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Establishing model parsimony is an important component of structural equation modeling (SEM).  
Unfortunately, little attention has been given to developing systematic procedures to accomplish this goal.  
To this end, the current study introduces an innovative application of the jackknife approach first presented 
in Rensvold and Cheung (1999).  Unlike the traditional application of jackknife procedures for the purpose of 
identifying outliers and influential cases within a dataset, this jackknife procedure is applied for the purpose of 
identifying and eliminating items from a structural model.  Items are identified through the jackknife 
procedure and eliminated from the model without altering the measurement or structural integrity of the 
model.  The goal of this application is to create the most parsimonious model by reducing the number of 
items in an inventory, without altering the construct represented by the model.   

 

The creation of shorter versions of scales in 
psychology and allied fields is fairly common. For 
example in developing a shorter version of WISC-
III for clinical use, Donder’s (1997, p. 15), goal was 
to develop “A short form that would maintain the 
desirable psychometric properties of the full WISC-
III (in terms of factor structure and reliability and 
validity of the instrument).”  In other instances, a 
new shorter model was developed because the 
existing shorter version did not maintain the 
conceptual and measurement integrity of the 
original longer form (see Jackson, Furnham, Forde 
and Cotter, 2000 for an assessment of the shorter 
version of the Eysenck Personality Profiler). It was 
for this reason that Petrides, Jackson, Furnham and 
Levine (2004) used CFA in developing an 
“improved new version” (p. 222). Another goal for 
developing shorter versions of scales was because 
“reduction of items was to achieve a higher 
acceptability of the questionnaire in the population, 
aiming for shorter times of administration, better 
response rates and lower rates of missing data”  
(Grossi,  Groth,  Mosconi, Cerutti, Pace, Compare 

and Apolone (2006, p. 89).  Grossi et al. (2006) 
administered the original 22-item health-related 
Psychological General Well-Being Index, PGWBI 
(Italian Version) to 1,015 to a “representative 
sample … of Italy dwelling Italians.”  Using the 
summary scores as a dependent variable and the 22 
items as independent variables they used stepwise 
regression and identified six items that accounted 
for at least 90 percent of the variance in the 
summary scores. This resulted in the six-item 
PGWB-S.  

A number of studies have reduced items 
through exploratory factor analytic approaches (e.g., 
Clark & Goldsmith, 2006; Salzberger, 2006).  
Specifically, exploratory factor analysis has been 
used to identify items with loadings below 0.4 on 
any of the theorized factors.  These items are 
eliminated from the model.  This method is 
problematic in that it does not take into account the 
structure of the original factors or the structure of 
the model.  Additionally, this approach incorporates 
exploratory factor analyses which should only be 
used with the exploring of new inventories, so its 
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generalization to existing scales is not a valid 
application. 

Benson & Bandalos (1992) attempted to reduce 
the number of items in the forty-item Reaction To 
Tests (RTT) inventory.  The RTT (Sarason, 1984) is 
a forty-item inventory used to assess test anxiety by 
measuring the participant’s tension, worry, test-
irrelevant thinking and bodily reactions.   
Specifically, the RTT was modeled with a second 
order factor structure in which four subscales 
(tension, worry, test irrelevant thinking, and bodily 
symptoms) directly explained the original forty 
items, while test anxiety was a higher-order 
construct explaining the four first-order constructs.  
The goal of their investigation was to demonstrate 
that a shorter version of the scale could be 
developed while maintaining the four-factor model, 
with the “…same degree of precision as the original 
scale” (p.643). After conducting confirmatory factor 
analysis in an effort to demonstrate that the forty-
items supported a four-factor model, Benson and 
Bandalos (1992) reported that they deleted items 
which had duplicate wording with other questions, 
or items that had large modification indices or large 
standardized residuals. Unfortunately, they did not 
demonstrate that the shorter version maintained the 
structural integrity of the original, larger version. 
The authors also failed to explain how decisions 
regarding standardization residuals and modification 
indices were made.   

The goal of this paper is to demonstrate the use 
of a systematic jackknife approach, in an effort to 
produce a shorter version of the Statistics Self-
Perception scale (see Larwin, 2007).  The theorized 
factor structure, when tested, demonstrated very 
good fit. However, due to the size and complexity 
of the model, it seemed that any attempt at creating 
a shorter version of any scale by reducing the 
number of items in the model(s) should establish 
model parsimony while resulting in a model that 
computationally is equally valid. 

Establishing Model Parsimony 

Structural equation modeling (SEM) has grown 
in popularity over the last thirty years, however not 
much attention has focused on developing a 
systematic heuristic for establishing model 

parsimony. The present investigation employs 
jackknifing to develop an effective approach to item 
reduction that results in a more parsimonious model 
that maintains the integrity of the original structural 
model.   Model parsimony in understanding 
psychological constructs and in computing 
structural models is important on a number of 
levels.  According to the principle of parsimony, the 
explanation of any psychological construct or 
phenomenon should make as few assumptions as 
possible, eliminating any items or factors that make 
no difference in the observable predictions or 
explanation of a theory or hypothesis (Epstein, 
1984).  Regarding SEM, Bollen (1989) and Hayduk 
(1987) maintain that if it is judged that more than 
one model appropriately fits the data, while also 
supporting the original theory of the structural 
model, the most parsimonious (the simplest) model 
should be selected (Bollen, p. 72).  

Additionally, increased model complexity can 
increase the probability of catastrophic cancellation.  
Specifically, catastrophic cancellation is the result of 
rounding errors in computer programs. This 
probabilistically increases as very small quantities of 
numbers are subjected to arithmetic operations 
which are computed from larger quantities of 
numbers (Hanson, 2007).  The result of catastrophic 
cancellation is a loss of precision, specifically in the 
computation of the elements of one of some eleven 
matrices used in SEM.   Therefore, reducing the 
number of items in the model assists in the 
precision of computations as well as model 
estimation. 

Catastrophic cancellation is one of the 
consequences of multicollinearity that occurs when 
items are so highly correlated that it becomes 
difficult to distinguish their individual influences; 
the departure from orthogonality in a set of 
independent variables. Exact multicollinearity occurs 
when there is linear dependence within a set of 
independent variables and the associated matrix of 
inter-correlations is singular.   

In structural equation modeling, 
multicollinearity may cause computational problems 
including non-convergence. “Without convergence, 
one has no leverage to evaluate the goodness of the 
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model or parameter estimates …with existing 
procedures in SEM. When the sample covariance 
matrix S is literally singular, existing procedures in 
SEM do not permit calculations of statistics for the 
overall model evaluation” (Yuan and Chan, 2008, p. 
4843). Even if there is convergence, the results may 
be untenable because of the following possibilities: 
(1) the existence of some negative variance estimates 
– the Heywood cases (Heywood, 1931; Rindskopf, 
1984; Dillon, Kumar & Mulani, 1987; Chen, Bollen, 
Paxton, Curran, & Kirby, 2001); (2) improper 
parameter estimates. “The population parameter 
may be a value  that is acceptable but close to the 
boundary of admissible values” (Bollen, 1989, p. 
282); (3) “a model can fit perfectly yet be associated 
with problematic lower order components , such as 
parameter estimates that are biased, small in 
magnitude, or opposite to theoretical expectations 
(Tomarken & Waller, 2005, p. 50), and (4) 
multicollinearity, which tends to cause increases in 
the standard errors of coefficients of the affected 
(collinear) variables and the increased standard 
errors in turn mean that coefficients for some 
independent variables may be statistically 
insignificant,  leading to inference errors.  

Some scholars seem to contend that structural 
equation models are robust enough that 
multicollinearity is not an estimation issue 
(Malhotra, Peterson, & Kleiser, 1999; Verbeke & 
Bagozzi, 2000).  However, as Marsh, Dowson, 
Pietsch and Walker (2004, p. 518) observed, “the 
use of sophisticated statistical tools such as 
structural equation modeling (SEM) can mislead 
researchers into thinking that such well-known 
problems are no longer relevant.”  Many other 
scholars echo this point of view (Freedman, 1987; 
Malhotra, Peterson & Kleiser, 1999; Pietsch,  
Walker, & Chapman, 2003). Even sophisticated 
methods like structural equation and complex 
regression models are adversely affected by 
multicollinearity.  “Multicollinearity is a ubiquitous 
phenomenon that can produce strange, misleading, 
or uninterpretable results when a set of highly 
related independent variables is used to predict a 
dependent variable. At least the detection and 
consequences - if not the resolution - of 
multicollinearity problems are well understood in 

traditional analyses of manifest (non-latent) 
variables” (Marsh, Dowson, Pietsch, & Walker, 
2004, p. 518). Similar issues are raised in allied fields 
such as economics.  For example, Mela and Kopalle 
(2002, p. 667) maintained that “The problem of 
collinearity in empirical research is among the most 
endemic concerns raised by marketers. In fact, a 
recent search in EconLit revealed 154 studies 
discussing collinearity or multicollinearity in their 
abstracts. A similar full text search of Applied 
Economics (using Infotrac) yielded 220 articles since 
1991.”  

The above discussion illustrates the fact that 
like regression SEM models are equally affected by 
high multicollinearity, but when is this the case? As 
Grewal, Cote, and Baumgartner (2004, p. 520) 
observed, researchers may ignore multicollinearity 
because of practical considerations. Existing 
guidelines about when multicollinearity is likely to 
cause problems are often ambiguous, procedures for 
mitigating multicollinearity are frequently of limited 
usefulness and, most importantly, little is known 
about how to deal with multicollinearity in the 
context of SEM. The best solution would be to 
avoid multicollinearity problems in the first place. 

As discussed earlier, in many research situations 
where the original unidimensional factor consists of 
a very large number of items, using many methods, 
researchers reduced the number of items in a model 
without full consideration of the integrity of the 
original larger construct.  “If construct validity is 
supported by confirmation of a hypothesized 
dimensional structure, other types of scale 
refinement or assessment may be considered” 
(MacCallum & Austin, 2000, p. 208). One such 
refinement is the goal of this paper.  

The present investigation explores an approach 
to item reduction and parsimony using an 
application of jackknifing. In their attempt to 
eliminate records from their data set, Rensvold and 
Cheung (1999) used a jackknife approach with 
LISREL to identify influential outliers in their data.  
They ordered the models according to the CFI 
indices and deleted the records with the lowest CFI-
values; records were removed one case at a time. 
The procedure developed here is adapted from a 
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study by Rensvold and Cheung (1999). Although 
they developed the jackknife approach for the 
purpose of reducing records in a SEM, rather than 
items, we believe some variation of their approach 
might be a viable means of achieving model 
parsimony for variables instead of cases. The 
current investigation employs a similar jackknife 
approach.  Analogous to the jackknife application of 
Rensvold and Cheung (1999), the full model in the 
present study was estimated using all the variables, 
then estimated again and again with items excluded 
one at a time.  The impact of item deletion on the 
model’s structure was evaluated after successive 
iterations.  Although computationally intensive, the 
resultant reduced model maintained the integrity of 
the construct.      

For the current investigation, two different 
models were used to assess the viability of this 
jackknife approach: (i) a unidimensional congeneric 
model of Statistics Related Self-Efficacy, with 14 
original items and (ii) a Multi-Dimensional Model of 
Statistics-Related Anxiety. The unidimensional 
congeneric model, conceptualized as a first order 
model, is the simplest model in SEM, and was the 
logical starting point for this methodological 
investigation.  This model is summarized next. 

 

The First-Order Structural Equation Model 

 The first-order measurement model is  
concerned with the variance shared by directly 
measured observed variables and the latent, 
unobserved variables that are theorized to explain 
these observed variables:   

δξ +Λ= xx  (1)

The associated covariance matrix of x, )( xx ′Ε :       

))(( ′+Λ+ΛΕ δξδξ  

If δθδδφξξ =′Ε=′Ε )()( and  then:   

δθ+Λ′ΦΛ=Σ xxxx
 (2)

consists of the partial regression coefficients (Λ) of 
the latent variables (ξ), the error variance (θ) and the 
factor covariance (Φ).  

The goal of this stage of the analysis was simply 
to demonstrate that the first-order model for 
Statistics-Related Self-Efficacy with the sample of 
participants in this investigation converges directly 
on the items in the inventory.  Equation (2) was 
used to generate congeneric models for the primary 
constructs of Statistics-Related Self-Efficacy.  The 
second measurement model used later is the second 
order measurement model. 

The Second-Order Structural Equation Model 

 A model, with the existence of lower-order 
factors and significant inter-correlations among the 
factors implies the existence of at least one second-
order factor. Gorsuch (1983, p. 579) uses the 
following analogy to differentiate between a first-
order and a second-order model:  

The first-order analysis is a close-up view that 
focuses on the details of the valleys and the peaks in 
mountains. The second-order analysis is like looking 
at the mountains at a greater distance, and yields a 
potentially different perspective on the mountains as 
constituents of a range.  

In a broader theoretical framework, Gorsuch 
(1983, p. 240) distinguishes between the first-order 
factors (primary) and higher-order factors thus: 
“primary factors are concerned with narrow areas of 
generalization where the accuracy is great. The 
higher-order factor reduces accuracy for an increase 
in the breadth of generalization.”    

The confirmatory factor analyses of the second-
order factor models were based on an extension of 
equation (1) and equation (2).  Specifically, a second-
order model involves re-specifying equation (1) and 
equation (2) as endogenous constructs rather than 
exogenous constructs. Endogenous constructs are 
different from exogenous constructs in that the 
former can be mediating constructs and pure 
dependent variables, whereas the latter are 
independent constructs.   

The exogenous model is replaced by the 
following endogenous model:   

εη +Λ= yy  (3)
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in which the associated covariance matrix of y, 
)( yy ′Ε , consists of the partial regression 

coefficients (Λ) of the latent variables (η), the error 
variance (ε) and the factor covariance (ψ): 

)( yy ′Ε  or ))(( ′+Λ+ΛΕ εηεη  

If E(ηη΄) = ψ and E(εε΄) = θε then:   

εΘ+Λ′ΨΛ=Σ yyyy
 (4)

The resulting model, in which the exogenous 
model (2) is replaced by the endogenous model (4), 
is then transformed into a second-order structured-
mean model (Benson & Bandalos, 1992).  
Specifically, if ξ is the second-order factor, and η is 
the set of lower-order factors, equation (5) 
summarizes their causal relationship, Γ, between ξ 
and η, and ζ the residual associate with η:   

ζξη +Γ=  (5),

with ζ, the residual variance associated with η. 
Combining equation (5) into equation (3) yields:   

εζξ ++ΓΛ= )(yy  (6)

After taking the appropriate expectation of (6), the 
covariance of y for the second-order factor model is:   

εΘ+Λ ′′Ψ+Γ′ΓΦΛ=Σ yyyy ][  (7)

Equation (7) decomposes this covariance, to extract 
second order factor model, yΛ , are the factor 
loadings, Γ the second order loadings, Ф the first 
order factor covariance, and εθ the associated 
residual matrix.   

The analyses for this phase were conduced by 
specifying the LISREL parameters (7) for testing the 
first-order and second-order models simultaneously 
(Jöreskog & Sörbom, 2001, p. 204).  The goal of 
these analyses was simply to demonstrate that 
Statistics-Related Anxiety maintained the 
hypothesized second-order factor structure by 
convergence on the items in each inventory. 

Assessing Model Fit 

A combination of criteria is utilized to assess 
the fit of the data to each model.  Other indices are 
used to compare full models to reduced models.  

Satorra-Bentler’s scaled corrections, SB χ² are used 
rather than the commonly used normal theory χ² 
because of the high level of kurtosis that is 
associated with items (Schermelleh-Engel, 
Moosbrugger, & Müller, 2003).  The Satorra-Bentler 
scaled χ² (SBχ²) test adjusts the maximum likelihood 
estimators downward by a constant value which 
reflects the degree of the observed kurtosis, in an 
effort to minimize the effects of non-normality 
(Kline, 1998, p. 210).  Data that is skewed or 
kurtotic can be problematic with the maximum 
likelihood estimation procedures.  

However, because of the large sample size 
(n=238) in the present study, all the associated p 
values associated with the computed χ² did not 
exceed 0.05.  Although χ² test statistic is the most 
commonly cited fit index, there are several problems 
with it.  According to  Schermelleh-Engel et al. 
(2003) and Satorra and Bentler (1999), the χ² test 
statistic is problematic when used with data that is 
not multivariate normal, it is extremely sensitive to 
sample size, and the χ² test statistic value decreases 
as model complexity increases; therefore, it is also 
affected by the number of parameters in the model.   

Model fit is also evaluated by a combination of 
two relative fit indices: the Comparative Fit Index 
(CFI, Bentler, 2007) and the Root Mean Square 
Error of Approximation (RMSEA), which, 
according to Browne & Cudeck (1993, pp. 137-138) 
are designed to address the following issue:  How 
well would the model, with unknown but optimally 
chosen parameter values fit the population 
covariance matrix if it were available? RMSEA 
demonstrates optimal fit with a value below 0.05, 
and a reasonably good fit with values at or below 
0.08.  CFI is non-stochastic, with p values greater 
than 0.95 indicating good fit. According to Fan, 
Thompson & Wang (1999) these indices have been 
shown to demonstrate very little random variation 
due to sample size, number of parameters, model 
misspecification, or method of estimation.   

Brown and Cudeck (1993) also propose the 
consideration of a complementary question 
regarding model fit that focuses on the overall error 
in the model: How well can the model with 
parameter values determined from the available 
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sample fit the population covariance matrix?  They 
propose that cross-validation should be considered, 
and suggest that the expected value of the cross-
validation index (ECVI)  can be used to estimate the 
expected value of the cross-validation index based 
on the available sample. The smaller the ECVI, the 
smaller the discrepancy, and therefore, the better the 
model fit 

Finally, Consistent Akaike Information 
Criterion (CAIC) is used to assess model fit in light 
of change in model complexity.  The use of this 
information fit index defines a selection criterion 
that makes an appropriate adjustment to its 
goodness of fit by penalizing for model complexity 
(Myung, 2000, p.196). Lower CAIC values indicate 
better fit. 

Jackknifing Procedure 

The current investigation demonstrates a 
jackknife approach, in which individual items are 
removed after the full model is estimated.  The 
jackknife procedure, similar to the procedure 
presented by Rensvold and Cheung (1999), is 
applied to item reduction with the following 
procedure: 

Step 1: The fit statistics are calculated for the full 
data set with all items; 

Step 2: Re-estimate the model, K number of times, 
with each estimate based on the full model 
minus one of the items, with a different item 
removed for each re-estimate.; 

Step 3: Rank the resulting models and determine 
which model has the best fit relative to the 
original full-item model, based on CFI and 
RMSEA values; and 

 Step 4:  With the best fitting model identified in 
Step 3, repeat the procedure starting with Step 
2, this time re-estimating the one-item reduced 
model. 

Step 5: Continue this model re-estimating and item-
removal process until the following conditions 
are met:   

(i) Variables were removed from the models as 
long as the original primary factor model 
was correlated with the reduced model at a 

level of r ≥ .95, as recommended by 
Newcomb et al. (1988) and Byrne (1989).  

(ii) Items were removed as long as each original 
factor continued to explain at least three 
observed variables (Bagozzi, 1980; Sluis et 
al., 2005).   

(iii) Items were removed as long as the structural 
integrity of the model was not violated 
(Bollen, 1989);  

(iv) And the resulting reduced model 
demonstrated good fit (Bollen, 1989). 

While these procedures are computationally 
intensive, an automated application was developed 
with FORTRAN for use in the present study. 

Bootstrap Confidence Band 

For the items that the full model and the 
reduced model had in common, bootstrap 
confidence intervals were also computed as another 
means of examining the reliability of the inventories 
with this sample of participants.   With this 
procedure, the bootstrap sample data was based on 
a sample 1 ½ times the original sample size (n = 
357), with replacement, and replicated 2000 times.  
The purpose of this procedure was to produce 95% 
confidence bands in an effort to assess the precision 
of the parameters.  Specifically, the tighter the 
confidence bands, the higher the level of precision 
associated with the coefficient (Sturgis, 2005).  
Narrow bandwidths for most of the items suggest a 
high level of reliability in the original model data 
(Sturgis, 2005; Wood, 2005).   

Methods 
Sample 

The participants were 238 graduate level 
students enrolled in statistics courses offered in the 
departments of biological science, education, 
geography, and psychology at Kent State University. 
The students completed paper and pencil 
questionnaires examining self-beliefs and emotions 
about their required statistics coursework.   

Instrumentation 
The Current Statistics Self-Efficacy (CSSE) 

inventory is an instrument developed by Finney and 
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Schraw (2003) to assess the one-dimensional 
construct of self-efficacy.    With this instrument, 
respondents are asked to rate their current belief in 
their ability to complete 14 specific tasks related to 
statistics using a 1 (no confidence at all) to 5 
(complete confidence) response scale.  

The specific items for this inventory are 
provided in Appendix A. 

The Statistics Anxiety Rating Scale (STARS-1) 
is an instrument developed from the original STARS 
inventory by Cruise, Cash, & Bolton (1985).  The 
original STARS inventory was created to assess two 
different factors related to statistics anxiety – 
specifically, anxiety and attitudes about statistics.  
The STARS-1 is comprised of the first twenty-three 
items of the STARS (Cruise et al., 1985) as a 
measure of statistics anxiety across three subscales: 
(1) anxiety related to interpretation; (2) statistics 
class and test anxiety; and (3) anxiety about asking 
for assistance. The items for this inventory are 
provided in Appendix B. 

Reliability analyses were conducted using SPSS 
12.0.1 (SPSS, 2003) in order to assess the 
consistency of participant responses on the scales.  
A Cronbach’s Alpha (Cronbach, 1951) was 
calculated for the data collected with each 
instrument (CSSE and STARS) in an effort to 
analyze the internal consistency of items in each 
scale. These analyses, conducted on the ordinal 
responses, revealed acceptably high levels of 
reliability (Thompson, 2003, p. 256) for each 
instrument,  with an α = .917 on the 14 items of the 
CSSE inventory, and an α = .917 on the 23 items of 
the STARS-1 inventory.  A breakdown of the 
reliability analyses for each construct is presented in 
Table 1. 
Table 1: Cronbach’s Alpha for Primary Factors 
Construct 
 

Sub-Construct 
 

Number 
of Items 

Cronbach's 
α 

Self-
Efficacy 

One-
Dimensional 14 .917 

Anxiety Interpretation 11 .842 

 Class/Test 8 .889 

 Assistance 4 .776 

A full description of the sample and the 
procedures is provided in Larwin (2007).  
Data Preparation 

 Once data were collected, a number of 
procedures were used to prepare the data for 
subsequent analyses.  First, data were examined for 
missing values.  A total of sixteen item-responses 
were incomplete.  Since there was no pattern to the 
missing responses, multiple imputation procedures, 
generated through the Linear Structural Relations 
program (LISREL® 8.8, 2006), were used to 
complete the sixteen missing responses.   

Multiple imputation is one of many methods 
available for dealing with missing data (Fox-
Wasylyshyn & El-Masri, 2005; McCleary, 2002).  
Multiple imputation was implemented in the present 
study because it is considered by many researchers 
to be the superior approach to dealing with missing 
data (e.g., Allison, 2000; Fishman & Cummings, 
2003; King, Honaker, Joseph, & Scheve, 2001; 
Rubin, 1987; Schafer & Olsen, 1998), and unlike 
other methods, multiple imputation has been found 
to be robust to model violations (Allison, 2000; 
King, et al., 2001).  Multiple imputation is 
accomplished through several stages of data analyses 
in which data from complete cases is used to predict 
the value of the missing item.   

Some of the survey responses were recoded in 
an effort to have all responses across the two 
inventories coded in such a way that the 
theoretically least desirable responses had the lowest 
values and the most desirable responses had the 
highest values. Specifically, items were coded so that 
item-responses indicating highest-level of anxiety, 
lowest-level of self-efficacy and poorest attitudes 
were recoded as having a value of zero; responses 
indicating lowest-levels of anxiety, highest-levels of 
self-efficacy, and most positive attitudes were 
recoded as a value of four (4). The methods of 
analysis in the next section are confirmatory factor 
analysis and jackknife item-reduction procedure.   
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Results 
Part One:  The Congeneric Model of Statistics-

Related Self-Efficacy 

For Part One of the present investigation, data 
from Finney & Schraw’s (2003) Current Statistics 
Self-Efficacy inventory (CSSE) that was employed 
to measure participants’ Statistics-Related Self-
Efficacy was used to examine the viability of using 
jackknife procedures for item reduction.  This 
instruments’ one-dimensional structure was ideally 
suited for the first part of the current investigation.   

In an effort to demonstrate the construct 
validity of the instrument with the present sample of 
participants, it was necessary to verify the factor 
structure of the inventory through confirmatory 
factor analysis (CFA), as well as demonstrate that 
the 14 items load significantly on the factor.  
Specifically, the proposed covariance matrix for the 
primary factor (Σ), which has been supported by 
prior research (Finney & Schraw, 2003) was tested 
against the sample covariance matrix (S) (Bollen, 
1989).  In order to accomplish 
  

 and 
Ι=Φ=Θ and14,143,32,21,1 ,...,,, δδδδδ  

Figure 1.  Operationalization of the Self-Efficacy 
Construct 

this, each item was constrained to load on only one 
first-order factor, hence making this a confirmatory 
factor model (Lord &Novick, 1968). Equation (2) is 
operationalized with the Statistics-Related Self-
Efficacy construct (Figure 1) 

The results of the CFA indicate that the 
Statistics-Related Self-Efficacy model demonstrated 
good fit (χ² = 598.64, CFI = .948, RMSEA = .127, 
ECVI = 1.808, CAIC = 553.82).  The RMSEA 
values for this model are higher than what is 
considered acceptable.  However, Schermelleh-
Engel et al. (2003) indicate that the RMSEA 
calculations are sensitive to the number of variables 
in a congeneric model. 

Jackknife Application to CSSE  

Once the original CSSE model was confirmed 
through CFA, it was re-estimated as a new model 
that systematically reduced the number of items in 
the model by one. After each iteration, the fit 
statistics were recorded following the steps outlined 
in Jackknife Procedures (above). For this 14 item 
model, this process required a total of 881 separate 
LISREL runs.  The items from the item-deletion 
procedure, which created the best fitting model 
based on the CFI and RMSEA estimates, were 
manually deleted from the subsequent runs (with K 
– 1 items) of the model.  The Statistics-Related Self-
Efficacy Model was reduced by a total of five items; 
a reduction of 35.7%.   The deleted items are 
presented in Table 2.  

Table 2: Jackknife Item-Elimination Results for CSSE 

Jackknife 
Subset 
(item 

deleted)

χ² df CFI RMSEA ECVI CAIC 

5 523.04 65 .951 .127 2.686 752.80 
10 398.25 54 .958 .118 2.040 590.90 
6 314.93 44 .967 .109 1.547 465.05 
1 243.02 35 .965 .111 1.291 395.38 
13 183.76 27 .968 .109  .992 315.49 

 
Once items were removed, the items in the 

reduced factor model were correlated with the same  
items in the original larger factor model. This 
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resulted in an r = .966, satisfying the recommended 
r ≥ .95 guidelines of Newcomb & Bentler (1988) 
and Byrne (1989). The primary factor continued to 
converge on at least three observed variables 
(Bagozzi, 1980; Sluis et al., 2005), and the original 
model integrity was maintained, with the reduced 
model demonstrating good fit.  As revealed in Table 
3, the final model of 9 items demonstrated an 
improved fit relative to the full model of 14 items.   

Table 3: Self-Efficacy Change in Model Fit 

 χ² df CFI RMSEA EVCI CAIC

All Items (14 
Items) 598.65 77 .948 .127 1.808 553.82

Reduced Model 
(9 Items) 183.76 27 .968 .109 .923 315.49

Δ Self-Efficacy 414.88 50 .020 .018 .885 238.33

 
The deleted and retained items from the CSSE are 
presented in Tables 4a and 4b.  

Table 4a: Self-Efficacy Items Retained with Model 
Reductions 

Retained 
Item Retained Item Content 

EF2 
 

Interpret the probability value from a 
statistical procedure. 

EF3 Identify if a distribution is skewed when 
given the values of three measures of 
central tendency. 

EF4 
 

Select the correct statistical procedure to 
be used to answer a research question. 

EF7 
 

Explain what the value of the standard 
deviation means in terms of the variable 
being measured. 

EF8 
 

Distinguish between a Type 1 error and a 
Type 2 error in hypothesis testing. 

EF9 
 

Explain what the numeric value of the 
standard error is measuring. 

EF11 
 

Distinguish between the information given 
by the three measures of central tendency. 

EF12 
 

Distinguish between a population 
parameter and a sample statistic. 

EF14 
 

Explain the difference between a sampling 
distribution and a population distribution. 

 
 
 

 

Table 4b: Self-Efficacy Items Deleted with Model 
Reductions 
Deleted 

Item 
Deleted Item Content 

EF1 Identify a scale of measurement for a 
variable. 

EF5 Interpret the results of a statistical 
procedure in terms of the research question.

EF6 Identify the factors that influence power. 
EF10 Distinguish between the objectives of 

descriptive versus inferential statistical 
procedures. 

EF13 
 

Identify when the mean, median, and mode 
should be used as a measure of central 
tendency. 

 
Table 5 demonstrates that the factor loadings 

for the items that are common to both the 9-Item 
and 14-Item models, indicate minimal change in the 
loadings as a result of the item-reduction. The 
differences in factor loadings range from -0.067 to 
0.084, with a mean difference of M = -0.006, SD = 
0.054 indicating a minor decrease in loadings after 
the item deletion.  Negative values indicate that the 
influence of the first-order factors on the observed 
variables dropped as a result of the item elimination. 
The largest drop in loadings was with item EF2 
( Λδ  =  -0.067).    

Table 5: Comparisons of First-Order factor loadings for 
Statistics-Related Self-Efficacy (Λy) 

Item 
Reduced 
Model  

Full Model    
Parameter Λδ  

EF2   .998* 1.065* -.067 
EF3 1.243* 1.177*  .066 
EF4   .656*  .704* -.048 
EF7 1.056* 1.065* -.009 
EF8 1.271* 1.302* -.031 
EF9   .924*  .970* -.046 
EF11 1.677* 1.593*  .084 
EF12 1.347* 1.312*  .035 
EF14 1.106* 1.140* -.034 

Note: *p <.05, and bolded item was fixed to 1.0. 
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      Bootstrapped confidence intervals were also 
computed as another means of examining the 
reliability of the inventories with this sample of 
participants. (Wood, 2005) The results are reported 
in Table 6. The narrow bandwidths suggest a high 
level of reliability in the original model data (Sturgis, 
2006). The bootstrap confidence bands for the 
items in the reduced model of Statistics-Related 
Self-Efficacy ranged from 0.017 to 0.056 with a 
mean of M = 0.039, SD = .014; the average change 
(δ ) in bandwidths from the original model to the 
reduced model was a minimal increase (M = .016, 
SD = .013).  Negative values indicate a decrease in 
bandwidth from the reduced model to the full 
model, indicating an increase in precision as a result 
of the item reduction.  

 
Table 6: Retained Statistics-Related Self-Efficacy Bootstrap 
Confidence Intervals (N = 2000) 

Item Coeffic-
ient SE Lower 

Bound 
Upper 
Bound 

Reduced 
Model 

Full 
Model

δ  
Bandwidth

EF2    0.849 .007 0.835 0.863 .028 .018 .010 
EF3    1.103 .011 1.082 1.124 .043 .024 .019 
EF4    0.053 .004 0.045 0.062 .017 .023 -.006 
EF7    0.889 .010 0.870 0.908 .037 .024 .013 
EF8    1.117 .013 1.091 1.143 .052 .023 .029 
EF9    0.779 .006 0.768 0.790 .022 .023 -.001 
EF11   1.432 .014 1.404 1.460 .056 .024 .032 
EF12   1.180 .014 1.154 1.207 .053 .023 .030 
EF14   0.959 .012 0.936 0.982 .041 .023 .024 
 

Overall, the reliability of the reduced 9-item 
model, relative to the 14-item model, as measured 
with the Squared Multiple Correlation coefficient, 
also demonstrated an improvement in the models 
reliability, from 0.533 for the full model to 0.578 for 
the reduced model. This suggests that item 
reduction was successfully accomplished using 
suggested guidelines without compromising the 
measurement integrity of the original model 

Part Two: The Multi-Dimensional Model of 
Statistics-Related Anxiety 

Part Two of this investigation used data 
collected with the Statistics Anxiety Rating Scale-1 
(STARS-1, Cruise, Cash, & Bolton, 1985). The 
STARS-1 is theoretically conceptualized as a second 

order factor structure that is made up of three 
primary factors and 23 observed items.  This adds 
an additional level of complexity to the process of 
item reduction in the current investigation.  
Specifically, the presence of a second order factor, 
along with the three primary factors, potentially 
complicates the jackknifing procedures ability to 
comply with the second and third decision rules 
guiding the item-reduction process (i.e., “Items were 
removed as long as each original factor continued to 
explain at least three observed variables,” and  
“Items were removed as long as the structural  
integrity of the model was not violated”).  As 
illustrated in the conceptual diagram in Figure 2, the 
second-order factor, Anxiety, has three first-order 
anxiety-related factors: Interpretative Anxiety, 
Class/Test Anxiety, and Assistance Anxiety.   

 

 

Figure 2. Three-factor CFA for Statistics-Related 
Anxiety- STARS 

  

CFA Establishing Construct Validity of 
Statistics-Related Anxiety 

In an effort to demonstrate the construct 
validity of the instrument, it was necessary to verify 
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the factor structure of the inventory through 
confirmatory factor analysis (CFA), as well as 
demonstrate that the items identified by the factor 
were stable.  Specifically, the population covariance 
matrix was tested against the sample covariance 
matrices (S) (Bollen, 1989).  In order to accomplish 
this, one item was constrained to load on only one 
first-order factor, and one item on each factor was 
constrained to be equal  to one in order to establish 
the metric for the factor (Benson & Bandalos, 
1992). 

Equation (7) as operationalized, with the 
Statistics-Related Anxiety construct is shown in 
Figure 3.   

 

Figure 3. Anxiety Lambda Matrix   
 

As can be seen in Figure 3, Equation (7) is 
expanded from the first-order factor model by 

incorporating two additional indices.  The first-order 
model was specified as 

Θ1st = [ Λx, Ψ, Θδ  ], 

whereas for the second-order model, Θ 
becomes 

Θ = [Λy, Ψ, Θε , Γ, Ф]. 

The additional matrices in the second-order 
model are operationalized such that Ι=Φ  and Γ is 
presented in Figure 4. 
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Figure 4. Second-order covariance matrix of Anxiety 

 

CFA results supported the strict confirmatory 
factor structure of each of the primary factors in the 
present study.  Basically, when tested, each of the 
theorized models was found to have an acceptable 
level of fit to the sample of data without any further 
modifications.  The results of the CFA indicate that 
Interpretative Anxiety explained eleven of the 
STARS-1 items; Class/Test Anxiety explained eight 
of the STARS-1 items; and Assistance Anxiety 
explained four of the STARS-1 items. The Statistics-
Related Anxiety model demonstrated good fit, (χ²3 
= 1235.91, CFI = 0.946, NNFI = 0.923, RMSEA = 
0.095). 

Jackknife Application to STARS 

The original STARS-1 model was estimated, 
and then re-estimated following the item deletion 
steps presented in the Jackknife Procedures (above).  
The model was estimated for each subset of items, 
and the fit statistics were recorded. For this 23 item 
model, this process required a total of 3,309 separate 
LISREL runs.  The items from the  item-deletion 
process which created the best fitting model, based 
on the CFI and RMSEA estimates were deleted 
from the subsequent runs (with K – 1 items) of the 
model.   As a result of these procedures, The 
Statistics-Related Anxiety Model was reduced by a 
total of nine items; a reduction of 39.1%.   The 
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deleted items and the fit indices prior to their 
deletion are presented in Table 7.  

Table 7: Jackknife Item-Elimination Results for 
STARS-1 

Jackknife 
Subset 
(item 

deleted) 

χ² df CFI RMSEA ECVI CAIC

23 977.43 206 .952 .096 4.963 1386.36

17 949.95 186 .949 .095 4.729 1322.06

4 904.49 166 .969 .074 4.514 1266.66

20 776.01 148 .976 .066 3.914 1115.45

18 907.99 131 .938 .108 4.926 1346.26

6 555.64 115 .961 .088 2.816 837.25

14 520.41 100 .955 .094 2.670 793.90

8 393.08 87 .096 .083 1.930 605.00

10 308.52 74 .968 .076 1.523 499.58

 
A list of each deleted and retained item is 

presented in Tables 8 and 9.  

 

Table 8: Anxiety Items Deleted by Model Reductions 
Item Deleted Item Content 
AX4 Doing the homework for a statistics course. 

AX6 Reading a journal article that includes some 
statistical analysis. 

AX8 Dong the final examination in a statistics 
class. 

AX10 Walking into the classroom to take a 
statistics test. 

AX14 Figuring out whether to reject or retain the 
null hypothesis. 

AX17 Trying to understand the odds in a lottery. 

AX18 Seeing a student pouring over the computer 
printouts related to his/her research. 

AX20 
 

Trying to understand the statistical analysis 
described in an abstract of a journal article. 

AX23 
 

Asking a fellow student for help in 
understanding a printout 
.  

 

Once the items were removed, the original 
primary factor model was correlated with the 
reduced model, r = .959, satisfying Newcomb & 

Bentler’s (1988) and Byrne’s (1989) recommended r 
≥ .95 guidelines;  and  as illustrated in Figure 4 and 
Table 10, the three primary factors continued to be 
explained by at least three observed variables 
(Bagozzi, 1980; Sluis et al., 2005).   

Prior to the full model and reduced model 
analyses, the loading for one of each of the three 
first-order factors, explained by Anxiety, was set to 
one, as an anchor for the purpose of model 
identification. Specifically, item AX2 of 
Interpretation, item AX1 of Class/Test, and item 
AX3 of ‘Assist’ were set to 1.0.  All factor loadings 
and reliabilities remain significant after the jackknife 
procedure was completed.    
 
Table 9: Anxiety Items Retained after Reductions 

Item Retained Item Content 

AX1 Studying for an examination in a statistics 
course. 

AX2 Interpreting the meaning of a table in a 
journal article. 

AX3 
 

Going to ask my statistics teacher for 
individual help with material I am having 
difficulty understanding. 

AX5 Making an objective decision based on 
empirical data. 

AX7 Trying to decide which analysis is 
appropriate for your research project. 

AX9 
 

Reading an advertisement for an automobile 
which includes figures on gas mileage, 
compliance with population regulations, etc. 

AX11 Interpreting the meaning of a probability 
value once I have found it. 

AX12 Arranging to have a body of data put into the 
computer. 

AX13 
 

Finding another student in class got a 
different answer than you did to a statistical 
problem. 

AX15 Waking up the morning on the day of a 
statistics test. 

AX16 Asking one of your professors for help in 
understanding a printout. 

AX19 Asking someone in the computer center for 
help in understanding a printout. 

AX21 Enrolling in a statistics course. 

AX22 Going over the final examination in statistics 
after it has been graded. 
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Figure 4. Fourteen Remaining Items of Statistics-
Related Anxiety Model 

 
As indicated in Table 10, the differences in 

factor loadings range from -0.215 to 0.163, with a 
mean difference of M = 0.003, SD = 0.109, 
indicating an overall increase in effect after the 
deletion of nine items.  The largest drop in 
covariance was with item AX19 ( Λδ  = -0.215) and 
item AX1 ( Λδ  = -0.142).  As stated above, 
negative values indicate that the influence of the 
first-order factors on the observed variables 
dropped as a result of the item elimination. 

  

 
 
 
 
 

 
 
Table 10: First-order factor loadings for Statistics-Related 
Anxiety (Λy)

1st Order 
Factor 

Reduced 
Model 

Parameter 
Estimate 

Full Model    
Parameter 
Estimate 

Λδ  

INTERPRET    
AX2 0.694* 0.752* -.058 
AX5 0.590* 0.597* -.007 
AX7 0.642* 0.638* .004 
AX9 0.702* 0.820* -.118 
AX11 0.861* 0.849* .012 
AX12 0.848* 0.828* .020 

CLASS/TEST    
AX1 0.770* 0.912* -.142 

AX13 0.695* 0.716* -.021 
AX15 1.063* 1.092* -.029 
AX21 1.221* 1.058* .163 
AX22 0.986* 0.092* .094 

ASSISTANCE    
AX3 1.179* 1.032* .147 

AX16 1.037* 0.917* .120 
AX19 0.741* 0.956* -.215 

Note: *p <.05 and bolded items were fixed to 1.0 
 

Additionally, it was important that not only the 
original model integrity was maintained, but that the 
reduced model demonstrated good fit as well.  As 
revealed in Table 11, the final reduced model 
demonstrated an improved fit relative to the full 
model.  Each of the respective fit indices 
demonstrated improvement as a result of the item 
deletion. 
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Table 11 : Goodness-of-Fit Indices for Primary Factors 
after Item Elimination 

Construct SBχ² df CFI RMSE
A ECVI CAIC 

Anxiety 
23 Items 1149.88 227 .946 .0947 5.667 1562.19

Anxiety 
14 Items 308.52 74 .968 .0763 1.523 499.51

Δ 
Anxiety 841.36 153 .022 .0184 4.144 1062.68

Because anxiety was the second-order factor 
that explained the variance associated with the first-
order factors (Interpretation, Class/Test Anxiety, 
and Assistance) it is also important to examine how 
the model works at the different levels of factor 
structures.  The factor loadings and reliabilities for 
the first- and second-order constructs are present in 
Table 12 and Table 13. 
 
Table 12: Squared-Multiple Correlations (R²) of First-
Order and Second-Order Factors (β) 

2nd 
Order  

1st 
Order 

Reduced 
Model 

Full 
Model Δ R² 

Anxiety  .847* .834*  -.013 
 Interpretation .735* .665* -.070 
 Class/Test .836* .782* -.054 
  Assistance .332* .404* -.172 

Note: *p <.05 and bolded items were fixed to 1.0; 
Reliability is multiple R² value. 
 
 
Table 13: Comparison of Factor Loadings of Second Order 
Factors (β) 

2nd 
Order  1st Order  

Reduced-
Item 

Parameter 
Estimate 

Full 
Model 

Parameter 
Estimate 

Δβ 

Anxiety Interpretation .857* .815* .042 

 Class/Test .929* .844* .045 

 Assistance .576* .636 .060 

Note: *p <.05 
 

All of the factor loadings (β) and reliabilities 
between the second-order factor and each of the 
first-order factors were found to be significant and 
improved after the jackknife procedure.  This 
indicates that the second-order construct adequately 
indicates the variance shared by the first-order 
constructs.  Although the reliability of the 
Assistance factor (R² = 0.332) is weak, this was not 
a concern as these items did not affect the overall 
good fit of the model (Brunner and Süb, 2005, p. 
237).   

As indicated in Table 14, the confidence bands 
for the Reduced-Item model of Statistics-Related 
Anxiety ranged from 0.016 to 0.082, with a mean 
change in bandwidth of M=0.031, SD=0.017.  The 
values for the δ  bandwidth are relatively close to 
zero.  This is further indication that the Reduced-
Item model adequately reflects the Full Model. 

 

Table 14: Retained Items Statistics-Related Anxiety Bootstrap 
Confidence Intervals (N = 2000) 

Item
Coeffi-
cient SE 

Lower 
Bound 

Upper 
Bound 

Reduce
d 

Model
Full 

Model

δ  
Bandw

idth 
AX2   .554 .007 .540 .568 .028 .022 .006 
AX3   .675 .008 .659 .691 .033 .021 .012 
AX5   .489 .005 .480 .498 .019 .024 -.005 
AX7   .501 .004 .493 .509 .016 .016 .000 
AX9   .438 .021 .397 .479 .082 .047 .035 
AX11 .685 .006 .673 .697 .025 .024 .001 
AX12 .594 .007 .580 .609 .029 .024 .005 
AX13 .607 .006 .596 .618 .022 .020 .002 
AX15 .843 .007 .830 .857 .027 .021 .006 
AX16 .514 .005 .505 .523 .018 .026 -.008 
AX19 .542 .012 .518 .566 .048 .032 .016 
AX21 .938 .009 .921 .955 .034 .024 .010 
AX22 .768 .008 .752 .784 .032 .022 .010 

 
One potential concern with the present 

procedure is that the change in the models’ 
goodness-of-fit index exceeded Cheung and 
Rensvold’s (2002) recommended level of ΔCFI 
<0.01 for measurement invariance.   However, the 
changes in goodness-of-fit, as a measure of 
invariance, are sensitive to model complexity, in the 
form of numbers of items, numbers of factors, and 
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the ratio of the two (Wu, Li, & Zumbo, 2007, p. 5).   
In light of this, Wu et al. suggest that less stringent 
cut-offs are appropriate when considering 
measurement invariance where a change in model 
complexity is an issue, as is the case with the present 
investigation.  Because Wu et al. do not provide 
detailed guidelines, a test of whether a significant 
change had occurred in the model’s complexity was 
tested.    A ratio t test was conducted in an effort to 
determine whether a significant change in the 
complexity levels of the primary factor, as indicated 
by the change in the ratio of number of factors to 
number of items (Wu et al., 2007) was present.  If a 
significant change was revealed, it would be 
reasonable to consider the change in goodness-of-
fit, from original models to reduced models, 
measurement invariant.  Table 15 presents the 
results of the ratio t-test assessing the change in 
model complexity from the Full Item model to the 
Reduced Item model. 

Table 15: Ratio t Test of Model Complexity 

Factor 
Full 

Model 
Ratios 

Reduced 
Model 
Ratios 

Ratio 
Change

Ratio 
t-test

SELF-
EFFICACY .071 .111 .040 .19* 

ANXIETY     
Interpretation .091 .200 .109 .34* 
Class/Test 
Assistance 

.125 

.250 
.167 
.333 

.042 

.083 
.13* 
.12* 

Note: * p< 0.05 
 

The ratio t-test was used to analyze the 
differences in model complexity because model 
complexity is expressed as a ratio (Myers & Wells, 
2003).  These values were computed with the Ratio t 
test which computes the logarithm of the ratios: 

log(65-Item Ratio/40-Item Ratio) 
)40log()65log( ratioItemratioItem −= . 

For this analysis, no change in the ratio, 
indicating no change in model complexity, is equal 
to zero, the logarithm of 1.0.   As indicated in Table 
16, all ratios indicated a decrease in model 

complexity, at the level of each first-order factor, 
that was statistically significant. 

Discussion 
For the present investigation, each primary 

factor model had an average item reduction of 38% 
of its items after the item elimination process.  And 
after item elimination, the original single-construct 
models correlated with their respective  reduced 
models at a level of r ≥ .95, as recommended by 
Newcomb & Bentler (1988) and Byrne (1989), 
indicating that the fundamental nature of the model 
has not been changed.   The full model was found 
to be appropriately sufficiently correlated with the 
reduced model, according to these guidelines , for 
both Statistics-Related Self-Efficacy (r = .966), and 
Statistics-Related Anxiety (r = .959).  Additionally, 
items were removed in the jackknife procedure as 
long as each original factor continued to explain at 
least three observed variables (cf. Bagozzi, 1980; 
Sluis et al., 2005).   

While approaches to item reduction have been 
proposed by other researchers (e.g., Benson & 
Bandalos, 1992; Clark & Goldsmith, 2006; 
Salzberger, 2006), these approaches have failed to 
produce resulting models that were both 
measurement invariant and structurally invariant.  In 
addition, these approaches fail to offer clear 
guidelines as to what is an acceptable level of model 
reduction before the construct is considered to be 
successfully condensed.  While the novel approach 
presented here is still in its infancy, it provides a 
clear method of item reduction that seems to result 
in more parsimonious models that are measurement 
invariant, structurally invariant, and demonstrate 
better fit by maintaining only those items that are 
truly working well in the model. The present 
approach is superior to earlier research in that it 
addresses the primary point of concern in SEM, that 
being model fit. This investigation incorporates five 
different fit indices, as well as bootstrapping 
analyses, in an effort to demonstrate the influence of 
each item’s elimination on the fit statistics (SBχ², 
CFI, RMSEA, ECVI, and CAIC respectively) by 
determining how much each statistic would be 
improved if a specific item was eliminated from the 
data set. This provides an unambiguous indication 
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of individual item influence in the context of a 
specific structural equation model. 

 Although the jackknife procedure presented 
with these two models has worked when applied to 
a variety of structural models, the magnitude of 
these effects on models with different specifications 
is unknown.  The two models presented here, and 
the other known models that have been tested,  
demonstrated good stability and improved fit, when 
this procedure is implemented according to the 
outline decisions rules stated above.  The procedure 
described here is more fully discussed in Larwin 
(2007). A computer program, for performing this 
procedure within the FORTRAN format, is 
available from the author upon request. 
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Appendix A 

Current Statistics Self-efficacy 

 
Answer each question on a 1 (no confidence at all) to 5 (complete confidence scale) 

 
1. Identify the scale of measurement for a variable.  
2. Interpret the probability value (p-value) from a statistical procedure. 
3. Identify if a distribution is skewed when given the values of three measures of central tendency. 
4. Select the correct statistical procedure to be used to answer a research question. 
5. Interpret the results of a statistical procedure in terms of the research question. 
6. Identify the factors that influence power.  
7. Explain what the value of the standard deviation means in terms of the variable being measured. 
8. Distinguish between a Type I error and a Type II error in hypothesis testing. 
9. Explain what the numeric value of the standard error is measuring. 
10. Distinguish between the objectives of descriptive versus inferential statistical procedures. 
11. Distinguish between the information given by the three measures of central tendency. 
12. Distinguish between a population parameter and a sample statistic. 
13. Identify when the mean, median and mode should be used as a measure of central tendency. 
14. Explain the difference between a sampling distribution and a population 
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Appendix B 
Statistics Anxiety Rating Scale 

 
The following items refer to experience that may cause anxiety.  Circle the number indicating the amount 
of anxiety you would experience with each of the situations.  One (1) indicates no anxiety, and five (5)  
indicates very much anxiety. 
 

1. Studying for an examination in a statistics course. 
2. Interpreting the meaning of a table in a journal article 
3. Going to ask my statistics teacher for individual help with material I am having difficulty understanding. 
4. Doing the homework for a statistics course 
5. Making an objective decision based on empirical data 
6. Reading a journal article that includes some statistical analysis 
7. Trying to decide which analysis is appropriate for your research project 
8. Doing the final exam in a statistics course 
9. Reading an advertisement for an automobile which includes figures on gas mileage, compliance with 

population regulations, etc. 
10. Walking into the classroom to take a statistics test 
11. Interpreting the meaning of a probability value once I have found it. 
12. Arranging to have a body of data put into a computer 
13. Finding that another student in the class got a different answer than you did to a statistical problem 
14. Figuring out whether to reject or retain the null hypothesis 
15. Waking up in the morning on a day of a statistics test 
16. Asking one of your professors to help in understanding a printout 
17. Trying to understand the odds in a lottery 
18. Seeing a student poring over the computer printouts related to his/her research 
19. Asking someone in the computer center for help in understanding a printout 
20. Trying to understand the statistical analysis described in the abstract 
21. Enrolling in a statistics course 
22. Going over a final examination in statistics after it has been granted. 
23. Asking a fellow student for help in understanding a printout. 
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