimated but fixed with FG3PLM, there was no bias in 
this sample. With 3PLM, however, the c-parameter 
estimates were inaccurate when the sample was normally 
distributed and too small (≤ 600). Even with a large 
sample, there was a high level of bias in c-parameter 
estimates for items with low discrimination and/or easy 
difficulty. For example, when the discrimination was low 
and the item difficulty was easy (the first cell at the top of 
Figure 15), the mean bias of the c-parameter estimates for 
those items often exceeded 0.20. Considering that the 
scale of c-parameter ranges between 0 and 1, estimates 
with such bias cannot be accepted in practical usage. As 
for proficiency distribution, Figure 15 shows that the bias 
of the c-parameter estimates was moderately reduced 
when the sample distribution was uniform in comparison 
with the normal distribution condition. The accuracy of 
the c-parameter estimates for easy items with lower to 
mid-discrimination was still unacceptably poor to be 
useful in practice, however, even when the sample was 
uniformly distributed.  

The bias statistics for a-, b- and c-parameter 
estimates in 3PLM showed that they were heavily 
influenced by each other (especially by biased c-
parameter estimates) so interpreting a-, b-, and c-
parameter estimates separately when 3PLM is in use 
could yield misleading results.  

Summary and Discussion 
The 1970s, ‘80s and ‘90s saw an extensive number 

of studies conducted to understand technical problems 
associated with 3PLM. Many of these studies, however, 
examined only a few factors (or just a single factor) that 
play a key role in 3PLM estimation. Because computer 
technology and estimation techniques for IRT models 
have changed so significantly since the 1990s, we decided 
the time was right to conduct a series of comprehensive 
simulation studies to revisit these earlier findings and 
determine whether they were still relevant to today’s 
much more complicated test designs.  

Simulation Study 2 discovered several conditions 
that can make estimating item parameters for 3PLM 
technically challenging—some of them concurred with 

previous findings and some were new. The item 
parameter estimation procedure using the maximum 
likelihood estimation method often was unsuccessful in 
obtaining converged estimates when the true c-parameter 
value was large (> 0.25) and/or when the sample size 
was small, especially with longer test length8 (Figure 10). 
Even if the converged estimates were obtained 
successfully, the SE of b- and c- parameter estimates was 
too large to be practical when the sample size was small 
(< 2,000) and/or sparseness of the response matrix was 
moderate (> 50%) (Figure 11). On a more critical level, 
the accuracy of c-parameter estimates for items that were 
neither hard nor very discriminating was far from 
satisfactory to be of use in practice (Figure 15). Similar 
problems in estimating c-parameters had been reported in 
earlier studies (Lord, 1974; Wood, Wingersky, & Lord, 
1976; Thissen & Wainer, 1982). It was interesting to 
learn what little progress has been made in the last 30 
years to improve the SE and accuracy of c-parameter 
estimation, even with the availability of advanced 
computer programs and sophisticated estimation 
algorithms. It lead us to what Holland (1990) concluded: 
A one-dimensional test can only support two parameters 
per item, and so, 3PLM just might be over-
parameterized. If the c-parameter cannot be estimated, 
3PLM does not exist (Wright, 1977). Therefore, it may 
be correct to conclude that 3PLM simply may be 
unrealistic (except in the unlikely case where all items are 
well discriminating, sufficiently difficult, and 
administered to an extremely large number of test 
takers).  

Unfortunately (yet convenient perhaps for some), 
there are still available a handful of computer programs 
that can provide practitioners with 3PLM parameter 
estimates even when 3PLM statistically is impossible. For 
example, many computer programs for item calibration 
provide approximate parameter estimates even if the 
model is not satisfactorily converged. As for c-
parameters, most computer programs do not estimate 
the parameters when certain criteria for c-parameter 
estimation are not met, such as the index, ‘b-2/a,’ by 
Lord (1975). They still produce some values as c-
parameter estimates, which often are the average value of 
the c-parameters or a default value like zero. Many 
practitioners in the field remain inadequately informed

                                                 
8 The iterative E-M procedure for item parameter 
estimation was stopped after 1,000 iterations (unless the 
change in log likelihood value met the criterion first, 
which was 0.01).  
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Figure 14. Bias of b-parameter estimation by item discrimination and difficulty 
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about these problems associated the 3PLM calibration 
and, as a result, and are often misled into thinking that 
3PLM works well and that c-parameter estimates are 
accurate as long as the computer programs output some 
values as parameter estimates.  

Even if 3PLM were estimated properly without any 
technical issues, 3PLM with c-parameter is no longer a 
member of logistic functions (Birnbaum, 1968) and loses 
many useful statistical properties (Baker, 1986). As 
shown earlier in Figure 2, a- and b- parameters are not 
comparable across items unless the items being 
compared have the same c-parameter value. In other 
words, a- and b- parameters of 3PLM cannot be 
interpreted as and/or used as indices for item 
discrimination and difficulty, respectively, when c-
parameter is freely estimated. The uncomfortable truth 
for practitioners to realize is that a-, b-, and c-parameters 
of 3PLM have little utility in item analysis unless the 
three parameters are viewed altogether in the form of 
IRF.  

Another critical problem with 3PLM, mentioned in 
the beginning of this article, is the ambiguity of the 
model’s definition of ‘guessing.’ Some researchers 
assume that all examinees, even those of varying 
proficiency levels, have the same capacity for or 
probability of guessing successfully (Birnbaum, 1968; 
Baker, 1986). Others theorized that guessing occurs 
mainly with examinees of low proficiency levels (Lord, 
1974, 1975; Hambleton et al., 1991), and some argued 
that guessing is related to the proficiency level 
throughout the theta scale. The incongruence among 
those different points of view on the guessing parameter 
is due mainly to the different ways researchers interpret 
logical guessing, which many believe is what happens 
when a test taker’s knowledge is insufficient for correctly 
answering a test question. Traditionally viewed, logical 
guessing is part of the overall guessing process, but this 
supposition only makes it difficult to disentangle logical 
guessing from random guessing.  

This study proposed redefining the guessing and the 
problem-solving processes (Figure 1), and viewed logical 
guessing as a component of the problem-solving process. 
Based on this new concept of the guessing process, 
random guessing becomes the only remaining 
component of the guessing process. Thus, parameters 
for the guessing process can be easily set up in a 
response model using information that is already known 
and unbiased: the mathematical probability of random 
guessing, which is 1/k, with k being the number of 
multiple choices in the item. As pointed out earlier, the a-

, b-, and c-parameters of FG3PLM—unlike 3PLM—are 
comparable across items (as long as the number of 
choices is consistent), and, as a result, can be directly 
interpreted as discrimination, difficulty and guessing, 
respectively. Since fixing the c-parameter might negatively 
influence the model fit, Study 1 attempted to fit 
FG3PLM to the real test data sets from three distinctly 
different test populations and compare it with 3PLM. 
The results of Study 1 showed no meaningful difference 
in model fit between 3PLM and FG3PLM, leading us to 
conclude that FG3PLM fit data from various educational 
applications as well as 3PLM.  

The advantages of FG3PLM over 3PLM were more 
obvious in the Study 2 simulation. Having one less 
parameter to estimate per item, FG3PLM yielded higher 
success rates in obtaining converged item parameter 
estimates (Figure 10) compared with 3PLM, especially 
when the sample size was small (≤ 600). Study 2 also 
revealed that FG3PLM is preferable over 3PLM in terms 
of the stability and accuracy of item parameter 
estimation. Estimating accurate lower asymptote (c-
parameter) for 3PLM is difficult if not impossible; 
whereas the c-parameter for FG3PLM can be computed 
easily based on unbiased and known information. At 
least within the newly revised definition of the guessing 
process (with FG3PLM), the mathematical probability of 
the random guess (1/k) would be the best guess at the 
guessing parameter.  

One might recall earlier studies reporting c-
parameter estimates below 1/k (Lord, 1974, 1975). This 
was not necessarily true, however, at least with the real 
data sets analyzed in this study. In Study 1, the average c-
parameter estimates for 3PLM were very close to 1/k or 
even slightly above 1/k (Table 1). The simulated data 
sets in Study 2 also showed that the c-parameters tended 
to be overestimated when the true a-parameter values 
were in low to middle ranges (Figure 15). Thus, it would 
be logical to assume that the observed bias of the c-
parameter estimates was due mainly to the compensation 
between a- and c-parameters during the estimation 
procedure, a finding also reported by Lord (1975). Lord’s 
attempt to explain c-parameter estimates below 1/k, in 
which he said “item writers try hard and successfully to 
provide alternative (wrong) responses that will be 
attractive to low ability examinees (1975, p. 29)” was 
indeed plausible only when the observed responses were 
considered. It should be noted that the lower asymptote 
of a response function begins at the negative infinite on 
the theta scale, not at a certain point on the theta scale 
where low-ability examinees are observed. Imagine there 
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Figure 15. Bias of c-parameter estimation by item discrimination and difficulty 
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were examinees with extremely low ability (near negative 
infinity on the theta scale). Those examinees would not 
have understood the test question or the multiple choice 
options at all, and, as a result, their only possible 
response would have been to make a random guess. 
Even in the traditional view of the guessing process with 
the typical 3PLM, the lower asymptote value (c-
parameter) theoretically should be of the probability of 
the successful random guess (1/k). Even if some 
observed scores from a few low-proficiency examinees 
resulted in c-parameter estimates below 1/k in practice, it 
is unlikely they would be meaningful because the 
estimates would be based on an extremely small sample 
number that might just be noise (Samejima, 2009).  

In sum, it is probably unnecessary to introduce a 
new term, FG3PLM, to the field simply to refer to the 
IRT model that is mathematically the same as 3PLM. 
When items are estimated with the fixed c-parameter, 
however, and the item parameters are interpreted 
according to the reconceptualized problem-solving and 
guessing processes, I suggest using “random chance 
parameter.” It is a more appropriate and meaningful 
interpretation of the c-parameter than “guessing” or 
“pseudo-guessing.”  
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