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The reliability of a test score is usually underestimated and the deflation may be profound, 0.40 - 0.60 
units of reliability or 46 - 71%. Eight root sources of the deflation are discussed and quantified by a 
simulation with 1,440 real-world datasets: (1) errors in the measurement modelling, (2) inefficiency in 
the estimator of reliability within the selected measurement model, (3) inefficiency in forming of the 
score variable (X) as the manifestation of the latent trait θ, (4) non-optimal characteristics of the items 
(gi) in relation to the estimator, and (5) inefficient weight factor, that is, coefficient correlation (wi) that 
links θ with the observed values of the test item (xi), (6) a small sample size, (7) extreme test difficulty, 
and (8) a narrow scale in the score. If willing to maximize the probability that the estimate of reliability 
would be as close as possible the true, population value, these sources should be avoided, or their 
effect should be corrected by using deflation-corrected estimators of reliability. 
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1. Introduction 

Traditionally, the concept of reliability is used to 
quantify the amount of random measurement error 
that exists in a score variable generated by a 
compilation of multiple test items. However, in the 
large-scale testing settings such as in the national level 
assessments as well as in international inquiries such as 
PISA (Programme of International Student 
Assessment) and TIMSS (Trends in International 
Mathematics and Science Study), instead of general 
reliability of the score, the interest is mainly in the 
standard errors (SE) in different parts of the ability 
scale (see, e.g., Foy & LaRoche, 2019). Nevertheless, 
even if the average random error is less accurate than 
the one obtained by more complex strategies, it may 
still serve as a rough indicator of SE of the score.  

 Traditionally, an estimate of reliability (REL) 
serves the researcher in several ways. First, it is used in 
quantifying the amount of average random error in a 
score variable, that is, the standard error of 
measurement (S.E.m): 

. . . 1E XS E m REL = = −
 

derived strictly from the basic definition of reliability  

2 2 2 21T X E XREL    = = −
 

(Gulliksen, 1950), where 𝜎𝑋
2, 𝜎𝑇

2, and 𝜎𝐸
2 refer to the 

variances of the observed score variable (X) and the 
unobserved true score (T) and error (E) related to the 
classic relation of X = T + E. Second, an estimate of 
reliability of the total score serves many ways in further 
use of the score: in assessing the (overall) quality of the 
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measurement (e.g., Gulliksen, 1950; Metsämuuronen, 
2017, 2022b), in correcting the attenuation of the 
estimates of regression or path models (e.g., Cole & 
Preacher, 2014), and in correcting the attenuation in 
correlations in validity studies and meta-analyses (e.g., 
Schmidt & Hunter, 2015). In all purposes, we want to 
obtain as accurate an estimate of reliability as possible.  

 Guttman (1945), in his seminal article, showed that 
the observed estimates of reliability tend to be 
underestimates of the true, population reliability.  This 
fundamental finding strictly concerns such classical 
estimators of reliability as Brown–Spearman prediction 
formula for parallel partitions of a test (ρBS; Brown, 
1910; Spearman, 1910), Flanagan–Rulon prediction 
formula for non-parallel partition of a test (ρFR; Rulon, 
1939), and the coefficient called the greatest lower 
bound reliability (ρGLB; Jackson & Agunwamba, 1977; 
Woodhouse & Jackson, 1977; Ten Berge & Zegers, 
1978 onwards) because these all are special cases of 
Guttman’s (1945) coefficient λ4, which was shown to 
underestimate reliability. Revelle and Zinbarg (2009) 
note that ρGLB does not necessarily lead to the lowest 
bound but just a lower value in comparison with 
coefficient omega total (ρω; Heise and Bohrnstedt, 
1970; McDonald, 1970 onwards) which is known to 
give lower estimates than the coefficient rho or 
maximal reliability (ρMAX; see, e.g., Li, 1997; Raykov, 
1997b; 2004; see also Cheng, Yuan, & Liu, 2012). 
Hence, it seems that also coefficient omega 
underestimates reliability. However, recall the result of 
Aquirre-Urreta, Rönkkö, and McIntosh (2019) that 
ρMAX may give overestimates with finite sample sizes. 
Hence, assessing the amount of underestimation is not 
always easy.   

 Another generally known outcome of Guttman’s 
article is that the most widely used estimator of 
reliability, the coefficient alpha (ρα; Kuder & 
Richardson, 1937; Jackson & Ferguson, 1941), known 
also as Cronbach’s alpha (Cronbach, 1951), 
underestimates reliability because it equals Guttman’s 
coefficient λ3 also shown to underestimate reliability. 
Guttman himself condensed his results as follows: 
“Reliability has often been underestimated by the 
conventional formula […]. Many tests are more reliable 
than they have been considered to be” (Guttman, 1945, 
p. 260). It is generally accepted that if the measurement 
errors of individual items correlate as is the case when, 
for instance, using the same stimulus for several items, 

alpha may overestimate reliability (see e.g., Trizano-
Hermosilla & Alvarado, 2016). However, the inflation 
may be nominal in the whole test when comparing it 
with radical deflation in alpha (up to 0.60–0.70 units of 
reliability, see Gadermann, Guhn, & Zumbo, 2012; 
Metsämuuronen, 2022a, 2022b) caused by technical or 
mechanical underestimation of correlation embedded 
in the estimators of reliability. 

 Based on literature, the root causes for the 
underestimation of reliability can be divided into five 
categories: (1) errors in the measurement modelling, (2) 
inefficiency in the estimator of reliability within the 
selected measurement model, (3) inefficiency in 
forming of the score variable (X) as the manifestation 
of the latent trait θ, (4) non-optimal characteristics of 
the items (gi) in relation to the estimator, and (5) 
inefficient weight factor, that is, coefficient correlation 
(wi) that links θ  and the observed values of g (xi). These 
are discussed in this article, first, by referring to 
relevant literature and, second, using an empirical 
dataset of 1,440 tests.  

 When it comes to underestimation of reliability, 
two terms are in use: attenuation and deflation. Usually, 
attenuation refers to underestimation as a natural 
consequence of random errors in the measurement and 
deflation refers to underestimation caused by artificial 
systematic errors during of the estimation (see the 
discussion of the terms in, e.g., Chan, 2008; 
Gadermann, Guhn, & Zumbo, 2012; Metsämuuronen, 
2022a, 2022b; Revelle & Condon, 2018). Deflation is 
closer the focus in this article, and it is connected to 
another concept called here “mechanical error in 
estimates of correlation” (MEC; see, e.g., 
Metsämuuronen, 2021a, 2022a), that is, a characteristic 
of estimators of correlation to underestimate the true 
correlation because of technical or mechanical reasons. 
The practicalities related to deflation and MEC are 
discussed later in Sections 2.5 and 2.6, and practical 
implications related to deflation will be discussed in the 
Discussion (Sections 6.2 and 6.3). 

 

2. Root causes for the deflation in 

reliability 

Deflation in the estimates of reliability may be 
radical. With certain types of datasets, typically with 
very easy, very demanding, and tests with incremental 



Practical Assessment, Research & Evaluation, Vol 27 No 10 Page 3 
Metsämuuronen, Eight Sources of Deflation in Reliability 

 

difficulty levels in items common in educational 
assessment, the estimates by ρα and ρMAX are found to 
have been deflated notably: ρα up to 0.70 units of 
reliability and ρMAX over 0.40 units or 46%–71% (see 
examples in, for instance, Gadermann et al., 2012; 
Metsämuuronen, 2022b, 2022c; Metsämuuronen & 
Ukkola, 2019; Zumbo, Gadermann, & Zeisser, 2007). 
Most probably the same phenomenon concerns also 
estimates by ρTH and ρω. Reasons behind deflation of 
this size can be found in five directions. These are 
discussed in what follows. 

2.1 Reasons of the underestimation embedded in 
the measurement model 

Assume a general, simplified, one-latent variable 
measurement model combining the observed values of 
an item gi (xi), a latent variable (θ), and a weight factor 
wi that links θ with xi:  

iθi ix w e= +
,    (1) 

generalized from the traditional model related to the 
practicalities of factor analysis (for instance, 
McDonalds, 1999; Cheng et al., 2012). This model 
generalizes  to  the  score  variable as a compilation of  
 

items (X  = ) as 
 

1 1 1

θ
k k k

i i i

i i i

X T E

x w e
= = =

= +

= +  
   (2) 

(see, Metsämuuronen, 2022a, 2022b, 2022c). In the 
general model, the theoretical, unobservable θ may be 
manifested as a varying type of relevantly formed 
compilation of items including a raw score (θRAW), 
principal component score variable (θPC), factor score 
variable (θFA), theta score formed by the item response 
theory (IRT) or Rasch modelling (θIRT), or a nonlinear 
compilation of various kinds (θNonL). The general 
weight factor wi may be either a coefficient of 
correlation or the factor- or principal component 

loadings (𝜆𝑖) ranging −1 ≤ 𝑤𝑖 ≤ +1. Different 
options of coefficient of correlation are compared by 
Metsämuuronen (2022a)—these are discussed later in 
Section 2.6. 

 The general model includes the root causes for the 
deflation in the estimates of reliability: on the top of 
the model itself and the estimators of reliability, the 

term wiθ in Eqs. (1) and (2) refers to a fact that the 
estimates of reliability vary depending on the 
manifestation of the latent variable θ, characteristics of 
the item i, and the weight factor w. Then, if we use 
improper measurement model not fitting the dataset, 
inefficient estimator of reliability, inefficient score 
variable, inefficient scales in item, and inefficient 
estimator of correlation as the weighting factor, the 
estimate of reliability may be far below the true value. 
These five elements are discussed in what follows. The 
effect of the model itself in the underestimation is 
discussed in Section 2.2 and of the estimators of 
reliability in Section 2.3. Effect of the score variable is 
discussed in Section 2.4. The effect of item 
characteristics such as item difficulty and the number 
of categories is discussed in Section 2.5 and the effect 
of the weight factor in Section 2.6. 

2.2 Errors in the measurement modelling causing 
deflation in reliability 

Traditionally, measurement models related to 
latent variable are divided into three: models where the 
test partitions (including sub-tests and single items in a 
compilation of a test) are either parallel, tau-equivalent, 
or congeneric (e.g., Lord, Novick, & Birnbaum, 1968). 
In the strictest and oldest models based on parallelism 
we assume that statistical characteristics in the 
partitions g and h are parallel, that is, the true values of 
the same test-taker are identical in each partition (Tg = 
Th), leading to the realization that correlations between 
the partitions, if being more than two, are identical, 
which leads us to assume unidimensionality in the 
phenomenon when single items are taken as partitions. 
This also leads to assume that the correlations between 
the partitions and the score variable are identical (wi = 
wj = w) as well as are the measurement errors (ei = ej = 
e). Also, the classical test theory assumes that 
measurement errors are uncorrelated, that is, the test 
items should be independent from each other.  

 Some generally known estimators of reliability 
based on this model are ρBS and Kuder and Richardson 
(1937) formula 21 (ρKR21) discussed above. Because ρBS 
is a special case of Guttman’s (1945) λ4, and coefficient 
λ4 was shown to underestimate reliability “no matter how 
the test is split” (Guttman, 1945, p. 260, emphasis 
original), the estimates by ρBS are always underestimates 
of the population reliability.   

 The measurement model based on (essential) tau-
equivalency loses the strict assumptions of parallelism 
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to some extent. This makes sense because the 
assumptions in the models based on parallelism are 
rather restricting and difficult to meet in real-life testing 
settings. In tau-equivalent models we assume that the 
true values of the same test-taker are (essentially) 
identical in the partitions (Tg = Th) but the partitions 
need not be parallel in the strict sense although the sub-
tests or scales in the items should be equally long; 
notably, if using unidentical scales in items leads us to 
a violation of tau-equivalency. These assumptions lead 
us to assume that the weights are equal (wi = wj = w), 
indicating unidimensionality in the phenomenon, but 
the measurement errors need not be equal (ei ≠ ej) 
although they should not correlate with each other. 

 Some known estimators within the tau-equivalency 
are ρFR for non-parallel partitions with equal lengths, 
Gutman’s λ3 and λ4, Kuder and Richardson (1937) 
formula 20 (ρKR20) for non-parallel binary items, and 
coefficient alpha (ρα) for polytomous items with 
identical scales. Because λ3 and λ4 were shown to 
underestimate the population reliability (Guttman, 
1945) and the other estimators are special cases of 
those, all these estimators tend to underestimate 
population reliability. Traditionally, the attenuation in 
ρα has been connected to such errors related to the 
measurement modelling as violations in tau-
equivalency, unidimensionality, and uncorrelated 
errors (see the discussion around alpha in, for instance, 
Davenport et al., 2015; 2016; Green & Yang, 2009, 
2015; McNeish, 2017; Novick & Lewis, 1967; Raykov 
& Marcoulides, 2017; Trizano-Hermosilla & Alvarado, 
2016). The approximations of the underestimation in 
estimates related to this kind of modelling error have 
varied from nominal (Raykov, 1997a) up to 11% 
(Green & Yang, 2009). 

 The least restricted family of measurement models 
is based on congeneric partitions. In these models, the 
true values of the same test-taker need not be identical 
in the partitions (Tg ≠ Th), leading to lose the 
assumption of equally long sub-tests or partitions or of 
the same scale in items. Also, weights need not be equal 
(wi ≠ wj), allowing multidimensionality in the 
phenomenon, the measurement errors need not be 
equal (ei ≠ ej), and they need not be independent from 
each other; the last can be modelled during the 
estimation of reliability.  

Estimators of reliability based on the congeneric 
partitions are many. For two sub-scores—as 
alternatives for ρBS and ρFR—we have coefficients by 
Horst (ρH; Horst, 1951), Angoff and Feldt (ρAF; Angoff, 
1953; Feldt, 1975), and Raju (ρβ; Raju, 1977). If the 
partitions are equally long, the magnitude of these 

estimates gets the relation 𝜌𝐹𝑅 = 𝜌𝛽 ≤ 𝜌𝑆𝐵 = 𝜌𝐻 ≤

𝜌𝐴𝐹 (Warrens, 2016), that is, the Angoff–Feldt 
coefficient would give the highest estimate, and if the 

variances of the partitions are equal, 𝜌𝐹𝑅 = 𝜌𝑆𝐵 =
𝜌𝐴𝐹 ≤ 𝜌𝐻 = 𝜌𝛽 (Warrens, 2016), that is, Horst’s 

coefficient and Raju’s β give the highest estimate. 
Consequently, from the underestimation viewpoint, 
the other estimates underestimate the reliability more 

than these if the conditions relevant for 𝜌𝐻 and 𝜌𝛽  or 

𝜌𝐴𝐹 are met.  

 For the case that we are interested in using items 
with different scales in the estimation and willing to use 
the raw score of the items, the congeneric alternative 
for coefficient alpha would be Gilmer–Feldt 
coefficient (ρGF; Gilmer & Feldt, 1983) also known as 
Feldt–Raju coefficient (e.g., Feldt & Brennan, 1989) or 
as Feldt–Gilmer coefficient (e.g., Kim & Feldt, 2010). 
This estimator tends to give higher values than alpha. 

 For the case we want to work with weighted scales 
within the framework of factor analysis, three 
estimators are in a more common use: ρω known also 
as McDonald’s omega total, ρMAX known also as 
composite reliability or Raykov’s rho (Raykov, 1997b) 
or Hancock’s H (Hancock & Mueller, 2001), and 
coefficient theta (ρTH; chronologically, Lord, 1958; 
Kaiser & Caffrey, 1965; Armor, 1973) based on 
principal component analysis, known also as Armor’s 
theta. It is known that ρTH maximizes ρα (Greene & 
Carmines, 1980), Bentler’s alphamax or alpha-O 
maximizes ρTH (Bentler, 1968; Greene & Carmines, 
1980), and the estimates by ρMAX are higher than those 
by ρω (see, e.g., Cheng et al. 2012). Then, of these four 
estimators, ρMAX is known to give the highest estimates, 
and ρTH, and ρω give estimates with higher magnitude 
than ρα if the loadings are not equal. Hence, if ρMAX is 
taken as a benchmark, both ρα, ρTH, and ρω seems to 
underestimate reliability assuming that the conditions 
optimal for ρMAX such as large sample size are met. 
Empirical section studies, among others, what the  
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effect of sample size and characteristics of the test is in 
deflation. 

2.3 The estimator of reliability causing deflation 
in reliability 

Above, it was noted that even if being consistent 
within a measurement model, we have several 
estimators that produce slightly different estimates of 
the same latent reliability of which some are more 
deflated than the others. Differences between the 
estimators are obvious when we compare the 
estimators based on different partitions of the test: 
selecting the partitions with lower correlation we get 
estimate with a lower magnitude of reliability than if we 
select partitions with a higher correlation; this is the 
whole idea of ρGLB (Guttman, 1945). From this 
viewpoint, ρBS is based on strictly parallel partitions, ρFR 
is based on non-parallel partitions with equal length, ρα is 
based in partitions with average correlation between the 
partitions, and ρGLB is based on selected the partition 
with the highest correlation between the partitions (see 
Revelle & Condon, 2018).  Such estimators as Revelle’s 
β (Revelle, 1979; see also Zinbarg, Revelle, Yove, & Li, 
2005) and McDonald’s hierarchical omega (McDonald, 
1999) are based on selecting the partition with the lowest 
correlation and, hence, these could be called the 
estimators of the lowest lower bound (ρLLB) of 
reliability. Knowing that both ρBS, ρFR, ρα, and ρGLB 
underestimate reliability, estimators in the family of 
ρLLB give obvious underestimations of the population 
reliability.  

 Usually, comparing such widely used estimators as 
ρα, ρTH, ρω, and ρMAX (see later Eqs. 3–6) does not make 
sense because, except ρω and ρMAX, the manifestation of 
θ differs estimator-wise and, hence, the differences 
may be caused by this (see Section 2.4) rather than the 
estimator itself. However, of ρω and ρMAX, as using the 
same score and the same maximum likelihood (ML) 
estimation (Jöreskog, 1967 onwards), we know that the 
estimates by ρMAX are higher than those by ρω; hence, 
the formula of ρω seems less effective than the formula 
of ρMAX if the practical requirements for ML-estimation 
such as large sample size are fulfilled.   

 Comparing ρα and ρMAX or ρα and ρω as estimators is 
less clear because of the different manifestation of the 
latent variable and the weighting factor. This area is 
largely unstudied. Some light is shed on this in the 
empirical section. Another related aspect to the 
discussion is that ρMAX is known to give overestimates 

with finite or small sample sizes (Aquirre-Urreta, 
Rönkkö, & McIntosh, 2019) as discussed above. With 
very small sample sizes, the risk for deterministic or 
near-deterministic patterns in the dataset increases. 
With these patterns of item discrimination, neither of 
ρω and ρMAX can be used because no factor solution is 
given. In the empirical section, this phenomenon is 
studied in real-life settings with finite sample sizes. 

2.4 Inefficiency in forming of the score variable 
causing deflation in reliability 

The effect of the estimator itself is sometimes 
difficult to separate from the effect of the score 
variable; after all, we tend to use different estimators 
with different types of scores. It is known that ρTH 
maximizes ρα. This may be at least partly caused by the 
fact that ρTH is based on more efficient (weighted) 
compilation of the items than ρα. It is generally known 
that the raw score used in alpha formula as the 
manifestation of the latent variable (θX) is not as 
efficient in discriminating the test-takers as the optimal 
linear compilation or weighted compilation of the 
items would be (see, e.g., Li, 1997). Early contributions 
of seeking the “optimal linear compilation” of the 
items can be traced to Lord (1958), Stouffer (1950), 
Guttman (1941), and Thompson (1940). Later, the 
expressions were unified for maximal reliability by Li 
(1997).  

 Weighting the items have led in three main 
approaches of the manifestation of the latent variable 
θ: principal component scores (θPC), factor scores (θFA), 
and theta scores by Rasch- and item response theory 
(IRT) models (θIRT); the last is, factually, a special case 
of factor score variable though. Of the many 
estimation methods related to factor analysis, the one 
based on ML estimation (MLE) is known to produce 
the maximal estimates for factor loadings. This leads to 
maximal estimate of reliability, and, then, using other 
estimation methods would lead us, consequently, to 
underestimate reliability. MLE embeds two specialties 
related to estimation of reliability. First, estimates by 
MLE cannot be calculated for only two variables, that 
is, if we have genuinely two items in the test (see 
discussion in Bridgeman, 2016) or we interpret that 
split-halves are two “items” with a wide scale, MLE 
cannot be used to produce the factor loading for these 
“items”. Some other methods such as principal axis 
factoring (PAF), however, could be used. Second, 
estimates by MLE are not necessarily stable with small 
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sample sizes because of possible deterministic or near-
deterministic conditions in any of the test items; the 
first leads to no factor solution and the latter to 
(artificially) high estimates. The empirical section 
provides further information regarding this too. The 
pure effect of the manifestation of the latent variable is 
not necessarily easy to assess unambiguously because 
the estimators themselves including the weight factor 
wi differ from each other. Some light is shed on this in 
the empirical section. 

2.5 Characteristics of the items causing deflation 
in reliability 

 Single items are the basis of the test score. 
Traditionally, the items are divided into objective ones 
such as multiple choice- or short answer type of 
questions and subjective ones such as productive items 
in mathematics or essay type questions in subjects 
related to humanities and natural sciences which 
require subjective evaluation to form the score (e.g., 
Mehrens & Lehmann, 1991; see also Bridgeman, 2016; 
Metsämuuronen, 2017). The scales of the test items are 
usually non-continuous and ordinal. In achievement 
testing, we tend to use binary (0 = incorrect; 1 = 
correct) or slightly graded scales, and, in attitude scales, 
we often use such ordinal scale as 4 to 5-point Likert 
scales. Even the advanced routines of measurement 
modelling including IRT modelling are based on these 
conventions. The estimators of reliability are not 
restricted to these forms of scales, but the routines 
related to item writing, item scoring, and item analysis 
often are. Two characteristics of the item are raised 
here as noteworthy when it comes to deflation in the 
estimates of reliability: item difficulty and the scale of 
the item. 

 The item difficulty is one of the clearest sources of 
mechanical error in the estimates of correlation causing 
deflation in the estimates by product-moment 
correlation coefficient (PMC; Pearson 1986; see, e.g., 
Metsämuuronen, 2021a, 2022a) embedded in the most 
widely used estimators of reliability including ρα, ρTH, ρω, 
and ρMAX in the form of item–score correlation (Rit) or 
principal component- or factor loading (λi) (see the 
formulae and literature in Section 2.6). When the item 
difficulty is extreme—either extremely easy or 
extremely difficult—the loss of information by PMC 
approximates 100%: the more extreme is the  

difficulty level the lower is the maximal possible value 
achieved by PMC irrespective of the fact that the latent 
correlation would be perfectly ρ = 1. Hence, Rit and λi 
are always underestimates of the true association 
between an item and the latent variable. This is the 
technical reason why the estimates of reliability in the 
empirical datasets may have been radically deflated (up 
to over 70%; see Gadermann et al., 2012; 
Metsämuuronen, 2021a, 2022b, 2022c; 
Metsämuuronen & Ukkola, 2019) (see Section 2.6). 

 The scale of item is strictly related to the deflation 
in reliability: the less categories in an item, the more 
deflation in the estimates of item–total correlation 
which is inherited to the estimates of reliability (see 
Metsämuuronen, 2021a, 2022a). The pure effect of 
item scale in the empirical datasets seems largely 
unknown. The empirical section sheds light on this 
too. 

2.6 Inefficiency in coefficients of correlation 
causing deflation in reliability 

Above, four sources of underestimation in 
reliability are seen to cause deflation in the estimate of 
reliability to a certain extent although their effect, in 
many practical testing settings, may be small. Far more 
grave deflation in reliability have been obtained in 
empirical studies related to the selection of the 
weighting factor wi already discussed above with item 
difficulty. As noted above, with certain types of 
datasets, typically with very easy, very demanding, and 
tests with incremental difficulty levels in items 
common in educational assessment, the estimates by ρα 
and ρMAX are found to have been deflated notably: ρα up 
to 0.70 units of reliability and ρMAX over 0.40 units or 
46%–71% as discussed above. Deflation of this size is 
no more of a matter of just modelling error; it is 
remarkable and worth studying. The empirical section 
discusses this issue.  

 Gadermann and colleagues (2012), Zumbo and 
colleagues (2007), and Metsämuuronen (2016, 2020a, 
2021a, 2021b; 2022a) argue that the reason for the 
radical deflation in the estimates of reliability has to do 
with PMC. PMC is embedded in the most widely used 
formulae including ρα, ρTH, ρω, and ρMAX in the form of 
item–score correlation (Rit) or principal component- 
or factor loading (λi). In the formula of alpha, PMC is 

seen strictly as Rit = 𝜌𝑖𝑋: 
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(Lord et al., 1968) because the estimated population 

variance (𝜎𝑋
2) can be expressed by item variances (𝜎𝑖

2) 

and item–score correlation (𝜌𝑖𝑋), that is, 
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where k is the number of items in the compilation. 
Also, we remember that the principal component- and 
factor loadings are, essentially, PMCs between an item 
and a score variable (e.g., Yang, 2010). Then, in 
coefficient theta, PMC is seen as the principal 
component loading (λi): 
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In coefficient omega, PMC is seen as the factor loading 
(λi):  
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as well as in rho: 
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 The reason for the deflation in the estimates of 
reliability is that the estimates by PMC are known to be 
deflated due several sources of MEC when the scales 

of two variables differ from each other. This is always 
is the case with a score variable (X) and test item (gi) 
(see algebraic reasons, for instance, in Metsämuuronen, 
2016, 2017; and simulations, for instance, in Martin, 
1973; 1978; Olsson, 1980; Metsämuuronen, 2021a, 
2022a). PMC is, specifically, affected by the item 

difficulty. When item variance 𝜎𝑖
2  approximates 0, that 

is, when the proportion of 1s (p) or 0s (1–p) in the 
binary case approximates 0, PMC approximates 0 
irrespective of the latent, true correlation. These kinds 
of sources of MEC are many including item difficulty, 
number of categories in the scale, and number of tied 
cases in the dataset. Metsämuuronen (2021a, 2022a), 
for instance, noted seven such sources of which all 
cause negative bias in the estimates by PMC.  

 According to simulations (Metsämuuronen, 2021a, 
2022a), some good options of the weight factor wi are 
polychoric correlation (RPC; Pearson, 1900, 1913), bi- 
and polyreg coefficient (RREG; see Livinstone & 
Dorans, 2004; Moses, 2017), Goodman–Kruskal 
gamma (G; Goodman & Kruskal, 1954), dimension-
corrected G (G2; Metsämuuronen, 2021a), and 
attenuation-corrected PMC and eta (RAC, EAC; 
Metsämuuronen, 2022d). These estimators are, 
practically speaking, free of MEC when it comes to 
reflect the true, perfect correlation. Quite good options 
although not as good as those above would be Somers 
delta (D; Somers, 1962; see Metsämuuronen, 2020a) 
and dimension-corrected D (D2; Metsämuuronen, 
2020b; corrected in 2021a); these are affected by the 
number of tied cases. Consistently with the idea of the 
general measurement model, the weight factor may 
vary item-wise even within a test; some estimators may 
be more efficient with binary items (e.g., G and D) 
although some others may be more efficient with items 
with both binary and polytomous scales (e.g., RPC, G2, 
and D2). 

 By replacing Rit and λi in Eqs. (3) to (6) with a 
totally different coefficient being less affected by MEC 
leads us to estimators of reliability called “MEC-
corrected estimators of reliability” (MCER, 
Metsämuuronen, 2022b) or, if attenuation-corrected 
estimators are used, to “attenuation-corrected 
estimators of reliability” (ACER; Metsämuuronen, 
2022c). In what follows, these both are called by a 
common name “deflation-corrected estimators of 
reliability” (DCER; Metsämuuronen, 2022a, 2022b; 
2022c). Notably, Zumbo’s and colleagues’ (2007) 
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ordinal alpha and ordinal theta also belong to the 
extended family of DCERs; instead of simply changing 
the factor loading itself, the estimation starts by 
replacing the matrix of inter-item PMCs by a matrix of 
RPCs.  

 As suggested by Metsämuuronen (2021a, 2021b, 
2022a, 2022b, 2022c), the general (theoretical) bases 
for DCERs could be based on coefficient alpha (Eq. 
3): 
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coefficient omega total (Eq. 5): 
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and coefficient rho (Eq. 6):  
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 Using theta, omega, and rho outside their original 
context of principal component- and factor analysis 
may be debatable; this issue is discussed later. As 
discussed above, the term wiθ refers to the fact that the 
estimate differs depending on the selected coefficient 
of correlation w, characteristics of an item i, and the 
manifestation of the latent variable θ. By wisely 
selecting the weighting factor, it is possible to 
remarkably reduce the deflation in reliability. This also 
solves largely the issue related to the item effect; as 
examples, such estimator as G with binary items, and 
RPC and G2 with binary and polytomous items all are, 
practically speaking, MEC-free in many conditions 
such as difficulty level, number of categories in the 
scale, and number of tied cases in the dataset discussed 
above (see Metsämuuronen, 2021a, 2022a). Of these, 
RPC may lead to a theoretical reliability because the 
coefficient itself does not refer to the observed score 
but to a latent, unobservable score (see the critique in 
Chalmers, 2017).  

 To outline the discussion so far, the reasons of 
deflation in reliability can be traced to, at least, five 
sources which all may cause simultaneously deflation 
in the estimates of reliability. However, studies of the 
phenomenon tend to be fragmentary and some areas 
may be even unstudied. The empirical section explores 
the effect of simultaneous sources in real-life settings. 

 

3. Research questions 

 It is reasonable to think that the five sources of 
deflation in reliability may all have an effect at the same 
time in a cumulative manner. There also may be more 
sources of deflation than what discussed above. Their 
common effect is largely unknown under different 
simultaneous conditions. The empirical section studies 
the behaviour of the four widely used estimators ρα, 
ρTH, ρω, and ρMAX in different conditions related to real-
life testing setting. The specific research questions are: 
(1) What is the magnitude of the effect of sample size, 
number of categories in the scales of the score and 
items, as well as of difficulty level of the test in 
deflation of reliability and (2) How effectively the 
estimators reflect the population estimate; to what 
extent the estimators under- or overestimate the 
population reliability in real-life testing settings with 
finite or small sample sizes. 
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4. Methodology 

4.1 Measurement model and estimators used in 
the empirical section 

The general measurement model discussed in 
Section 2.1 is applied in the empirical section. Mainly 
the traditional estimators ρα, ρTH, ρω, and ρMAX (Eqs. 3–
6) with their intended original score variables (θX for 
alpha, θPC for theta, and θFA with MLE for omega and 
rho) and weight factor (Rit for alpha and λi for theta, 
omega, and rho) are in focus. If only two items (of wide 
scales) form the score, PAF is used to estimate the 
factor loadings. Some benchmarking comparisons are 
made by using DCERs (Eqs. 7–10) and using RPC and 
G2 as the linking factor.  

4.2 Datasets and tests used in the study 

A real-world representative national-level dataset 
of 4,022 test-takers of a mathematics test with 30 
binary items (FINEEC, 2018) is used as the 
“population”. In the original dataset, ρα = 0.885, ρTH = 
0.890, ρω = 0.887, and ρMAX = 0.895, item 
discrimination ranged 0.333 < Rit < 0.627 with the 
average 𝑅𝑖𝑡̅̅ ̅̅  = 0.481, and the difficulty levels of the 

items ranged 0.24 < p < 0.95 with the average �̅� = 0.63 

 Ten random samples with n = 25, 50, 100, and 200 
test-takers in each were drawn from the original 
dataset, imitating different sizes of finite sample sizes 
typical in real-life testing settings, ranging from a 
typical classroom testing (n = 25) to a test for large 
student group (n = 200). In each of the 10×4 datasets, 
36 shorter tests were produced by varying the number 
of items, difficulty levels of the items, and the length 
of the scale of the item (df(g) = number of categories in 
the scale – 1), and in the score (df(X) = number of 
categories in the scale – 1). The polytomous items were 
constructed as partitions of the original binary items. 
As a result, the datasets1 in simulation consisted of 
14,880 partly related test items from 1,440 tests with a 
varying number of test-takers (n = 25, 50, 100, and 200) 

and items (k = 2–30, �̅�=10.33, std. dev. 8.621), lower 

bound of reliabilities (ρα = 0.55–0.93, 𝜌𝑎̅̅ ̅=0.850, std. 

dev. 0.049),  the average difficulty levels (�̅�=0.50-0.76, 

�̿�=0.66, std. dev. 0.052), and width of the scales in the 

items (df(g) = 1–14, 𝑑𝑓(𝑔)̅̅ ̅̅ ̅̅ ̅̅ =4.57, std. dev. 3.480) and 

in the score (df(X) = 10–27, 𝑑𝑓(𝑋)̅̅ ̅̅ ̅̅ ̅̅ =18.06, std. dev. 
3.908).  

 

5. Results 

5.1 Effect of the sample size and number of items 
in the compilation 

The estimates by ρα, ρTH, ρω, and ρMAX in the 1,440 
tests are compared with each other as well as with the 
known “population”. The first note to make is that the 
datasets with the smallest sample size produce 
remarkable amount of deterministic or near 
deterministic patterns (13–16% of the estimates with n 
= 25; Table 1) where the estimates by omega and rho 
are not defined, or rho produced reliability of ρMAX ≈ 1 
even if only one of the factor loadings appeared to be 
very near the value 1. This phenomenon could be 
connected with an alternative concept of reliability, 
“sufficiency of information” by Smith (2005): It seems 
that the small sample sizes do not give sufficient 
amount of information for ML-estimates to produce 
credible estimates of factor loadings for credible 
estimates of reliability by omega and rho. 

Second, of the four estimators in comparison, the 
estimates tend to be the highest by rho (average 0.875) 
and the lowest by alpha (average 0.850); this is expected 
because of their known behaviour. The difference 
between the estimates gets smaller by the sample size; 
although the average difference with the smallest 

sample size (n = 25) is 6.4% (= (0.871–0.815)/0.871), 
it is only 1% with the highest sample size (n = 200). 
The magnitude of the estimates by theta tend to be 
slightly higher (average 0.858) than those by omega 

 
 

 
 

1 The dataset of reliabilities (n = 1,440) is available in CSV format at http://dx.doi.org/10.13140/RG.2.2.30493.03040 and in 
SPSS format at http://dx.doi.org/10.13140/RG.2.2.27971.94241.  The dataset of individual items  (n = 14,880)  including 
several indicators of item–score association is available in CSV format at http://dx.doi.org/10.13140/RG.2.2.10530.76482 and 
in SPSS format at http://dx.doi.org/10.13140/RG.2.2.17594.72641.   

http://dx.doi.org/10.13140/RG.2.2.30493.03040
http://dx.doi.org/10.13140/RG.2.2.27971.94241
http://dx.doi.org/10.13140/RG.2.2.10530.76482
http://dx.doi.org/10.13140/RG.2.2.17594.72641
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Table 1. Basic statistics of the estimators in comparison 

 

(0.854) although not exceeding those by rho. Third, all 
estimates give both over- and underestimates in 
comparison with the population estimate, specifically, 
with very small sample sizes (Figure 1).  

Rho differs from the others in its tendency to 
overestimate slightly the reliability with all sample sizes 
(up to 1.1%) although the magnitude with n = 200 is 
very small (0.001 units of reliability or 0.11%) (Figure 
2). This result confirms the warning by Aquirre-Urreta 
and colleagues (2019) that rho tend to give 
overestimates with finite samples. Unlike the other 
estimators, rho tends to overestimate reliability 
irrespective of the length of the test (indicated by the 
number of items in the compilation, k; see Figure 2). 
Notably, estimates by rho with k = 2 are not 
overestimated; these are based on factor loadings by 
PAF instead of ML. Not only rho overestimates 
reliability with small sample sizes, also its behaviour is 
radically more unpredictable in comparison of omega 
(see Figure 3). Of the conservative estimators, 
estimates by theta tend to be slightly closer to the 
population reliability than those by alpha and omega. 

5.2 Effect of the number of categories in items 
and scores 

In the simulation, the scales of the scores were 
kept reasonably wide (maximal points 20–30). 
However, even though the highest score could be 20 
or 30, not all values of the potential scale were 
actualized; with small sample sizes the variety of 
different values is smaller than with larger sample sizes 
leading to df(X) ≥ 10.  

 All estimators produce remarkable underestimates 
when the scale of the score is narrow (df(X) < 15) 
although, with test score of wider scale ((df(X) > 15), 
all estimators tend to produce estimates close the 
population value (Figure 4). In alpha and omega, the 
deflation may be up to 0.11–0.12 units of reliability (or 
14–15%) and, with theta, around 0.09 units (or 11%). 

A possible confounding factor is that the tests with the 
narrowest scales (df(X) = 10–12) were also the most 
extremes ones compiled of the smallest sample size (n 
= 25) with the most difficult set of items (see Section 
5.3). The systematic nature in the phenomenon 
indicates though that the effect is related primarily to 
the scale and not the sample size. Hence, in practical 
settings, we may expect underestimation, specifically, 
with tests with a narrow scale and when the tests are 
extreme in their difficulty level. The latter is a known 
characteristic of tests (see Section 2.6). Studies related 
to very short test in this regard would be beneficial.   

 Notably, unlike the scale of the score, the scale of 
the item does not explain the underestimation in real-
life datasets. Rho slightly overestimates the reliability 
except when the scale of items exceeds six. A possible 
confounding factor at the range of df(g) > 7 (not seen 
in Figure 4) is that the tests with this wide item scale 
tended to be short in terms of number of items in the 
compilation (k = 2–3). Then, with k = 2, PAF-estimate 
was calculated instead of ML-estimate. Again, of the 
conservative estimators, estimates by theta 
underestimate reliability slightly less than those by 
alpha and omega. 

5.3 Effect of the difficulty level of the items 

The test items formed eight sets with different 
difficulty levels. The easiest tests were compiled with 
the easiest items and their partitions and, in these, the 
maximum possible score was 24 and 26 points. The 
most difficult tests were the shortest ones with 20 to 
22 points maximum compiled of the most demanding 
items and their partitions. By random sampling, some 
tests appeared to be more extreme than the others. 
However, tests with extreme difficulty levels were not 
obtained, and difficult tests (average 0.50 < p < 0.55) 
and easy tests (average 0.75 < p < 0.80) are rare in the 
datasets, 2.6% and 1.1%, respectively and, hence, their 
low number may not allow generalization. 

Sample Size Mean  N  Std. Deviation 

N Alpha Theta Omega Rho  Alpha Theta Omega Rho  Alpha Theta Omega Rho 

25 0.815 0.835 0.819 0.871  360 360 314 304  0.073 0.062 0.075 0.059 

50 0.859 0.866 0.862 0.881  360 360 360 360  0.037 0.036 0.037 0.035 

100 0.863 0.867 0.865 0.877  360 360 360 360  0.025 0.025 0.025 0.025 

200 0.864 0.866 0.865 0.872  360 360 360 360  0.022 0.021 0.021 0.021 

Total 0.850 0.858 0.854 0.875  1440 1440 1394 1384  0.049 0.042 0.047 0.037 
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Figure 1. Under- and overestimation by the estimators  

 

Figure 2. Average under- and overestimation by the estimators by sample size and number of items  

 

Figure 3. Relation of alpha, omega, and rho  
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Figure 4. Under- and overestimation by the estimators by df(X) and df(g)  

 

 

 All the estimators in the most extreme datasets 
tend to give estimates that are far off the population 
parameter (Figure 5). The estimators by alpha and 
omega are underestimated by 0.06–0.07 units of 
reliability (7–8%). Notably, the behaviour of rho 
differs from the others: it tends to overestimate the 
reliability of the difficult tests and underestimate that 
of easy tests. Again, of the conservative estimators, 
estimates by theta underestimate reliability slightly less 
than those by alpha and omega. Notably, also, based 
on empirical findings, we would expect to see far more 
grave deviation from the population value with the 
extreme difficulty levels of the test. 

 Notably, these results have relevance when it 
comes to the conditional S.E.m, that is, random error 
at different parts of the ability scale. It seems that the 
traditional estimators or reliability are prone to give 
notable underestimation in both extremes of ability 
scale. Deflated reliabilities lead to artificially high 
standard errors. It seems that DCERs are more stable 
in this respect (see later Figure 8). This matter is 
elaborated in section 6.2 with a more extreme dataset.  

5.4 Effect of the estimator 

Above, it was discussed that assessing the pure 
effect of the estimator itself is sometimes difficult 
because both the score variable and the weight factor 
wi may vary. Here, this is studied by comparing all four 
estimators by harmonizing θ and wi. The raw score is 
used as the manifestation of the latent variable and RPC 
as the weight factor 

 The estimators based on rho overestimate slightly 
the population reliability with small sample sizes 
(Figure 6). Nevertheless, if we compare the estimates 
by other estimators with the ones by rho, the pure 
effect of the estimator seems the most notable with 
tests with a small number of categories in the score (6–
8% between ρα and ρMAX), difficult or easy items (5%), 
and the smallest sample sizes (4%). Notably, omega 
seems to benefit more than theta and alpha in changing 
the weight factor: the estimates are notably closer the 
population value if used a deflation-corrected 
estimator in the estimation than by using factor loading 
(cl. Sections 6.1–6.3; see also Section 6.5).  

5.5 Effect of the selection of the weigh factor 

Selection of the weight factor leads us to the 
extended family of deflation-corrected estimators of 
reliability. In what follows, two alternative estimators 
or correlation, RPC and G2, are used as examples of 
behavior of DCERs in relation of the traditional 
estimators. With these DCERs, the raw score was used 
as the manifestation of θ instead of the traditional 
factor score. If the factor score variables were used as 
the manifestation of θ, the outcomes between the 
estimators may have been slightly different.  

 Using theta, omega, and rho outside of their 
traditional context is, undoubtedly, debatable. 
However, we may think that the estimates by using RPC 
and G2 instead of the traditional λi are outcomes of 
renewed procedures on principal component- and 
factor analysis where the factor loadings are RPC and G2
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Figure 5. Under- and overestimation by the estimators by the test difficulty 

 

Figure 6. Effect of the estimator after harmonized the score variable and weight factor 
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instead of PMC (cl. ordinal theta). The rationale in 
using RPC and G2 (or some other relevant option) is that 
they are practically MEC-free unlike Rit and λi both of 
which are sensitive to item difficulty. Of the 
alternatives, RPC leads us to the theoretical reliability 
because it refers to unobservable score with no strict 
relevance with the observed score (see Chalmers, 2017) 
as discussed above. G2 leads to a more practical 
interpretation of reliability because the embedded 
coefficient G has a strict interpretation to refer to the 
proportion of logically ordered test-takers in the whole 
set of items after they are ordered by the score (see 
Metsämuuronen, 2021b).   

 The main advance of DCERs seems to come with 
the small sample sizes (Figure 7). This is seen the 
clearest in the estimators based on omega (Figure 8). 
Although, with the lowest sample size (n = 25), the 
traditional omega underestimates the population 
reliability by 0.047 units of reliability or 5.4%, DCERs 
underestimate half of this, 0.020 or 2.2% (using RPC) 
and 0.022 units or reliability or 2.4% (using G2). 
Specifically, the advantage of DCERs is seen if the 
scale of the score variable is narrow (df(X) < 14) and 
with very difficult and very easy tests. As an example, 
when the scale of the score is df(X) = 11, the traditional 
omega underestimates the population reliability by 0.11  

 

Figure 7. Traditional estimators and DCERs by the sample size 
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Figure 8. Difference of omega and DCERs by scale length and item difficulty 

 

 

Figure 9. Range of difference between population and sample in different estimators 

 

 

units of reliability or 13.5% while both DCERs 
underestimate just 0.05 units or reliability or 5.5%, that 
is, almost one third less than the traditional omega. 
With difficult and easy tests, the average advance by 
using RPC or G2 is 3% although, by the simulation, we 
do not know what the difference would be with 
extremely difficult and easy tests. Estimates based on 
rho are more stable in comparison with the others (see 
Figures 1 and 6), but they tend to overestimate slightly 
the population reliability. From this viewpoint, DCERs 
bring some advantage: estimates by DCERs tend to be 

less overestimated than those by the traditional rho (see 
Figure 8). Hence, it seems that the DCERs based on 
RPC and G2 give us more stable estimates than the 
traditional estimates.  This is seen also in the narrower 
range in estimates (Figure 9): As an example, while the 
range in the difference between the sample and 
population estimates by the traditional coefficient 
alpha is 0.36 units of reliability, by using G2 instead of 
Rit in the formula of alpha, the range in the dataset is 
narrowed to 0.28 units of reliability (22%). 
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6. Conclusions and limitations 

6.1 Conclusions 

The starting point of the article was the generally 
known characteristic of reliability to be underestimated 
when using certain estimators; the estimates in the 
empirical datasets may be, sometimes, radically 
deflated. Several causes for the deflation were 
discussed. To summarize the effects of these sources, 
according to the literature, the violations against the 
measurement model may have a nominal (1%) to 
remarkable (11%) effect in deflation. In the simulation, 
the pure effect of the estimator was found to be up to 
8% with tests with a small number of categories in the 
score and 5% with somewhat difficult and easy tests, 
and 4% with very small sample sizes. The effect of 
inefficient scales of items was found to be near zero in 
the real-life settings although the effect is seen in the 
theoretical datasets (see Metsämuuronen, 2021a). The 
effect of the test length or the small number of 
categories in the score seems notable: up to 15% if 
df(X) = 10–12—shorter tests were not included in the 
simulation. Small sample size may influence 3–6% to 
the deflation, and difficulty level of the test 7–8%, 
except with very extreme difficulty levels of the score 
with which the deflation may exceed 70% if the weight 
factor is selected inefficiently (see Section 6.2)—these 
kinds of tests were not included in the simulation. All 
these conditions causing deflation may occur at the 
same time.  

 As general notes of the four estimators in the 
study, first, rho tends to give overestimates with small 
sample sizes up to n = 200—higher sample sizes were 
not used in the simulation. With very small sample 
sizes (n < 50), it is also prone to fail to give the solution 
because of the random deterministic patterns in the 
sample. Hence, it is not recommended to use maximal 
reliability with small sample sizes. From this viewpoint 
using omega would be a better option as it tends to give 
more conservative estimates than rho. However, with 
very small sample sizes, omega used in its original 
context of factor analysis with ML-estimation also may 
fail to give a solution.  

 Second, theta appeared to be surprisingly good 
option as such in many conditions studied in the 
simulation. It gives conservatives estimates, that is, it 
tends to give underestimates, but the deflation in the 
estimates is smaller than it is in alpha and omega. Even 

with small sample sizes the estimates by theta are closer 
to the population value than those by any of the other 
estimators in comparison. Theta is vulnerable to a 
narrow scale in the score and the extreme difficulty 
level, but not that much as are alpha and omega.  

 Third, both omega and rho could benefit from 
changing the traditional ML-estimate of factor loading 
to some other coefficient which would be less affected 
by MEC than PMC. In practical words, if we use rho 
or omega as the base and RPC or G2 (or some other 
deflation-corrected estimator of correlation) as the 
weighting factor instead of the traditional factor 
loading (PMC), both deflation-corrected rho and 
omega seems to tend to give estimates that are notably 
closer the true, population value than the estimates by 
the traditional estimator. This is true, specifically, with 
omega: notable advance would be gained with tests of 
extreme difficulty level, with a narrow scale in the 
score, and with small sample sizes. Unlike omega and 
rho, theta does not seem to benefit from the replacing 
the principal component score by RPC and G2. Another 
question is whether the estimate by DCER is, factually, 
an overestimation. Based on the results from the 
simulation that both alpha, theta and rho tend to 
underestimate reliability even if Rit and λi is changed to 
a better-behaving coefficient, this is unlikely; what 
would be the mechanism for the overestimation? 

6.2 Practical example of the effect of DCERs in 
conditional standard errors 

To give a practical example of how the deflation 
in reliability affects the conditional standard errors in 
the extreme of ability scale, the extremely easy dataset 
(n = 7,770) by Metsämuuronen (2022b; 2022c; 
originally in Metsämuuronen and Ukkola, 2019) 
discussed in Section 2.6 is re-analyzed. Originally, the 
test was a screening test of proficiency in the language 
used in the factual test; only the test-takers with second 
language status (L2) were expected to make mistakes 
in the test items. For the reanalysis, we may think that 
the eight items in the test represent a part of a test 
forming the lower part of the ability scale. 
Alternatively, these items could be taken as the easiest 
items in the adaptive testing; how accurately can these 
items discriminate between the lowest scoring test-
takers from the other? The advance of DCERs over 
the traditional estimators may be notable in these kinds 
of datasets where the item difficulties are extreme 
leading to an ultimately non-normal score (see 
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Metsämuuronen, 2022b). Descriptive statistics of the 
dataset are collected in Tables 2a and 2b. 

Let us assume a setting related to adaptive testing 
so that the eight items represent a set of items given to 
a screening test for further sets of items. From the 
second items onwards, we start to estimate reliabilities 
and related standard errors of the score. As the 
estimators of reliability, the traditional theta (Eq. 4) and 
omega (Eq. 5) with their original weight factors 

(principal component and factor loadings 𝜆𝑖 by MLE2) 
are compared with DCERs based on theta and omega 
using G as the weight factor (Eqs. 8 and 9). Usually, in 
complex settings, the standard errors are estimated 
using complex  strategies  (see,  e.g.,  Foy &  LaRoche, 
2019).  Here the traditional estimate is calculated 

 ( . . 1XS E m REL= − ). Table 3a collects the 

information related to the score variables. Tables 3b, 
3c, and 3d show the estimates of weight variables; 3b 
shows the principal components loadings for the 
traditional theta, 3c shows the factor loadings for the 
traditional omega, and 3d shows the estimates of 
correlation between items and the score by G for the 
DCERs. In the DCERs, the score variable is the raw 
score although the result would be identical if the score 
formed by IRT modelling would have been used (see 
Metsämuuronen, 2022b). The reason for this is that, 
when only one test version is in use, the order of the 
test-takers is identical irrespective of using the raw score 
or IRT score. Table 3e collects the estimates of 
reliability and standard errors in each step adding one 
item to the test. 

Table 2a. Descriptive statistics of the test items from Metsämuuronen & Ukkola, 2019 (N = 7,770) 

 

 

 

 

 

 

 
 

Table 2b. Descriptive statistics of the score from Metsämuuronen & Ukkola, 2019 (N = 7,770) 

 
 

2 For only two items (SUM1-2), principal axis factoring (PAF) is used. 

Item (g) Range Mean p Std. Deviation Variance 

g1 0−1 0.96 0.96 0.186 0.0348 

g2 0−1 0.98 0.98 0.126 0.0160 

g3 0−1 0.99 0.99 0.088 0.0078 

g4 0−1 0.91 0.91 0.287 0.0824 

g5 0−2 1.78 0.89 0.610 0.3715 

g6 0−1 0.98 0.98 0.122 0.0150 

g7 0−2 1.97 0.985 0.211 0.0446 

g8 0−2 1.98 0.99 0.169 0.0285 

Score freq. % IRT Theta SE(th) bias 

0 0 0 -6.02 1.996 0.533 

1 0 0 -4.616 1.066 0.071 

2 0 0 -3.793 0.832 0.005 

3 4 0.1 -3.241 0.7 -0.012 

4 7 0.1 -2.853 0.627 -0.011 

5 6 0.1 -2.534 0.595 -0.003 

6 20 0.3 -2.232 0.594 0.006 

7 42 0.5 -1.906 0.622 0.008 

8 146 1.8 -1.499 0.672 -0.007 

9 822 10.4 -1.01 0.729 -0.043 

10 926 11.6 -0.532 0.844 -0.111 

11 5904 75.2 0.093 1.334 -0.350 
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Table 3a. Statistics related to the scores with gradually increasing length 

 

 
 

 
 

 

 
 

 

 

Table 3b. i  Principal component loadings related to PC scores for Theta 

 SUM1-2 SUM1-3 SUM1-4 SUM1-5 SUM1-6 SUM1-7 SUM1-8 

g1 0,725 0,567 0,598 0,583 0,524 0,496 0,447 

g2 0,725 0,608 0,483 0,478 0,516 0,502 0,430 

g3  0,723 0,624 0,616 0,593 0,564 0,605 

g4   0,586 0,569 0,506 0,500 0,468 

g5    0,266 0,260 0,254 0,204 

g6     0,429 0,448 0,375 

g7      0,321 0,288 

g8       0,633 

 

Table 3c.  Factor loadings (MLE) related to factor scores for Omega 

 SUM1-2 SUM1-3 SUM1-4 SUM1-5 SUM1-6 SUM1-7 SUM1-8 

g1 0.226 0.215 0.357 0.352 0.314 0.305 0.276 

g2 0.226 0.241 0.243 0.250 0.302 0.305 0.260 

g3  0.576 0.372 0.379 0.395 0.378 0.471 

g4   0.340 0.332 0.297 0.304 0.291 

g5    0.121 0.129 0.132 0.111 

g6     0.231 0.251 0.213 

g7      0.165 0.160 

g8       0.512 

        

Table 3d. Goodman–Kruskal 𝐺𝑖𝑋 for DCERs 

 SUM1-2 SUM1-3 SUM1-4 SUM1-5 SUM1-6 SUM1-7 SUM1-8 

g1 1 0.998 0.993 0.870 0.869 0.858 0.857 

g2 1 0.997 0.980 0.851 0.858 0.849 0.846 

g3  0.998 0.989 0.908 0.905 0.900 0.911 

g4   0.996 0.842 0.840 0.835 0.834 

g5    0.993 0.992 0.986 0.979 

g6     0.845 0.838 0.831 

g7      0.899 0.897 

g8       0.924 

 

 score 

 SUM1-2 SUM1-3 SUM1-4 SUM1-5 SUM1-6 SUM1-7 SUM1-8 

number of items (k) 2 3 4 5 6 7 8 

Score range 0−2 0−3 0−4 0−6 0−7 2−9 3−11 

Mean �̅�  1.948 2.940 3.849 5.634 6.619 8.592 10.573 

Variance 𝜎𝑋
2  0.053 0.068 0.177 0.580 0.612 0.683 0.765 

Std. Dev. 𝜎𝑋  0.231 0.261 0.421 0.762 0.782 0.826 0.875 
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Table 3e. Estimates of reliability and SE after each item 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Estimates of reliability and standard error at each step of adding items in a test 

 

 

 First note to make is that the traditional estimators 
theta and omega cannot detect the fact in the dataset 
that the lowest scoring test-takers are systematically 

scoring lower also in the items. Hence, the low 
reliability (0.097−0.423). From this viewpoint, 
estimates by G are closer the truth: on average, around 
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94–100% of the test-takers are logically ordered in all 
items in each step of adding the items to the test.3 This 
is seen also in the high magnitude of the estimates of 
reliability using G as the weight factor (0.961–1.000). 
Notably, the estimates would be slightly lower 
although at the same range if RPC or D would be used 
in DCERs instead of G; with all 8 items, 

𝜌𝑇𝐻𝑅𝑃𝐶𝑖𝑋=0.869, 𝜌𝑇𝐻𝐷𝑖𝑋=0.937, 𝜌𝜔𝑅𝑃𝐶𝑖𝑋
=0.895, and 

𝜌𝜔𝐷𝑖𝑋
=0.947 (see Metsämuuronen, 2022b). Second, 

because of the notable deflation in the estimates of 
reliability by the traditional estimators, the standard 
errors based on their estimates are notably inflated 
(0.506–0.524 after fifth item) in comparison with those 
based on DCERs (0.029–0.036). Third, in the dataset, 
the standard errors are rather stable after the fifth item 
is added to the test. The estimates based on DCERs 
are notably more stable than those based on the 
traditional estimators. Obviously, systematic studies of 
the phenomena discussed here are beneficial. The 
empirical results give a hint though that using DCERs 
in estimating the conditional standard errors is worth 
studying more. 

6.3 Practical implications related to the results 

 To outline the practical suggestions based on the 
literature and simulation, if one is willing to maximize 
the probability that the estimate of reliability would be 
as close as possible the true, population value, it is 
recommended to  

(1) select a proper measurement model fitting the 
dataset,  

(2) select the best option of the estimators within 
the model selected (although this may not affect 
much),  

(3) consider using weighted score instead of the 
raw score (although this may not affect much),  

(4) ponder whether items with polytomous or 
continuous scales could be used instead of binary 
ones (although this may not affect much),  

(5) consider raising the sample size higher than 25–
50 test-takers (this may have a remarkable effect),  

 
 

3 Because of the relation between G and Jonckheere–Terpstra test statistic (see Metsämuuronen, 2021b), probability that the test-takers are 
in an ascending order in an item after they are ordered by the score is p = 0.50 × G + 0.50. Here, the average of Gs is used in calculation. 

(6) consider constructing the score so that it would 
have 15 categories or more (this may have a 
remarkable effect), 

(7) consider changing the weight factor in the 
traditional estimators of reliability to a one with less 
mechanical error (this may have a remarkable 
effect), and 

(8) use items with extreme difficulty level in the test 
to give test-takers possibility to show at least some 
achievement (easy items) or how far they can reach 
(difficult items). However, when items with 
extreme difficulty levels are used, consider using 
estimators from the extended family of DCERs 
instead of the traditional estimators to estimate the 
reliability (this may have a remarkable effect).  

 These are well-known facts within the 
professionals working with testing. Anyhow, following 
these basic principles maximizes the probability to 
obtain as accurate estimate of reliability as possible for 
varying purposes of reliability.  

6.4 Known limitations 

 An obvious limitation of the study is that a 
simulation with real-world items has its own 
limitations. Although the numbers of subtests (n = 
1,440) and items (k = 14,882) used in the study are 
rather convincing, those are based on one basic dataset. 
Results may have been somewhat different if truly 
polytomous test items were used in the simulation. 
Replications of the design or another approach with a 
more independent estimates may increase our 
knowledge of the relation between the estimators.   

 The analysis did not concern very difficult and very 
easy tests; using the original dataset, this would have 
required very short tests with binary items. The results 
here and the empirical results by e.g. Metsämuuronen 
and Ukkola (2019) give a hint that the behaviour of the 
estimators with very difficult and easy tests would 
show remarkable deflation in estimates. Also, the 
simulation included only tests with minimum 20 points 
as the maximum score; the behaviour of the estimators  
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may be different with very short tests. Some ideas of 
the radical deflation in the estimates of reliability by the 
traditional estimators with tests of extreme difficulty 
level were given in the discussion section. Studies in 
this respect would be beneficial.  

 The comparison of the DCERs and traditional 
theta, omega, and rho was done by using the raw score 
as the manifestation of θ instead of the traditional 
factor score. If used the factor score variables as the 
manifestation of θ, there would be a better comparison 
between the estimators. Studies in this respect may 
increase our knowledge of the matter (see some 
comparison in Metsämuuronen, 2022b though). Also, 
comparisons of estimates by ordinal alpha and theta by 
Zumbo and colleagues (2007) and DCERs discussed in 
this article would, be beneficial. 
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Appendix A. List of abbreviations used in the article 
 

General abbreviations 

df(g) degrees of freedom of item = number of categories–1   

df(X) degrees of freedom of the score = number of categories–1   

k number of items 

p probability, proportion of correct answers 

MEC mechanical error in estimates of correlation 

MLE maximum likelihood estimation 

PAF principal axis factoring 

SE Standard Error 

S.E.m Standard error of measurement 

REL reliability 

Concepts related to variables 

X observed score variable 

g observed item 

T unobserved true score 

E unobserved error score 

xi observed value of X 

ti observed value of T 

ei observed value of E 

Types of score variables 

θ latent variable 

θRAW, θX, X latent variable manifested as a raw score 

θPC latent variable manifested as a principal component score  

θFA latent variable manifested as a factor score variable 

θIRT latent variable manifested as a theta score formed by the item response theory (IRT) 
or Rasch modelling 

θNonL latent variable manifested as a nonlinear compilation of items 

Estimators of reliability 

ρ
BS

 Brown–Spearman prediction formula 

ρ
FR

 Flanagan–Rulon prediction formula 

ρGLB greatest lower bound reliability 

ρLLB lowest lower bound of reliability 

ρKR20 Kuder and Richardson formula 20 

ρKR21 Kuder and Richardson formula 21 

λ1—λ6 Guttman family of estimators 

ρα  coefficient alpha, Cronbach alpha 

ρTH coefficient theta, Armor theta 

ρω coefficient omega, McDonald omega total 

ρMAX coefficient rho, maximal reliability, Raykov rho, Hancock H 

ρ
H
 Horst coefficient 

ρ
AF

 Angoff–Feldt coefficient 

ρ
β
 Raju coefficient, Raju’s β 
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ρ
GF

 Gilmer–Feldt coefficient 

Estimators of correlation 

PMC = 

XY  

product-moment correlation coefficient between variables X and Y, Pearson 
correlation 

Rit = iX  
item–total correlation, item–score correlation, a special case of PMC 

λi factor loading, principal component loading 

RPC polychoric correlation 

RREG bi- and polyreg coefficient 

G Goodman–Kruskal gamma 

G2 dimension-corrected G 

D Somers delta 

D2 dimension-corrected D 

RAC attenuation-corrected PMC 

EAC attenuation-corrected eta 

Concepts related to deflation-corrected estimators of reliability 

DCER Deflation-corrected estimator of reliability 

wi, wiθ weight factor, correlation between an item i and the latent variable manifested as a 
score variable θ 

_ θwi   
deflation-corrected alpha 

_ θTH wi
  

deflation-corrected theta 

_ θwi   
deflation-corrected omega 

_ θMAX wi
  

deflation-corrected rho 
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