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This article discusses visual techniques for detecting test items that would be optimal to be selected to 
the final compilation on the one hand and, on the other hand, to out-select those items that would 
lower the quality of the compilation. Some classic visual tools are discussed, first, in a practical manner 
in diagnosing the logical, illogical, and anomalous patterns in item responses, and second, a new way 
of illustrating the behavior of the items, cut-off curve, is introduced. All the illustrations in the article 
are accessible even without specific software packages; they are made by using basic spreadsheet 
software. 

Introduction 

 In constructing a good measurement instrument 
including high validity and reliability, selection of good 
test items is crucial. How to know which items would 
be the best ones to be selected to the compilation—or, 
as is in focus in this article, how to detect and out-select 
those items that would lower the quality of the 
compilation? Obviously, we are willing to use as wide 
base of information as possible, “full information” (see 
Haladyna & Rodrigues, 2021). This article focuses on 
graphical tools although statistical or analytical tools 
are discussed too; usually these are used combined. 
This article concentrates on the technical quality of the 
items keeping in mind that the content-wise quality of 
the items, that is, the item validity maybe even more 
crucial in creating a valid measurement instrument. 

 Depending on the model used in the item analysis, 
we have one to five technical parameters describing the 

 
 

1 A useful tool for classical item analysis is, as an example, TIAPLUS software (CITO, 2013). Some widely-used 
software packages for the IRT modeling include, among others, BICAL (Wright & Stone, 1979), BILOG (Mislevy & 

behaviour of the item. Their content is somewhat 
different in the practices within the classical test theory 
(CTT) and classical item analysis (see Gulliksen, 1950; 
Lord, Novick, & Birnbaum, 1968) than in the modern 
test theory including Rasch modelling (Rasch, 1960 
onwards), item response theory (IRT) modeling (Lord 
et al., 1968 onwards), Mokken modelling or non-
parametric IRT (NIRT; Mokken, 1971 onwards; see 
also Sijtsma & Molenaar, 2002; Stout, 2002), 
multidimensional IRT (MIRT; Mulaik, 1972; Reckase, 
1972 onwards; see also Reckase, 2009), and widening 
the scope also to the confirmatory factor analysis 
(CFA) or structural equation modeling (SEM; 
Jöreskog, 1969, 1970 onwards). In practical settings 
related to item analysis, both the classical and modern 
test theory are often combined; software packages for 
IRT are many, and they usually include classical 
parameters also (see also the theoretical connection of 
CTT and IRT in, e.g., Bechger et al., 2003; Raykov & 
Marcoulides, 2016).1 We also remember that validity of 
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the test construct and, specifically, the construct 
validity including the effect of individual item’s impact 
in the compilation are usually analysed and illustrated 
by using SEM software packages such as AMOS 
(Arbuckle, 2015), EQS (Bentler, 1995; Bentler & Wu, 
2008), LISREL (Jöreskog & Sörbom, 1999a; 1999b; 
Jöreskog, Olsson, & Wallentin, 2016), or MPLUS 
(Muthén & Muthén, 1998–2017); this area is not 
discussed in this article even if the content-wise quality 
of the items, that is, the item validity is a crucial item 
“parameter” too (see Lord et al., 1968; 
Metsämuuronen, 2017). 

 Three generally used technical item parameters are 
the discrimination power (a-parameter in IRT modeling) 
reflecting the accuracy of the item in separating the test 
takers from each other, item difficulty (b-parameter) 
reflecting the locations of the item in the ability scale, 
and probability to guess the correct answer (c-parameter), 
known also as pseudo-change score level (e.g., 
Verhelst, Glas, & Verstralen, 1995) reflecting the 
easiness to guess or know the correct answer in the 
lowest-scoring group in the target group (of the 
discussion of the parameters, see, e.g. Lord, et al., 1968; 
Metsämuuronen, 2017). These three parameters are in 
a common use in one-, two-, and three-parameter 
(logistic) models within the Rasch- and IRT modelling.  

 The same three parameters are used within the 
classical item analysis also. For the item discrimination 
power, we have several indices of which Oosterhof 
(1976), as an example, compared 19 of the frequently 
discussed ones (see also comparisons in Cureton, 
1966a, 1966b; Metsämuuronen, 2022a; Wolf, 1967) 
and several new ones have been suggested during the 
years (see, e.g., Metsämuuronen, 2020a; 2021a, 2022a; 
Moses, 2017). As examples of the classical coefficients, 
two widely-used classical indices based on mechanics 

 
 

Bock, 1982) and its later version BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003), BMIRT (Yao, 2003), 
LOGIST (Wingersky, Barton & Lord, 1982), MULTILOG (Thissen, 1983; 2003), MPLUS (Muthén & Muthén, 2006), 
NOHARM (Fraser & McDonald, 1988), OPLM (Verhelst, Glas & Verstralen, 1995), PARSCALE (Muraki & Bock, 
2003), WINSTEPS (Linacre, 2011), QUEST (Adams & Khoo, 1993) and its later version CONQUEST (Wu, Adams, 
& Wilson, 1998), TESTFACT (Bock et al., 2003), and a new type of application IRTPRO (Cai, Thissen, & du Toit, 
2011) based on exploratory- and confirmatory factor analysis. One can find updated versions of the living software 
packages, for example, at the site of ssi-central https://ssicentral.com/index.php/products/. In R environments, the 
parameters can be obtained, for instance, by the packages ltm (https://cran.r-
project.org/web/packages/ltm/ltm.pdf), equateIRT (https://cran.r-
project.org/web/packages/equateIRT/index.html) or irt (https://cran.r-project.org/web/packages/irt/irt. pdf).   

of product-moment correlation coefficient (Pearson, 
1896 onwards) are the item–score or item–total 
correlation (Rit) and item–rest correlation or corrected 
item–total correlation (Rir; Henrysson, 1963); some 
alternatives are discussed Section “Connection of item 
difficulty…”. Rit and Rir are defaults in widely used 
general statistical software packages such as IBM SPSS 
and SAS which may explain their wide use. Difficulty 
level, known also as facility index is usually the 
proportion of correct answers, that is, the observed 
sum of the values in the item divided by the maximum 
possible sum in the item (minus the minimum possible 
sum if it is not zero) although other options are 
available (see, e.g., Moses, 2017). Within the classical 
item analysis, guessing parameter is usually related to 
the number of alternatives in the multiple-choice 
questions (MCQ): the classical guessing probability is 
the inverse of the number of alternatives: P = ¼ = 0.25 

if having four alternatives and P = ⅕ = 0.20 if having 
five alternatives, as examples.   

 Writing a good test item is a form of art, and 
experienced item writer or item evaluator may say 
without any statistical or visual tool that certain items 
cannot be good. Many good lists of advice have been 
given for item writing to avoid the basic flaws (e.g., 
Ebel & Frisbie 1986; Hopkins 1997; Mehrens & 
Lehmann 1991; Metsämuuronen, 2017; Miller, Linn, & 
Gronlund, 2012). These lists include such good advises 
as “Write the item as clearly as possible”, “Avoid giving 
irrelevant clues to the correct answer”, “All distractors 
(in the multiple-choice items, MCQ) should be 
plausible and homogenous; no distractor should be 
automatically eliminated because it is irrelevant or 
stupid”, and “Only one of the alternatives (in MCQ) 
can be correct or the best” just to mention a few (see 
more detailed in Metsämuuronen, 2017, pp. 82–85 and, 

https://ssicentral.com/index.php/products/
https://cran.r-project.org/web/packages/ltm/ltm.pdf
https://cran.r-project.org/web/packages/ltm/ltm.pdf
https://cran.r-project.org/web/packages/equateIRT/index.html
https://cran.r-project.org/web/packages/equateIRT/index.html
https://cran.r-project.org/web/packages/irt/irt.%20pdf
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e.g., Mehrens & Lehmann, 1991). Such basic flaws in 
item writing as the ambiguity in wording, use of 
extreme words such as “always”, “all”, “never”, and 
unintended several correct answers, as examples, may 
lead the test takers confused and, hence, the 
discrimination power of the item may be reduced 
because of technical reasons.  

 Usually, analytical tools, that is, numerical and 
statistical methods are used in assessing the technical 
quality or behaviour of the items (see different options 
in, e.g., CITO, 2013; Haladyna & Rodriges, 2021; 
Metsämuuronen, 2017; Moses, 2017) and, in many 
cases, this requires some specific software packages for 
item analysis; some of these are collected at Footnote 
1. However, the visual or graphical diagnosis of the 
items is often used as a practical additional tool to 
examine the item behaviour. One of the advances of 
the IRT modelling over the classical test theory is the 
effective visualization of the item behavior, that is, the 
item characteristic curve (ICC; see later Figure 1). 
Within the classical item analysis, there has been less 
possibilities of the visualizations. However, using 
graphical possibilities in item analysis and -diagnostics 
is usually a good practice and easy way to detect some 
known specific anomalous, illogical, or maybe even 
“pathological” patterns (word used by 
Metsämuuronen, 2017 in this context) embedded to or 
unrevealed by the numerical analysis. Some of these 
specific patterns are discussed, for example, by Linacre 
and Wright (1996), Smith (1996), and Metsämuuronen 
(2017, pp. 169–172).  

 This article discusses some alternatives for the 
visual item analysis without specific IRT or SEM 
software packages. The potential beneficiary of the 
article could be a practitioner who does not have access 
to or knowledge of sophisticated tools for the IRT 
modelling, maybe, using classical analysis as the main 
analysis paradigm. These practitioners may come from 
the realm of practical education settings using classical 
indices for item discrimination power instead of IRT 
modelling. Simple tools such as common spreadsheet 
software packages can be used in the manual 
calculation in settings where sophisticated software 
packages for item analysis are not available. In these 
settings, the graphical options to perform item 
diagnosis may open wider possibilities to analyze and 
select the items to the tests—or to out-select items 
with an illogical or anomalous behavior from the final 

version. A general software package such as IBM SPSS, 
SAS, STATA, or different R libraries may be helpful 
for preparing the graphs; if these are not available, a 
basic office tool is sufficient for many statistics needed 
in the graphs. All the visualizations in the article are 
done by using Microsoft Excel software.  

 The course of the article starts with the basic 
visualization used in the Rasch and IRT modelling in 
the next section. Section “Basic graphical analyses…” 
shows some traditional ways of illustrating the item 
behavior within the classical approach. Section “Cut-
off curve…” introduces a new type of visualization, the 
cut-off curve, based on the procedure of exhaustive 
splitting (PES) proposed by Metsämuuronen (2017; 
2020b). 

 

Basic graphical analysis within the 

Rasch- and IRT modelling approach 

Item characteristic curve 

 One of the strengths of Rasch- and IRT modelling 
over the classical item analysis is the possibility of 
visual item analysis provided by the item characteristic 
function (ICF) and item characteristic curve (ICC). 
Originally, Rasch (1960) noted that the probability of 
giving a correct answer, assuming a certain ability level 
(theta, θ ) and the item difficulty (b or beta, β), can be 
modelled by using the one-parameter logistic (1PL) 
function: 

(θ )

1
( 1| θ, )

1
g b

P X b
e− −

= =
+ .  (1) 

 In practical terms, Eq. (1) expresses the probability 
(P) for the event that the test taker gives the correct 
answer in the item g (Xg = 1) assuming certain (known 
or estimated) ability (or trait) level θ and item difficulty 
level b. If we know—usually by using an IRT 
software—the value of the item difficulty b, we can 
visualize how the item should behave in the theoretical 
situation by drawing a graph of the model, that is, in a 
spreadsheet software, by tabulating the values of θs 
from –4 to +4 and calculating P with a fixed value in b 
(see the set of graphs in Figure 1; see also Livingston 
& Dorans, 2004 or Metsämuuronen, 2017 for 
examples of outputs by using a IRT software). This 
graph shows the ‘theoretical’ ICC (see later the 
“observed ICC”). As the simplest, the theoretical ICC 
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of a Rasch model could be as in Figure 1.1, where also 
the (hypothetic) lower and upper boundary of the 
confidence interval (CI) are illustrated. 

 An essential characteristic of the theoretical ICC is 
that the curve is monotonically growing, that is, in each 
(higher) ability level, the probability of the correct 
answer is higher than in the previous (lower) ability 
levels. In practical terms, the higher-scoring test takers 
should give the correct answer more probable than the  

lower-scoring test takers. The more there are test takers 
the narrower the CI and, parallel, the less test takers the 
wider is the CI. When the ‘observed’ ICC, based on the 
actual dataset, is drawn to the same graph, we can 
compare how well the observed dataset fits the 
theoretical curve. If the observed ICC stays within the 
CI, the inference is that the observed ICC fits the 
theoretical ICC. The observed ICCs are handled in the 
next section. 

Figure 1. Theoretical ICCs produced by different models 
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In many practical settings, the observed dataset does 
not follow the (parametric) logistic function illustrated 
in Figure 1.1. Instead, in these cases, a better model 
could be a nonparametric IRT (NIRT)- or Mokken 
model visualized in Figure 1.2. An essential 
characteristic of the observed ICC of a NIRT type of 
item is that the curve is growing—although not 
necessarily monotonically. This means that, in each 
ability level, the probability of the correct answer is 
higher or the same than in the previous ability levels, and 
that the observed curve need not follow any specific 
known (parametric) function. 

 In the two-parameter (logistic) model (2PL), one 
describes both the difficulty parameter b and the item 
discriminating power a (Figure 1.3). The b-parameter 
tells us the location of the information of the item (in 
terms of the ability level) and the a-parameter tells us 
how accurately the item discriminates among the 
respondents at that point. The general ICF of the two-
parameter model is 

(θ )

1
( 1| θ, , )

1
g Da b

P X b a
e− −

= =
+ ,  (2) 

where θ is a certain value of ability level, b  is a certain 
value of item difficulty, a  is a certain value of the item 
discrimination power, and  D  is 1 when a logistic 
model, and 1.7 when a Normal Ogive Model (see, Lord 
et al., 1968). Three examples of ICCs of two-parameter 
models with identical values of the b-parameter are 
seen in Figure 1.3 by variating the value of the a-
parameter to visualize the effect of a-parameter. The 
interpretation of the two-parameter ICCs are 
straightforward: the steeper the curve is, that is, the 
higher the value for the a-parameter, the more 
discriminating the item is. The highest information 
about the item is at location of b and near that; the item 
discriminates the best between the test-takers who are 
in that range. If the item is an easy one (b-parameter is 
low), and the item is highly discriminating, the item 
discriminates between the low-scoring and even lower-
scoring test-takers; the item cannot discriminate 
between the high-scoring test takers—they all give a 
correct answer. Parallel, if the item is a demanding one 
(b-parameter is high), and the item is very 
discriminating, the item discriminates between the 
high-scoring and even higher-scoring test-takers. 

 Finally, in the three-parameter logistic model 
(3PL), additional to the parameters a and b, the 

guessing parameter c is also expressed in the ICF and 
ICCs (see Figure 1.4). The model by Birnbaum (see 
Lord et al., 1968) is as follows: 

(θ )

1
( 1| θ, , , ) (1 )

1
g Da b

P X b a c c c
e− −

= = + −
+ , (3) 

where θ is a certain value of ability level, b  is a certain 
value of item difficulty, a  is a certain value of the item 
discrimination power, c is a certain level of guessing, 
and  D  is 1 when a logistic model, and 1.7 when a 
Normal Ogive Model (see Lord et al., 1968). The c-
parameter tells us how probable it is to obtain the 
correct answer in the group that performs the lowest 
in the test. It may be good to note that even if the 
classical probability for the guessing with MCQs would 
be 0.20 or 0.25 (see above), in practical settings, the 
probability for guessing the correct answer may stay 
much lower, specifically, with semi-difficult items 
(keeping in mind that, with easy items, even the low-
performing test-takers may know the correct answers). 
This is caused by the fact that the test-takers rarely 
make random guesses, but they start to use some other 
strategy in selecting the correct answer. If the 
distractors are wisely selected, such as in a test of 
mathematics a certain mistake in the calculation leads 
to a certain distractor, this leads the low-performing 
test-takers to select wrong alternatives leading to 
lower-than-expected probability for guessing the 
correct answer.   

Observed ICCs without the specific IRT software 

 Though it is possible to produce the theoretical 
ICCs and their confidence intervals by using common 
spreadsheet software packages as is done in Figures 
1.1–1.4, usually we use specific software packages for 
these graphs. However, if a specific software package 
is not available, rough observed ICCs can be drawn 
either by combining a general statistical software (e.g. 
SPSS, SAS, STATA, R) with the basic spreadsheet 
software, or by producing both the basic statistics and 
illustrations by using the spreadsheet software alone—
if not willing to use the general software itself in 
producing the graphs.   

 For the basic graphs, one needs the percentage of 
correct answers in the item (p) and the total score—
either a weighted or unweighted one. Then, p is used 
as an estimate for the probability of correct answers, 
and the score is used as an estimate for the ability (or 
trait) level. The ability levels are obtained by dividing 



Practical Assessment, Research & Evaluation, Vol 27 No 5 Page 6 
Metsämuuronen, Essential of Visual Diagnosis 

 

the score into a reasonable number of ability groups; 
quartiles, quintiles, or deciles, as examples, may serve 
in this division. Figure 2 illustrates two sets of observed 
ICCs with different numbers of ability groups. These 
rough ICCs are composed by dividing the test-takers 
into four to seven groups (quartiles, quintiles, sextiles, 
septiles) according to their performance in the test; 
small sample sizes allow only a small number of groups 
while, obviously, large sample sizes allow more groups. 
In every ability group, the percentage of the correct 
answer is plotted against the ability level.  

 From the viewpoint of item diagnosis, the items in 
Figure 2 follow the basic rule for a well-behaving item: 
the observed ICCs are monotonically increasing 
functions although the item 1 is easier than the item 2; 
in the former, reasonably many test takers know the 
correct answer remarkably more probable than in the 
latter item even in the lowest-performing group. Next 
section discusses some known anomalies from this 
principle. 

Basic anomalies in the observed ICCs to be 
detected 

 The eloquence in the observed ICCs is that the 
curves can be used in rough visual diagnostics of item 
behavior. With a large or large-ish sample size (around 
100–200 respondents or more per item), we can assess 

plausibly how logical the connection between the 
ability level and probability of the correct answer is. If 
the dataset is very small, ICC is not necessarily the best 
option for the graphical item diagnosis. The obvious 
reason is that, if the number of cases is small, the ability 
groups are small and unstable—adding just one test 
taker to the dataset may change the graphs remarkably. 
However, even a small number of test takers may give 
us valuable information of the item behavior. 

 Metsämuuronen (2017, p. 167–172) illustrates six 
anomalies that can be detected by using the ICCs: 
illogical guessing, no discrimination, negative 
discrimination, sleepiness, specific knowledge or 
imputed outliers, and differential item functioning 
(DIF). Some of these patterns are discussed also by 
Linacre and Wright (1994) and Smith (1996). Here, the 
patterns are illustrated by using rough ICCs with 
spreadsheet software (Figure 3).   

 All the patterns seen in Figure 3 show an unwanted 
behavior in the items to some extent. In some cases, 
the reason for the anomaly may be caused by a small 
sample size; with larger sample size, the potential 
challenge may be rectified. If, however, we detect these 
patterns with large or large-ish sample sizes in the 
developmental phase of a test, it would be wise to 
either rewrite the items or plainly discard those from 
the  final  test.  Another  viewpoint  in  evaluating  the 

Figure 2. Observed ICCs based on the score and percentage/proportion of correct answers 
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Figure 3. Basic patterns of anomalous observed  ICCs based on the score and percentage/proportion of correct 
answers 
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possible anomalous pattern is that, always when taking 
samples, the estimate of the probability to give the 
correct answer (estimated by the proportion of correct 
answer) includes random error. This means that the 
estimate is never exact, and the minor deviances from 
the logical or theoretical ICC may be explained by 
random error. Hence, calculating the confidence 
interval (CI) of the estimate at each ability level may 
increase our knowledge in evaluating the possible 
anomaly in ICCs. CI can be plotted to the same graph 
as the observed ICCs. In Figures 3.1 to 3.6, CI is not 
illustrated.  

 Figure 3.1 illustrates the illogical pattern in 
guessing. We see that the probability to guess the 
correct answer in the item is too high—the higher 
achieving test-takers in the ability level 2 give the 
correct answer less probably than those who are in the 
lowest level group. In the case of MCQs, the challenge 
is to construct the distractors in a way that they would 
lure those who do not have enough knowledge to 
select a wrong alternative. If we detect this pattern, 
something in the correct option attracts the lowest-
levelled test takers to select the correct alternative 
instead of the distractors even if they did not have any 
idea of the correct answer. The hint may come from 
the “irrelevant clue”, different length, or phrasing as 
discussed by Mehrens and Lehmann (1991, p. 134 ff.) 
and Metsämuuronen (2017, p. 101). Sometimes, the 
reason may stay unknown although, sometimes—
afterwards—we may notice why the correct answer 
was easily guessed by the test takers belonging to the 
group of lowest-performing respondents. Usually, 
rewriting the distractors (or the correct alternative) may 
enhance the item behavior. Some ideas of distractor 
analysis are given in Section “Basic graphical 
analyses…” with the visualization of the classical item 
analysis.    

 Figure 3.2 illustrates the patterns that the items 
cannot discriminate between the higher-performing 
and lower-performing test takers. From the viewpoint 
of statistical analysis, this pattern would be detected as 
the low value for (any of) the index of item 
discrimination (see options in Section “Connection of 
item difficulty…”). A classical quick-and-dirty rule 
suggests that the items with the item-total correlation 
lower than 0.20 should be considered seriously to be 
discarded (e.g. Metsämuuronen, 2017, p. 150) 
although, obviously, no absolute lowest boundary for 

the Rit (except –1) can be set. However, the negative 
values are anomalies and illogical from the test theory 
viewpoint. From the item discrimination viewpoint, 
the items with very low discrimination are useless, and 
they reduce the test reliability (see the discussion of the 
deflation in reliability in e.g., Metsämuuronen, 2022a, 
2022b, 2022c). Hence, if there are enough items from 
where the final compilation can be selected, it may be 
wise to discard the items with very low discrimination 
power. However, in some cases in an achievement tests 
these items can be very easy ones and serve as 
“warming up” type of items in a longer test. Very easy 
items with low discrimination power also may motivate 
the lower-achieving test takers to try their best in the 
test. Then, keeping these in the final test may make 
sense. 

 Figure 3.3 illustrates the patterns of negative 
discrimination; this is even more anomalous or maybe 
even “pathological” pattern than the low item 
discrimination (see also Figure 4 in Section 
“Connection of item difficulty…”). This pattern 
means that the higher-scoring test takers tend to give 
an incorrect answer while the lower-scoring test takers 
tend to give a correct one. With MCQs the problem is, 
most probably, in the wrong key: instead of the 
alternative A (that we think is the correct answer) the 
alternative C is the correct one. It is good to note that, 
sometimes, the best students may identify the correct 
answer better than the item writer or create a totally 
new solution for a problem that was not included in 
the marking scheme. This also may lead to negative 
item discrimination. If these are not the cases and 
rectifying the incorrect key does not change the 
pattern, these items are wise to be discarded from the 
test.  

 Figure 3.4 illustrates the patterns where the best 
students fail to give the correct answer—or at least 
some of them are behaving differently than what was 
expected. In some cases, just the best test takers find 
out that there is (truly) two correct alternatives or they 
cleverly notice some ambiguity in the wording of the 
item and mess (unintentionally or intentionally) with 
two or more options (or they select two alternatives 
which leads to a technical incorrect answer). In these 
cases, further analysis of the distractors (see Section 
“Graphical analysis of (possible)…”) may reveal a need 
for amending the item. Sometimes, this pattern may be 
caused by “sleepiness” (see Linacre & Wright, 1994): 
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the item (or the test) is too easy for the best test takers 
and some of them select an incorrect option just by 
being lazy, bored, or “sleepy”. If the latter can be ruled 
out, and the reason for the pattern is found to be in the 
technical quality of the item, it makes sense to try to 
amend the alternatives of MCQs or just to omit the 
item.  

 Figure 3.5 illustrates the patterns that Linacre and 
Wright (1994) call “specific knowledge” or “imputed 
outlier”. In some ability group, where we would expect 
lower probability for the correct answer, the 
probability is unexpectedly high because of some 
unknown reason. The reason may be the fact that this 
specific topic has been taught in some specific group 
that is not, however, very good in the overall scoring 
(and, hence, the name “specific knowledge”). The 
same pattern is obtained if imputing the missing values 
by (obviously) too high value in comparison with the 
actual ability level (and, hence, the name “imputed 
outlier”). Logically, this pattern may be also reversed: a 
group with otherwise higher ability level lacks the 
knowledge of this specific information (“specific 
ignorance” may be the name for this phenomenon?). 
This kind of pattern tends to be rectified with larger 
datasets if it is caused by the “specific knowledge”. The 
“imputed outlier” as a pattern is more difficult to 
rectify. 

 Finally, Figure 3.6 illustrates the pattern of 
differential item functioning (DIF). This phenomenon 
is usually detected by using statistical tools. However, 
it can be detected in a less analytical manner by using 
visual methods. Characteristic to DIF is that the 
observed ICCs differ notably between two or more 
populations such as between males and females or 
between language groups. If one population (such as 
girls/females) scores higher than the other 
populations(s) (such as boys/males), it leads, obviously 
and logically, to a pattern where the levels of the curves 
differ between the groups—this is not DIF in the sense 
of illogical item behavior. However, when the forms of 
ICCs differ between these groups, the item behaves 
differently in different populations. In Figure 3.6, it 
seems that, in population 2, the test takers from the 
lowest ability levels guess or know the correct answer 
radically more probably than the test takers in group 1. 
The reason for this may need some further analysis of 
the alternatives in MCQs. The relevant question is why 
the item favors population 2 over the population 1. 

Did we give an irrelevant clue specifically favoring this 
population? If no technical reasons (such as a mistake 
in inputting the data in the deviating populations) for 
this pattern were found, it would be recommendable 
to consider omitting these items. 

 

Basic graphical analyses within the 

classical item analysis approach 

Connection of item difficulty and item 
discrimination 

 Within the classical test theory, there is no such 
tradition of illustrating the item characteristics as we 
can do when assuming the logistic function behind the 
item in Rasch- and IRT models.  We may plot the item 
discrimination with the item difficulty into a traditional 
graph as in Figure 4. Although this kind of illustration 
tells limited information of the item behavior, in some 
cases, it may be enough for the decision of separating 
the better-behaving items from the less-well-behaving 
items.  

 Figure 4 illustrates mainly, in a schematic way, the 
behaviour of items from the item discrimination 
viewpoint (see later real-world examples). The first 
note to make is that the indices of item discrimination 
power based on Pearson product-moment correlation 
coefficient (e.g. Rit and Rir) cannot reach the perfect 
value 1 if the number of categories in the scales of the 
item and the score differ from each other as always is 
the case in practical testing settings (see algebraic 
reasons in, e.g., Metsämuuronen, 2016, 2017, and 
simulation in 2020a, 2021a, 2022a). With binary items, 
the highest value approximates Rit = 0.87, if each test 
taker would get a different score and the sample size is 
large enough (n > 200; see, e.g., Metsämuuronen, 
2020a). The further the difficulty level is from p = 0.5, 
the less is the highest possible value even if the item 
would discriminate the test takers from each other in a 
deterministic manner and we would expect to obtain 
the perfect item discrimination (see simulation in 
Metsämuuronen, 2021a). This phenomenon is 
illustrated as a curved trend line in Figure 4. 
Metsämuuronen (2017, pp. 205–208) discusses 
algebraic reasons why Rir underestimates the 
discrimination power in items even more than Rit. The 
same challenge we face with the classic Kelley’s 
discrimination   index   (DI;   Kelley,   1939;   see  also 
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Figure 4. Connection of item discrimination and percentage/proportion of correct answers 

 

Metsämuuronen, 2020b) discussed later in the article. 
The traditional DI can reach the ultimate value DI = 1 
with the mediocre items but it may give a radical 
underestimation—greater in magnitude than that of 
Rit—with items with extreme difficulty level (0.20 > p 
> 0.80). 

 Second, among others, Metsämuuronen (2020a, 
2020b, 2021a, 2022a; see also Moses, 2017) has studied 
possible alternatives for Rit and Rir. From the 
viewpoint of technical underestimation related to the 
discrepancy of the scales and item difficulty, polychoric 
correlation (RPC; Pearson, 1900, 1913), Goodman–
Kruskal gamma (G; Goodman & Kruskal, 1954), and 
Somers delta (D; Somers, 1962; see the discussion of 
the correct direction in Metsämuuronen, 2020a), as 
examples, differ from the previous ones. The latter 
estimators can reach the ultimate value even with 
extreme patterns either exactly (G and D) or 
approximatively (RPC). From this viewpoint, they are 
superior alternatives for Rit, Rir, and DI, specifically, 
with the dichotomous items; for the polytomous items, 
Metsämuuronen (2021a) suggests using dimension-
corrected G and D instead of G and D. Later, in 
Section “Graphical analysis of (possible)…”, the 
behaviour of RPC, G, and D is illustrated in 
comparison with Rit. 

 Third, in practical terms, the curved trend in Figure 
4 illustrates the fact that if we would use Rit or Rir as 
indicators of item discrimination power and the item is 
of extreme difficulty level, we would expect to obtain 
relatively low item discriminations because these 
estimators cannot even reach high values with items of 
extreme difficulty levels. The classical boundary for an 
acceptable discrimination has been the value Rit = 0.20 
as discussed in Section “Basic anomalies…” above 
with Figure 3 (see also Gulliksen, 1950; Lord et al., 
1968; Metsämuuronen, 2017) although this is not, 
obviously, a strict law. However, below this boundary 
it may be necessary to argue for selecting the item in 
the compilation. If there are many items in the pool 
from where the items can be selected to the 
compilation—for example, because of pretesting 
double number of possible items and being able to 
select only the best ones—there is not much need to 
select these items with the low discriminating power to 
the final test. Sometimes, however, these items may be 
the only ones measuring an important content area; in 
the case, from the content validity viewpoint, we may 
be interested in keeping the relatively lowly 
discriminating item in the test. 

 Fourth, Figure 4 illustrates why the traditional 
guide (e.g., Lord, 1952) makes sense to select items 
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with a medium difficulty level when willing to 
maximize the reliability of the measurement 
instrument. The estimates of the reliability of the score 
are strictly related to the item discrimination (see Lord 
et al., 1968; Metsämuuronen, 2021a, 2022a, 2022b, 
2022c), and it is more likely to find highly 
discriminating items when the item difficulty level is of 
medium one. Nevertheless, in many practical testing 
settings related to learning outcomes, we are willing to 
construct a test by using items with increasing difficulty 
levels. This may lead to select also such very easy or 
very demanding items which, on average, are not the 
best options from the discrimination viewpoint. 

Graphical analysis of (possible) underestimation 
in discrimination power 

 Above, it was noted that Rit and Rir underestimate 
the item discrimination power, and some alternative 
estimators were given such as RPC, G, and D.2 Here, 
two empirical examples are given of this phenomenon 
and how the (possible) underestimation in the 
estimators can be detected visually. 

 First, the estimates by RPC, G, and D need to be 
calculated. If using a spreadsheet software in 
calculations, Zaiontz’s (2021) procedure and tools can 
be used for RPC. G and D are easy to calculate even 
manually (see, e.g., Metsämuuronen, 2017; 2021a, 
2021b, 2022a; Siegel & Castellan, 1988) although, for 
the article, they were calculated by using IBM SPSS (see 
Table 1; see Appendix A for syntaxes when using such 
general software package such as IBM SPSS, SAS or R 
environment). Second, the estimates are plotted in the 
same graph (see Figure 5).  

 The examples come from national level 
assessments of learning outcomes with representative 
samples. The first is based on a dataset related to a 
mathematics test of 30 MCQ items with incremental 
difficulty levels ranging p = 0.913–0.259 (FINEEC, 
2018; n = 4,023) from where 10 items with varying 
difficulty levels are selected for illustration purpose in 
Figure 5.1. Notably, all the correlations indicating the 
item discrimination are high or decent (Rit = 0.369–

 
 

2 Based on simulations (see Metsämuuronen, 2022a), some other good options for Rit and Rit are r-bireg and r-polyreg 
correlation (RREG; Livinstone & Dorans, 2004, Moses, 2017), dimension-corrected G (G2; Metsämuuronen, 2021a), 
dimension-corrected D (D2; Metsämuuronen, 2020b, 2021a), attenuation-corrected Rit (RAC; Metsämuuronen, 2022a), 
and attenuation-corrected eta (EAC; Metsämuuronen, 2022a). 

0.691) because the low-discriminating items were 
omitted in the pre-test phase. The other example 
comes from a more specific, very easy 8-item, 11-point 
subtest as a part of a larger assessment of learning 
outcomes reported by Metsämuuronen and Ukkola 
(2019; n = 7,770) and re-analysed by Metsämuuronen 
(2022b, 2022c). This subtest measured the 
preconditions of understanding the instruction 
language in the main test. It was expected that only 
students with second language background would 
make mistakes in the test. Hence, the difficulty levels 
ranged p = 0.992–0.892 and, of all test takers, 72% 
were given the full marks. Notably though, all the 
item–total correlations are acceptable or high (Rit = 
0.246–0.751) although, in this kind of dataset with 
extremely easy items, Rit tends to underestimate true 
correlation in an obvious manner. The figures for 
Figure 5 are collected in Table 1. 

 Two notes are made. First, the estimates by RPC, 
G, and D are closer to each other than to Rit. This 
seems to indicate that they reflect the same (latent) 
correlation even if they estimate different things: while 
RPC estimates the inferred correlation of two 
unobservable continuous variables by their ordinal 
manifestations, G and D estimate the probability that the 
test takers are in the same order both in an item and a 
score (Metsämuuronen, 2021a), and the latter strictly 
indicate the proportion of logically orders test takers 
after they are ordered by the score (Metsämuuronen, 
2021b). If we assume, as we usually do, that RPC do 
not overestimate the correlation, we conclude that Rit 
underestimates correlation because its values are 
notably lower than those by RPC. 

 Second, as expected, Rit underestimates 
correlation, specifically, with easy and demanding 
difficulty levels. In the example of a normal dataset (n 
= 4,023), the underestimation is 0.349 units of 
correlation at the highest, that is, even if Rit tells that 
the discrimination power is roughly Rit ≈ 0.4 with the 
extreme items, this is a notably too low value; the 
proper values would be around G = D = RPC ≈ 0.7 or 
higher. In the extreme dataset, the differences are even 
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wider: up to 0.65 units of correlation. In the case, the 
outcome does not change though; in both extremes the 
items are suitable for a test. However, in some cases, 
Rit or Rir may claim that the item discrimination is too 
low to be accepted but an alternative estimator may 

indicate opposite. This kind of illustration may give 
more evidence in selecting items to the test: which 
items are poor because Rit or Rir cannot detect the real 
discrimination power and which items, really, are those 
to be omitted. 

 

Table 1. Estimates of item discrimination for Figure 5 

 

Figure 5. Obvious underestimation when using Rit (or Rir) as an index of item discrimination power 
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Graphical analysis of distractors 

 Another kind of graphical tool for the classical item 
analysis relates with the MCQs with distractors. We 
may think the distractor analysis as a supplementary 
analysis for the case that we find something 
problematic in the item behavior such as a low item 
discrimination. Distractor analysis may reveal which of 
the distractors would be worth of amending. Figure 6 
illustrates some basic patterns of both the logical and 
anomalous behavior of the distractors.  

 In each graph the test takers have been divided into 
four ability groups (quartiles) and we calculate the 
proportion of test takers in each alternative in each 
point of quartile, that is, we reach 100% of the test 
takers in each quartile. Figures 6.1 and 6.2 show the 
basic pattern of the distractor in a logically behaving 
MCQ items: the probability for selecting the correct 
alternative increases by the ability level. If the item is 

easy, even the lowest-levelled test takers would know, 
more probably, the correct answer and, parallel, if the 
item is difficult, even the best ones would not give, 
necessarily, the correct answers but, in both cases, the 
higher-scoring test takers tend to select the correct 
alternative more probable than the lower-scoring test 
takers. Two types of illogical patterns are seen in 
Figures 6.3 and 6.4 illustrating the patterns of negative 
item discrimination and no discrimination (cf. the 
illogical patterns in Figures 3.2 and 3.3). 

 To condense, typical for these anomalous or 
illogical cases is that the highest-scoring test takers do not 
find the correct answer. If they tend to select totally wrong 
alternative, it may be wise to consider checking the key. 
If the selection of the alternatives is random—roughly 
the same in all ability groups—it may be wise to check 
whether there is any correct answer at all or whether 
the item is, in some other way, ambiguous or unclear. 

 

Figure 6. Basic patterns of the logical and illogical behavior of distractors  
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Cut-off curve and its possibilities in 

the item diagnosis 

 Metsämuuronen (2020b; see also 2017) have 
introduced a new kind of possibility to visualize the 
item behaviour called cut-off curve (COC). Because 
COC is, most probably, less known as a concept for 
the reader, an elementary introduction to the graphs is 
given here based on Metsämuuronen (2020b). The 
formulae concerning the approach are not handled 
except to the extent to make understandable how the 
values are obtained. If the sample size is large or largish 
(here, n = 200), the graph may look like in Figure 7. 
The interpretation and possibilities of COCs in item 
analysis are discussed in what follows. 

 Originally, the concept of “cut-offs” is connected 
to Kelley’s DI with which the discussion of different 
cut-offs is essential. Namely, unlike most of the 
estimators of item discrimination, DI do not use all the 
cases in the estimation. Instead, only the extreme cases 
of the ordered dataset are used, and the question is, 
how many of the extreme cases should be used: either 
25% of the highest and lowest scoring respondents of 
the ordered dataset (e.g. D’Agostino & Cureton, 1975; 
Mehrens & Lehmann, 1991; Metsämuuronen, 2017) or 
27% (e.g. Kelley, 1939; Ross and Weitzman, 1964; 
Ebel, 1967, Wiersma & Jurs, 1990), or maybe all of the 

cut-offs as proposed by Metsämuuronen (2020b) for 
the generalized DI (GDI).  

 Although COCs in Metsämuuronen (2020b) are 
connected to DI or, factually, in GDI, the graph type is 
not restricted to DI or GDI.  Metsämuuronen (2017, p. 
209) uses the same idea when comparing the efficiency 
of four indices of item discrimination power to detect 
the theoretical Guttman pattern. This theoretical 
pattern is discussed in Section “Guttman pattern…”. 
The following sections discusses the thinking and 
practicalities behind the moves in the curves not only 
in the theoretical Guttman-patterned items but also 
some other theoretical and real-life patterns. In Section 
“Possibilities of COC…”, some examples are given of 
using COCs with the real-world datasets. In what 
follows, the mathematical part of the GDI and COCs 
are kept minimal; an interested reader finds more 
information of that in Metsämuuronen (2020b; 2020c). 

Guttman pattern as an extreme case of item 
behavior 

 Zimmerman, Williams, Zumbo, and Ross (2005) 
highlighted the late Louis Guttman as one of the most 
neglected theorists within the classical test theory and 
classical item analysis. Guttman made contributions to 
reliability theory, factor analysis and scaling theory 
among   other   relevant   areas  of   interest.   One  of 

 

Figure 7. Cut-off curve of a real-life item (n = 200) 
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Guttman’s innovations was the idea of a scalogram 
(Guttman, 1950) based on a data structure that follows 
the so-called Guttman-scalable pattern. Guttman 
scalability (Linacre, 2000) or Guttman ordering 
(Linacre, 1992, Roskam & Jansen, 1992) refers to a 
specific data array where items and respondents 
arranged in the increasing order by the score and the 
item difficulty shows a triangular pattern of 
dichotomous items. Traditionally, the dataset is called 
Guttman-patterned if all the items are patterned with a 
string of 0s followed by a string of 1s when the 
respondents are placed in ascending order by test score 
even if the data array is not triangular (e.g., Linacre & 
Wright, 1994). Here, a single item with the structure 
described above is called Guttman-patterned (GP) 
even though it is handled without a specific connection 
to a strictly Guttman-scalable dataset.  

 The extreme nature of GP items comes from the 
fact that they can discriminate the higher- and lower-
scoring test takers from each other in a deterministic 
manner. Hence, the pattern is called also a 
deterministic pattern (Linacre and Wright, 1994). 
Therefore, there is a fundamental difference between 
the Rasch models and Guttman models although the 
Guttman pattern has seen as the ultimate latent form 
of an item in Rasch modeling (Andrich, 1985; Linacre 
& Wright, 1996; Linacre, 2000; Linacre, Andrich & 

Luo, 2003; van Schuur, 2003): the Rasch models are 
stochastic while the Guttman model is deterministic 
(Curtis, 2004).  

 The deterministic nature of the Guttman-patterned 
items is illustrated in Figure 8 where items discriminate 
perfectly between those who gave the correct answer 
in an achievement test, for example, from those who 
gave the incorrect answer. It may be worth noting the 
connection between the illustrations in Figures 1.3 and 
8: if the item discrimination in the two-parameter IRT 
model would have been an ultimately perfect one, the 
ICC would look like the ones in Figure 8. However, 
IRT models cannot handle this kind of deterministic 
situation.  It may be fair to say that the Guttman 
pattern is the important underlying theoretical 
constructs for an ultimately discriminating item (see 
further discussion in Metsämuuronen, 2020c).  

 Unluckily, the Guttman pattern is essentially a 
theoretical situation as noted by Fisher (1992) and 
Linacre (1992). Usually, in the practical settings, the 
pattern of zeros and ones include random errors: some 
lower-scoring respondents give unexpected correct 
answers or some of the higher-scoring respondents fail 
to give correct answers. For this reason, whenever this 
theoretical pattern of an item is found in a real-world 
data, the phenomenon is not stable: when another 
sample is taken, the pattern may or may not reoccur.  

Figure 8. Hypothetical Guttman-patterned items with the deterministic item discrimination 

 

 



Practical Assessment, Research & Evaluation, Vol 27 No 5 Page 16 
Metsämuuronen, Essential of Visual Diagnosis 

 

Kelley’s DI, Exhaustive splitting, and Cut-off 
Curve 

 Of many classical indices to item discrimination 
(see lists in Cureton, 1966a, 1966b; ETS, 1960; 
Henrysson, 1963; Metsämuuronen 2020a, 2021a, 
2022a; Moses, 2017; Oosterhof, 1976; Wolf, 1967), 
Kelley’s DI shows interesting potential when willing to 
illustrate the item behavior. Unlike Pearson 
correlation, DI can detect the deterministic pattern and, 
hence, it can reach the perfect value DI = 1, and, in the 
binary case, it is more stable as an indicator of item 
discrimination power than Pearson correlation (see 
discussion and examples in Metsämuuronen, 2020b). 
Although COCs are not restricted to binary case, here, 
only the binary case is discussed to simplify the 
notation. Hence, the simplified, generalized form of 
DI, allowing all cut-offs, can be expressed as  

 
1
2

U L

a a
a

a

R R
GDI

T

−
=

   (4) 

(Metsämuuronen, 2020b),  where a refers to the 
number (or proportion or percent) of extreme cases in 

the half of the cut-off of the ordered dataset, 𝑅𝑎
𝑈

 and 

𝑅𝑎
𝐿

 refer to the number of correct answers in the upper 
(U) and lower (L) halves of the cut-off a, and Ta refers 
to total number of cases in the halves together. Then, 
for example, if four extreme cases are selected from 
both extremes, in the binary case, a = 4 and T = 8.  
Originally, the cut-off a in Eq. (4) refers to the 25% or 
27% of the extreme respondents of the ordered data as 
discussed above. Following the notation in (4), these 
cut-offs are special cases of GDI25% and GDI27%. 
Equation (4) embeds the idea that there can be different 
cut-offs for estimating the item discrimination. In what 
follows with the procedure of exhaustive splitting 
(PES), all the possible cut-offs are in use. 

 Let us use a difficult, hypothetical GP item with 24 
respondents and four correct answers as an example of 
the concept of cut-offs. Ordered from the lowest to 
the highest test taker based on the (unseen) total score, 
the string is as follows: 000000000000000000001111. 
The item can be divided into symmetric cut-offs of 
extreme cases in many ways. Ultimately, only the most 
extreme test takers are considered, and we get the 
string 0│1 where the bar just shows the middle point 
dividing the test takers in to the lower and upper part. 
Similarly, if four extreme cases are considered, the 

extreme string of 1s and 0s is 0000│1111. In the case, 
the nearest cut-off to the traditional 25% or 27% is the 
one with 6 test takers from both extremes: 
000000│001111. When all the cases are used, 50% of 
the cases are in each half: 
000000000000│000000001111.  

 For the latter parts of the article, we use all the 
possible symmetric cut-offs. The PES routine is as 
follows (Metsämuuronen, 2020b): 1) Take the 
ultimately highest and lowest case from the sorted data 
and calculate the indices of interest and save the result; 
2) Take the two highest and the two lowest cases from 
the sorted data and calculate the value for item 
discrimination (as in 1) and save the results; 3) Repeat 
phase 2 by increasing the number of cases, gradually 
building up to ½N =50% of the cases at both extremes; 
and 4) Make a table or graph of the results. This 
procedure is not bound to any specific statistic. 
However, the original Kelley’s routine is employed 
here for item discrimination because it appears to be 
interesting from the item analysis viewpoint.  

 Let us employ PES with Eq. (4) for the previous 
item of interest.  The statistics for the calculation are 
collected in Table 2. Notably, for the first four extreme 
cut-offs, GDI4% to GDI17%, the item discrimination is 
perfect indicating that, in these splits, the item can 
discriminate perfectly between the lowest and the 
highest respondent. From the fifth cut-off onward, the 
estimate for item discrimination drops dramatically 
even though the item remains deterministically 
discriminating. Finally, when using the whole dataset, 
GDI50% = (4–0)/12 = 0.33. 

 Let us prepare a graph of GDI as the function of 
the percentage of respondents in the lower or upper 
half of the ordered data, an obvious though interesting 
practical phenomenon is found: COC detects the latent 
item difficulty level (πs = p = 0.17) exactly at the 
threshold point of the curve in the cut of a = s (Figure 
9). More, at the threshold point the item discrimination 
is perfect (GDI = 1) as should be because of the 
deterministic nature of the item.  

 It is worth noting the symmetricity embedded in 
the approach of PES and COC when it comes to GP 
items with extreme difficulty levels. Namely, the COCs 
of the patterns 00000000000│00000001111 with the 
proportion of correct answers p = 4/24 = 0.167 and 
00001111111│11111111111 with p = 20/24 = 0.833 
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Table 2. All symmetric cut-offs and values for the item discrimination of an item with the pattern 
000000000000000000001111 

 

 

would be identical. The essential connection between 
these patterns is the identical number of the extreme 
observations producing the perfect item 
discrimination. Hence, in what follows, the subscript s 
refers to the shorter of the extreme strings of 0s and 1s; in the 
first case, the sorter of the strings is 1111 and, in the 
latter case, the sorter of the strings is 0000—in both 
cases 4/24 = 0.167. Hence, when the item is difficult 
(p < 0.50), the latent item difficulty is seen strictly in 
the graph (πs = p = 0.167). When p > 0.5, we need a 
simple transformation of the scale to express the πs in 
the p-metric: p = 1 – πs = 1 – 0.167 = 0.833.  

 It may be good to note another Guttman pattern 
that makes the negative values of item discrimination 
understandable (see the patterns in Figures 3.3 and 6.3 
above). Let’s assume a perfectly opposite GP item than 
the previous example. Out of 24 respondents, the four 
lowest ones give the correct answer and the rest give an 
incorrect answer. This ultimately anomalous string is as 
follows: (111100000000000000000000). When 
performing the PES for the item, GDI gives negative 
values symmetrically in comparison with Figure 9. 
However, in both cases, the threshold point of the 
curve is the same (see Figure 10).  

Non-Guttman-patterned items and COC 

 Let us produce some stochastic error to the 
Guttman pattern. In what follows, in general, this type 
of real-life item is called a non-Guttman-patterned 

(NGP) item and two types of NGP items are specified: 
a common non-Guttman-patterned item with a GP 
string in the extreme values called later NGP and a 
specific type of NGP without the GP string called later 
pseudo-Guttman patterned (PGP) item; the latter is 
discussed in the next section.  

 An example of NGP item with minor stochastic 
error is as follows: (000000000000000000101111). 
Keeping in mind that the minimum string of Guttman 
type is of form (0│1), that is, the highest in the rank 
obtains the correct answer and the lowest case gives an 
incorrect answer, it is worth noting that the reduced 
data indicated by the string s (0000│1111) follows the 
Guttman pattern. Using the PES, the values for GDI 
are as in Table 3 and the corresponding COC is in 
Figure 11. The underlying theoretical curves of GP 
items of p = 0.17 and p = 0.21 are shown in the graph 
as dashed lines. 

 It is worth noting that the observed COC (bold 
line) follows exactly the COCs of the underlying 
theoretical GP items. The classical item difficulty of the 
NGP item in the example is p = 5/24 = 0.21. What is 
notable in Figure 11 is that, in comparison with Figure 
9 with a strict GP item, the estimator p for item 
difficulty seems to be biased: the latent item difficulty 
π seems to be somewhere between πs = 0.17 and πs+1 = 
0.21 rather than uniquely p = 0.21. However, the exact 
value is not known. This leads to an interesting 
conclusion: the proportion of correct answers p seems to be 
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biased as an estimator for item difficulty when the pattern deviates 
from the Guttman-pattern (see further discussion in 
Metsämuuronen, 2020c). This matter is discussed in 
Section “Possibilities of COC…”. 

 As an example of a nontrivial NGP item, let’s 
assume an item of 24 respondents ordered by the test 
score from the lowest to the highest with the following 
structure: 

(000100101011│111111001111). 

Statistics for constructing a COC are calculated 
(Table 4) and  COC  is  shown  in  Figure 12.  The light  

curves in the graph are the COCs of the selected 
underlying theoretical GP items of p = 3/24, p = 4/24, 
and p = 5/24. 

 In Figure 12, the first threshold point of the COC 
is denoted by πs = 3/24 =0.125 (or, factually, 21/24 = 
0.875 because p > 0.5). Because of these first Guttman-
patterned cut-offs, the COC in Figure 12 starts the 
same way as in Figures 9 and 11 with DI = 1 for three 
first cut-offs (cf. later Figure 13 of PGP items). Again, 
it is worth noting that the observed COC of NGP 
follows exactly the underlying GP items. Later, COC 
in Figure 12 is further discussed. 

Figure 9. Cut-off curve of a hypothetical GP item 

 

Figure 10. Cut-off curve for positive and negative Guttman pattern 
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Table 3. All symmetric cut-offs and values for the item discrimination of an NGP item with the pattern 
000000000000000000101111 

 

Figure 11. Cut-off curve of a NGP item with small stochastic error 

 

 

Pseudo-Guttman-patterned item  

 For the sake of completeness, also the PGP is 
discussed. With the real-world datasets, it may happen 
that the ultimately extreme respondents give the same 
value and thus the first pattern is not of Guttman type. 
One such extreme case is the pattern (0│0) when both 
the lowest and highest respondents give an incorrect 
answer—this may occur more likely with difficult 
items. Another extreme case is the pattern (1│1) when 

both the lowest and highest respondents give a correct 
answer—this may occur more likely with easy items. In 
comparison with the previous cases, there is no specific 
string s which would produce the perfect item 
discrimination though the pattern may otherwise be 
GP like. Hence, the name ‘pseudo-Guttman-
patterned’.  

 Let’s assume two PGP items with ordered 
sequences  comparable  to  Figures  9,  11,  and  12  as 
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Table 4. All symmetric cut-offs and values for the item discrimination of an NGP item with the pattern 
000100101011111111001111 

 

Figure 12. Cut-off curve for a non-trivial NGP item of N=24 

 

 

follows: (1000000000│0000000111) and 
(0000000000│0000111100). The first pattern 
actualizes when the lowest-ranked case either guesses 
or unexpectedly knows the correct answer. The latter 
pattern indicates that two highest-ranked cases were 
unexpectedly either sleepy, careless, or ignorant. In 
both examples, p = 0.20. Both the patterns lead to a 
situation that the item discrimination in the ultimate 
cut-off(s) of extreme cases equals DI = 0 (Figure 13). 

The underlying theoretical curves of GP items of p = 
1/20 = 0.05, p =2/20 = 0.10, p = 3/20 = 0.15, and p 
= 4/20 = 0.20 are shown in the graph as lighter lines. 

 Typical to both the PGP and NGP items is that, 
first, in the cut-offs after the pattern breaking string, 
COCs follow some of the underlying Guttman 
patterns and, second, there is not a unique threshold 
point and thus, there is no unambiguous latent item 
difficulty as is with GP items. 



Practical Assessment, Research & Evaluation, Vol 27 No 5 Page 21 
Metsämuuronen, Essential of Visual Diagnosis 

 

Figure 13. Cut-off curves for PGP items of n=20 

 

 

A note of the moves in the COC  

 In the dichotomous dataset, at every cut-off 
following a previous one (a + 1), COC can have only 
one of three possible options because the value of 
GDIa+1 can have only one of the three fixed options: 

( )1 1 ( 1)U L

a a aGDI R R a++ = − +
, 

( )1 0 ( 1)U L

a a aGDI R R a++ = − +
,  

or  

( )1 1 ( 1)U L

a a aGDI R R a++ = − −
 

(see in-depth in Metsämuuronen, 2020b). The value 
+1, 0, or –1 is caused by the difference (D) between 
the (a + 1)th test taker in the upper and lower half of 

the cut-off. The value 𝐷𝑎+1 = (1 − 0) = +1 refers to 
the case that the new test takers in the upper half gives 
a correct answer but the corresponding new test taker 
in the lower half gives an incorrect answer and this 

results the value  𝐷𝑎+1 = +1. Parallel, the value will be 

resulted 𝐷𝑎+1 = 0 when both test takers give either a 
correct answer (1 – 1) or an incorrect answer (0 – 0). 

The value will be 𝐷𝑎+1 = −1, when the (higher 
achieving) test taker in the upper half gives an incorrect 
answer but the (lower achieving) test taker in the lower 
half gives the correct answer (0 – 1).  

 For the illustrative purposes of the moves in the 
COCs, a simple item is considered. Let us assume a 
real-life NGP item with ten observations with the 
ordered string 0010001111. The consequences of the 

results obtained from 𝐷𝑎+1 are illustrated in Figure 14. 

If the result had been 𝐷𝑎+1 = +1, the next step in the 
COC would have been on the next underlying curve of 
a Guttman-patterned item, that is, the path would have 
moved forward to the next underlying curve. If the 

result had been 𝐷𝑎+1 = 0, the next step will be on the 
same underlying GP curve as the previous one (no 

change in the path). If the result had been 𝐷𝑖+1 = −1, 
the path would have led to one step lower in the previous 
underlying GP curve. Hence, by using the approach of 
COC we can detect the illogical patterns in the dataset 
easily. In Section “Possibilities of COC…” in Figure 
15, we detect some of these kinds of moves in the 
COCs of the real-life items. 

Possibilities of COC with real-life datasets 

 The examples above were based on rather small 
datasets; it is easy to illustrate the graphs when the 
number of cases is small. However, the PES and COCs 
are not restricted to a specific sample size. As an 
example of a larger dataset, a real-world random 
sample of 200 test-takers is used as a basis for the 
illustration (see Metsämuuronen, 2020b). COCs can be  
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Figure 14. An example showing options for the next step in the COC 

 

 

used  in  detecting  illogical  and  anomalous  patterns, 
stability of the estimates of item discrimination, latent 
item difficulty, and possible anomalous guessing. 

Detecting illogical or anomalous patterns in 
the dataset by using COC. From the viewpoint of 
PES, the anomalous patterns are the ones where the 
COC moves to the previous Guttman-patterned latent 
curve (see Figure 15). Another non-obvious note of 
Figure 15 is that, when the proportion of the test takers 
in the split gets higher and close to 50%, the COCs 
tends to follow the same Guttman-patterned 
underlying curve. This is caused by the fact that the 
probability to find test takers with approximately the 
same ability level is high at the middle of the ordered 
dataset; the matter is formalized in Metsämuuronen 
(2020b).  

Detecting plausibility and stability of the 
value for GDI. We may reasonably ask, how stable 
and plausible is our estimation of item discrimination 
power if it is based on only one point estimate? If we 
would obtain estimates in cut-offs close to each other 
such as GDI23% = 0.55, GDI25% = 0.50, and, GDI27% = 
0.47, which of those would be the most credible 
estimate and why? COC (and related tabled values) 
could be used in assessing the variance for the point 
estimate and that could be used in calculating a 
confidence interval of the estimate.  

 Figure 15 illustrates the stability of the estimate of 
a = 27%. In the example, with the difficult item (p = 
0.225), the estimate for IDP is GDI27% = 0.35. Just by 
using the graphical possibilities and intuitional 
heuristics, we may conclude that the value seems quite 
stable between the cut-offs 10% to 30% ranging from 
0.32 to 0.40. By using the values in COC, specifically, 
if those are tabled, it could be easy to compute the 
average value and variance of the estimate and the 
confidence intervals (see techniques in 
Metsämuuronen, 2021c). The other item in Figure 16, 
a very easy one (p = 0.965), is less discriminative 
(GDI27% = 0.15) and, more crucially, the value ranges 
from 0.13 to 0.30 between the cut-offs 10% to 30% 
showing two times wider range in comparison with the 
difficult item (p = 0.225). 

 Detecting latent item difficulty and item 
discrimination simultaneously by COC. One of the 
advances of IRT modelling over the classical item 
analysis is the possibility to estimate item parameters 
simultaneously (see Section “Item characteristic curve” 
above). The approach of PES and COC gives 
possibility to simultaneously estimate two main item 
parameters, item difficulty and item discrimination 
within the classical test theory approach. The real-life 
item on Figure 12 is reinterpreted and reanalyzed here 



Practical Assessment, Research & Evaluation, Vol 27 No 5 Page 23 
Metsämuuronen, Essential of Visual Diagnosis 

 

Figure 15. Cut-off curves for two real life items with non-Guttman-pattern (n = 200) 

 

Figure 16. Stability of the estimate of two real life items with non-Guttman-pattern (n = 200) 

 

  

from the item difficulty and item discrimination 
viewpoint keeping in mind  the  note  related  to  Figure 
11: The observed proportion of correct answers p 
seems to be biased as an estimator for item difficulty 
when the pattern deviates from the Guttman-pattern. 
The item of 24 respondents ordered by the test score 
from the lowest to the highest with the following 
structure is (000100101011│111111001111). Out of  

24 test takers, 15 gave the correct answer and hence, 
the observed classical item difficulty is p = 15/24 = 
0.625. The task is to find the most credible estimate for 

the latent item difficulty . 

 From the visual point of view, in Figure 17, there 
seems to be three options for the latent difficulty level: 
πs = 1 – 0.12= 0.88, πs+1 = 1 – 0.17 = 0.83, and πs+2 = 
1 – 0.21 = 0.79 in p metrics. A reasonable 
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Figure 17. COC, item difficulty, and item discrimination power for an NGP item of n=24 

 

 

approximation of the latent difficulty level of the item 
can be obtained by weighting the options by the 
frequency (see options in Metsämuuronen, 2020c). 
One relevant estimate for the latent difficulty level 
based on the cut-offs after the specific cut-off s could 
be  

( )1 2
ˆ 5 2 3 10s s s   + +=  +  + 

( )5 0.88 2 0.83 3 0.79 10=  +  + 
= 0.838. 

 Simulation by Metsämuuronen (2020c) with real-
world datasets suggests, surprisingly, that somewhat 
better approximation from the bias viewpoint could be 
obtained if using all cut-offs in the estimation. In that 
case, the estimate for the latent difficulty would be  

( )2 1 1 2
ˆ 5 2 3 12s s s s s     − − + += + +  +  + 

( )0.96 0.92 5 0.88 2 0.83 3 0.79 12= + +  +  + 
 

= 0.858.  

 Difference between the estimates is not notable. 
However, it is noteworthy that the difference between 
the observed item difficulty (p = 0.63) and the latent 

one ( ̂ =0.838–0.858) tells us how much the item 
deviates from the Guttman pattern.  

 When the item difficulty is estimated, the item 
discrimination power can be estimated 
straightforwardly by using the COC (or related tabled 

figures). The classical estimate for the item 
discrimination by using DI and the cut-off of the 25% 
cut-off (the cut-off of 27% cannot be used) gives us 
GDI25% = 0.50. More credible options could be found 
when using the estimators of the (latent) item difficult 
above. This would lead to the same logic as is used in 
the Rasch and IRT modeling (see Figure 1.3). In the 

case, the exact cut-off for the estimate 𝜋̂ = 0.838 is not 
found but a very close is found from the cutoff a = 

0.167 leading to 𝜋̂ = 0.833. At this cut-off, the item 
discrimination is GDI17% = 0.75. Third option 
suggested by all cut-offs leads us to intrapolate the item 
discrimination in-between the cut-offs a = 0.17 and a 
= 0.13. From the graph, a good approximation could 
be around GDI17% = 0.85. The estimations of the item 
discrimination vary between 0.50–0.85; in all cases, the 
item discriminates well the test takers from each other.  

 Detecting possible anomalous guessing by 

COC. The illogical pairs resulting 𝐷𝑖 = −1 in the 
extreme cut-offs of difficult items indicates the 
possible anomalous cases with guessing patterns. The 
boundary for “extreme” is debatable; here, the cut-off 
a = 0.20 is used as an example in Figure 18. Notably, 
the illogical pairs in the middle range of ability or with 
easy item may be taken as random errors necessary for 
the statistical analysis.  
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Figure 18. Illogical or anomalous moves in COC possibly related to guessing 

 

 

 Let us use Figure 16 as an example of detecting 
possible pattern of high guessing behavior in an item. 
One suspicious pair is detected in a difficult item (p 
=0.225); this do not indicate notable anomalous 
guessing in general. Another pattern is illustrated by 
adding a new real-life item (p = 0.655) to the graph. 
This illustrates how the COC detects the extreme 
illogical guessing by the lowest-performing test taker at 

the lower end of the dataset that causes 𝐷𝑖 = 0, that is, 
both the ultimately lowest- and highest performing test 
takers gave the correct answer. The latter leads to 
pattern of PGP discussed with Figure 13 above.  

 

Concluding remarks 

 Within the text it has been seen that the visual 
diagnostic can be done several ways including Rasch 
modeling and IRT approach, classical test theory as 
well as by using the cut-off curves. The classical 
approaches have already established their value and 
usefulness in the visual item analysis. Adding the PES 
and COCs approach as a new tool the toolbox may be 
worth considering for the following reasons:  

1. Traditionally, the simultaneous estimation 
of the item parameters has been possible 
only within the Rasch modeling. PES with 
GDI allows the simultaneous estimation of 
both latent item parameters, item difficulty 

and item discrimination, within the 
classical test theory.  

2. The classical indicator for the item 
difficulty p seems to be a biased estimator 
for the latent ability specifically when the 
item deviates from the pure Guttman 
pattern. The PES approach gives 
possibilities to detect these impurities in 
the datasets. PES and the related statistics 
can be used in evaluating how much error 
there are in the observed data structure. 

3. In some cases, the classical indicators for 
item discrimination may doom an item to 
be undiscriminating. Especially in the case 
of extremely difficult or easy items the 
classical indicators as well as IRT models 
may fail to reach the very essence of GP 
items’ deterministic discrimination. The 
PES and the resulting graphical 
applications may increase our knowledge 
of the item by providing information on 
whether an item doomed to be 
undiscriminating by the classical indices 
can in fact discriminate between 
respondents. It can then be used as 
additional information when employing 
classical or modern methods in item 
analysis.  
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4. The procedure for detecting item 
discrimination with a nonparametric index 
can be applied in the extreme situations of 
ultimate discrimination where probabilistic 
approaches yield indefinite values or are 
not defined.  

5. PES makes it possible to detect and analyze 
the anomalous, illogical, or even 
“pathological” cases on the data structure. 
The undesirable and unexpected possibility 
of having an incorrect answer among 
higher respondents while having a correct 
answer among lower respondents can 
easily be detected using the approach.  

6. In many cases, IRT models need large or 
moderate sample sizes for the sample free 
estimation of item parameters. PES is not 
restricted to any sample size. However, in 
both cases, larger sample size allows more 
stable estimates. 

7. To understand the technology and theory 
of Rasch- and IRT models, we usually 
require advanced knowledge of 
mathematic and statistic. Although there 
are a few new symbols, subscripts and 
superscripts in the text, the logic of the 
PES is simple, and the approach uses 
concepts, symbols and mathematical 
procedures that are mostly well-known. 
The procedures described here could 
perhaps be easy to apply without even basic 
knowledge of more advanced procedures 
such as Rasch- or IRT modeling. 

8. Rasch- and IRT modeling usually requires 
special computer software. PES is easy to 
apply in real world contexts where, for 
example, teachers assess their own classes 
using a small-scale test by using common 
spread sheet software.  

 All in all, the graphical and visual analysis of items 
are, at the side of analytical and statistical analysis, an 
integral part of item diagnosis and test construction. 
Human eyes are quick in detecting anomalous patterns 
from the graphs when trained to do so. Hence, it is 
possible to sieve quite a lot of crossing, completing, 
and cumulating information of an item behavior just 
by using simple graphs. Screening the items visually 

makes it also easy to explain to non-technical experts, 
for example, why some specific item should not be 
selected to the final test. 
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Appendix A. Syntaxes for calculating Rit, RPC, G and D by using general software packages 
 

Rit 
In the article, Rit = item–total correlations = Pearson product-moment correlations (PMC) were calculated manually 
with a common spreadsheet software by syntax =CORRELATION(matrix1;matrix2). In IBM SPSS, the syntax for 
PMC is CORRELATIONS /VARIABLES=item score MISSING=PAIRWISE. In SAS, the command PROC 
CORR provides PMC.  In R, PMC can be calculated by cor(x, y, method = c("pearson")) (see 
http://www.sthda.com/english/wiki/correlation-test-between-two-variables-in-r).  
 
RPC 
In the article, RPCs between items and a score variable were calculated manually by using Zaiontz’s (2021) procedure 
of Martinson and Hamdan (1972) two-step estimator. In IBM SPSS, the syntax for RPC is not available although 
some macros are (e.g., Lorenzo-Seva & Ferrando, 2015). In SAS, the command PROC CORR provides RPC.  With 
R, RPC can be calculated by CorPolychor(x, y, ML = FALSE, control = list(), std.err = FALSE, maxcor=.9999)## S3 
method for class 'CorPolychor' print(x, digits = max(3, getOption("digits") - 3), ...) (see, 
https://rdrr.io/cran/DescTools/man/CorPolychor.html). 
 
G  
In the article, estimates by G between items and the score were calculated by IBM SPSS. In IBM SPSS, the syntax for 
G is CROSSTABS /TABLES=item BY Score /STATISTICS=GAMMA. In SAS, the command PROC FREQ 
provides G by specifying the TEST statement by GAMMA, SMDCR options.  With R, G is calculated by 
GoodmanKruskalGamma(x, y = NULL, conf.level = NA, ...) (see, https://rdrr.io/cran/DescTools/man/).  
 
D  
In the article, estimates by D between items and the score were calculated by IBM SPSS. In IBM SPSS, the syntax for 
D is CROSSTABS /TABLES=item BY Score /STATISTICS=D. In SAS, the command PROC FREQ provides D 
by specifying the TEST statement by D, SMDCR options.  with R, D can be calculated by SomersDelta(x, y = NULL, 
direction = c("row", "column"), conf.level = NA, ...) (see, https://rdrr.io/cran/DescTools/man/). The direction “score 
dependent” is used (see Metsämuuronen, 2020a). 
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