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Practical t-test Power Analysis with R 
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Power analysis based on the analytical t-test is an important aspect of a research study to determine 
the sample size required to detect the effect for the comparison of two means. The current paper 
presents a reader-friendly procedure for carrying out the t-test power analysis using the various R 
add-on packages. While there is a growing of R users in the academic that uses R as the base for 
carrying out research, there is a lack of reference that discusses both frequentist and Bayesian 
approaches and point out their distinct features for t-test power analysis. The practical aspects of the 
consequences of unequal variances and sample sizes are often neglected and this paper discusses and 
illustrates using the graphical power curve. A written R function and several programs are used to 
illustrate the usefulness of choosing an appropriate sample size under the frequentist approach. The 
Bayes factor is introduced to show its expediency to generate the required sample size under the 
Bayesian approach. Researchers and practitioners with intervention research using the t-test to carry 
out hypothesis testing will find this paper a commendable power analysis reference to design their 
project. 
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Introduction 
 Power analysis is often referred to as the process 
of determining the sample size for a study (Connelly, 
2008). Selecting an appropriate sample size is a crucial 
step in designing a successful study, for instance, for 
an intervention study that requires comparing the 
difference in two means to examine the magnitude of 
the effect where the main objective is to compare the 
pre-and post-test mean. Two-group comparison has 
been and is always at the heart of many researchers. 
The two-sample t-test is arguably the most commonly 
used statistical test in research for carrying out the 
comparison of two groups, two occasions, two 
cohorts, or two-time points to examine carry-over, 
period, and cohort effect. Nuijten et al. (2016) 
reported the meta-analysis results after examining 
258,105 p-values of the psychology journals between 
1985 and 2013, out of which 26% belonged to a t-
statistic. The way t-test power analysis is carried out 
becomes crucial for a study to determine the 

appropriate sample size. A study to compare the 
group of two means that provides insufficient sample 
sizes may not have sufficient statistical power to 
detect meaningful effects and produce unreliable 
results to answer the research question of whether the 
result of the intervention is a “true” one. On the 
other hand, a study with an excessive sample size 
wastes resources. Choosing the “right” sample size 
increases the chance of detecting an effect, and at the 
same time ensures that the study is cost-effective 
(Carneiro, 2003; Legg & Nagy, 2006). Therefore, it is 
a good practice to perform a t-test power analysis as 
earlier as during the study design stage.  

 Power analysis for the t-test is not a 
straightforward task simply using a formula stated in 
the standard textbook to calculate the required sample 
sizes for the two groups under study (e.g. Desu & 
Raghavarao,1990) as many factors could affect the 
results of choosing the appropriate sample size. Some 
factors are more sensitive for one study and lesser for 
another. While sample size calculation is usually 
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carried out using software, software that could carry 
out graphing and at the same time provide the 
functions to vary the relevant factors to examining 
sensitivity analysis is always preferred. While there is 
an exponential growth of R users (Datanami, 2020; 
Stack Overflow Blog, 2017; ) using this freeware R 
package with the development of the R add-on 
packages that perform power analysis (Champel, 
2020; Dong & Maynrd, 2013; Fu, 2021; Kohl, 2020; 
Shen, 2022; Zhong & Mai,2021) and providing the 
graphical features (Sarkar, 2008; Wickham, 2016), this 
software turns out to be an ideal one.  

 The main focus of the paper is to call attention to 
the practical guidelines for carrying out power analysis 
for the analytical t-test using the various add-on R 
software. The t-test assesses the statistical significance 
of a specific value or the difference between two 
independent population means or the difference 
between means of matched pairs. From the 
frequentist viewpoint, the technical definition of 
power is that it is the probability of detecting a "true" 
effect when it exists.  Put another way, the power of a 
hypothesis test is defined as the probability that the t-
test will reject the null hypothesis of equality of two 
means, assuming that the null hypothesis is false. That 
is, if an effect is real, what is the probability that 
analysis will judge that the effect is statistically 
significant. Two main approaches to attaining a 
required sample size, the frequentist, and the Bayesian 
approach are discussed to determine whether there is 
an effect when comparing two means. 

 

Frequentist Approach 

 Classical methods for sample size determination 
of the t-test when testing hypotheses are typically 
related to the use of the power function. The goal is 
to determine the minimal size of a sample such that, 
for a fixed Type I error probability, the chance of 
correctly rejecting the null hypothesis is sufficiently 
large. From the pure statistical requirements and 
qualifications, the traditional frequentist method of 
estimating sample sizes require the specification of 
the following four quantities (Livingston & Cassidy, 
2005): 

(1) Guess or Predict Effect Size  

 Knowledge about effect size is one crucial piece 
of information to carry out power analysis. It is a 

quantitative measure of the magnitude of the study 

effect. The standardized effect size Cohen’s d is 𝛿 𝜎⁄ , 

where 𝛿 = |𝜇 − 𝜇0| is the treatment difference and 𝛿 
is the standard deviation. When the effect size is 
unknown, the description of the magnitude of the 
Cohen’s d effect size (Cohen, 1988) to quantify the 
level of effect sizes into the small, medium, and large 
is often used to set the range of the effect size (Refer 
to Appendix E for the range of Cohen’s effect size). 

(2) Tolerance Type I Error / Alpha (α) / Significance 
level  

 Significance level (α) refers to the probability of 
falsely rejecting the null hypothesis even though it is 
true. That is the probability of a Type I error (false 
positive). The lower the significance level, the more 
likely it is to avoid a false positive and the more 
samples needed. The standard setting for α is 0.05. 

(3) Desired Power (1-β)  

 Power is the probability of correctly rejecting the 
null hypothesis if it is false. That is the probability of 
detecting a true difference when it exists. Power = 1 - 
β, where β is the probability of a Type II error (false 
negative). The higher the power, the more likely it is 
to detect an effect if it is present, and larger sample 
size is needed. The standard power setting is normally 
set to 0.80.  

(4) One-Sided or Two-Sided Test 

 For null hypothesis 𝐻0: 𝜇 = 𝜇0 and the 

alternative hypothesis 𝐻1: 𝜇 ≠ 𝜇0,  it is a two-sided 
test. When the null hypotheses become either 

𝐻0: 𝜇 < 𝜇0 or 𝐻0: 𝜇 > 𝜇0, it is a one-sided test. 
Whether using one-sided or two-sided depending on 
the research concern.  

Power Analysis of Single Sample – t-test 

 Suppose an education researcher is interested in 
examining whether using a pedagogical approach 
improves mathematical ability to attain an ability level 

with an overall mean of 𝜇0. The study would like to 
establish whether there is enough power to detect this 

attained level by setting 𝐻0: 𝜇 = 𝜇0 and the 

alternative hypothesis 𝐻1: 𝜇 ≠ 𝜇0. For one-sided 

testing, the null hypotheses become either 𝐻0: 𝜇 < 𝜇0 

or 𝐻0: 𝜇 > 𝜇0. To determine the necessary sample 
size for the hypothesis, the researcher has to specify 

the maximum acceptable risk of rejecting 𝐻0when it is 
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true, 𝛼, as well as the maximum acceptable risk of 

failing to reject 𝐻0 when it is false, 𝛽 and the effect 
size, d. 

 There are at least four R packages to carry out the 
power analysis using the frequentist approach. The 
function power.t.test in R base (R Core Team,  2021), 
the function pwr.t.test from the package pwr 
(Champely, 2020), the function wp.t from the package 
WebPower (Zhang & Mai, 2021; Zhang & Yuan, 
2018) and the function pwr.welch.t.test from the 
MKpower package (Kohl, 2020). For illustration 
purposes, this paper concentrates on using the 
function pwr.t.test for one-sample and two-sample t-
test, and function pwr.welch.t.test for Welch’s t-test, 
the appendices give the syntaxes and outputs for 
other functions.  

 The function pwr.t.test consists of 6 arguments. 
The argument n represents the sample size, the 
argument d represents the Cohen’s d effect size, the  

argument sig.level and the argument power specifies 

the type I error probability (𝛼) and one minus II 
error probability (i.e. power) respectively. The type 
argument stipulates whether it is a one-sample or two-
sample t-test and the argument alternative specifies 
whether it is a "two.sided" (default), "greater" or 
"less" one-sided test.  

 The following three examples generate the values 
of power for one-sample hypothesis testing for two-
sided and one-sided tests. Cohen’s d is specified as 0.2 
(d=0.2), the significant level is 0.05 (sig.level=0.05) 
and the sample size is 60 (n=60).  For a two-sided t-
test, the argument alternative is specified as “two-
sided”, for one-sided, the arguments are specified as 
either “greater” or “less”. While there are six basic 
arguments for the pwr.t.test function, the omitted 
argument power automatically calculate the value of 
the power for the specified settings. The values of 
power or the two-sided, one-sided greater, and less 
are 0.33, 0.45, and 0.0007 respectively.

 
library(pwr) 

pwr.t.test(d           = 0.2, 

           n           = 60, 

           sig.level   = 0.05, 

           type        = "one.sample", 

           alternative = "two.sided") 

 

pwr.t.test(d           = 0.2, 

           n           = 60, 

           sig.level   = 0.05, 

           type        = "one.sample", 

           alternative = "greater") 

 

pwr.t.test(d           = 0.2, 

           n           = 60, 

           sig.level   = 0.05, 

           type        = "one.sample", 

           alternative = "less") 
 

 

Power Analysis Interpretation – Power Curve 
 The above section generates three power analysis 
outcomes using the pwr.t.test function. This 
procedure can turn into a tedious process if the aim is 
to examine a series of power analysis outcomes by 
varying a factor, say the effect size, to examine the 
changes in the value of power. Most often, the power 
curve is a good choice to examine the changes in 
effect size and sample size that impact the power of a 
study. While the power curve is a useful line plot 
graphical representation to assess and determine an 
appropriate sample size or the power for a study, it is 

not readily available for the pwr package. As such, an 
R function named “PowerCurve.OneSample.FixedN” 
is written to graph the power curve for the one-
sample t-test. This function uses three R packages, 
pwr, ggplot2, and ggrepel to produce an attractive 
colored power curve. The syntax of this function is 
listed in Appendix A, A1. The default setting of effect 
size for this function varies from 0.1 to 0.9 with an 
increment of 0.1. The function pwr::pwr.t.test 
calculates the power. The various geom functions 
from the ggplot2 package produce the power curve, 
and the package ggrepel makes use of the function 
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geom_text_repel to ensure the effect sizes in numeric 
numbers are printed in red color in the power curve 
graph do not overlap. This function takes in a 
numeric value input that represents the expected 
sample size. The following syntax generates two 
power curves with the specification of 60 and 100 
sample sizes.  

 

n <- 60 

PowerCurve.OneSample.FixedN(n) 

n <- 100 

PowerCurve.OneSample.FixedN(n) 

 

 The power curve with the specification of the 
sample size n as 60 and 100 produces the left-hand 
and right-hand of Figure 1 respectively. The x-axis 
represents Cohen’s d and the y-axis represents the 
power. The dotted blue horizontal line positioned at 
0.80 of the y-axis represents the general cutoff value 
of power. The red printed numeric values represent 
the effect size that runs from .1 to .9. The 
corresponding red dots represent the effect size to 
show if the dot lies above the blue line indicating its 
power is higher than the cutoff power of 0.8. and 
below it, is lower than the cutoff .8. Both the power 
curve shows that the higher the effect size, the higher 
the power. Comparison of both power curves,  the 
power curve for a sample size of 60 shows that given 
the effect size value of .4, the power is above .8. 
However, for a higher sample size of 100, the effect 
size reduces to .3. This is a general expectation of 
power analysis that the higher the expected effect size 

for a study, the requirement for sample size is lower. 
The underlying reason is straightforward. If a study 
expects to have a large effect, it does not need a large 
sample size to verify it. On the contrary, if a 
researcher is unsure of the effect or the effect is 
expected to be small, it is good to get a larger sample 
size. The sensitivity of power is also demonstrated by 
the comparison of the two power curves. For a given 
sample size of 60, the power becomes flat with little 
changes starting at the effect size at 0.5, whereas, for a 
larger sample size of 100, the upper asymptotic level 
happens earlier at 0.4. The practical implication is that 
a study with an expected effect size of .4, say based 
on a past study, will tend to choose a sample size of 
60. If past studies indicated effect size generally lower 
than .4, a researcher will tend to choose a higher 
sample size of 100. This is to ensure a larger sample is 
more likely and safer to ensure whether there is an 
effect.   

 For a study with a cost constraint restriction on 
the upper limit of sample size, the above power 
analysis is helpful to give information with regards to 
the required power and expected effect size. While a 
researcher faces the situation of not knowing the 
effect size as there is no literature to base on to 
indicate the level of effect size, the concern becomes 
what is the range of sample size the researcher can 
rely on by varying the effect size with a fixed power 
to ascertain the required sample size. The following 
two examples use the same function

 

Figure 1. Power Curves for One-Sample t-test with sample sizes set to 60 and 100 
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pwr.t.test by omitting the argument n, instead of the 
argument power, specifying power to 0.8, stating the 
Cohen’s effect size to 0.1 and 0.9, producing the 
required sample size of 787 and 12 respectively. This 
wide difference in sample size that is due to varying 
the effect size shows the importance of effect size in 
determining the sample size. 

 A graphical output showing the desired sample 
with a given power would be helpful to further extend 
the understanding of the previous two examples by 
specifying a range of effect sizes. The R program to 
generate the power graph is provided in Appendix A, 
A2. Specifying power as .6 and .8 produces the right 
and left graphs of Figure 2 respectively. In 
comparison to the setting of power at .6, and .8, the 
results of the two graphs indicate the higher the 
required sample size, the higher the power. These two 
power curves also indicate the higher the expected 
effect size, the lower the required sample size, and 
vice versa. The sensitivity in the required sample size 

is also indicated in these two graphs. Setting power at 
.6, the largest difference in the required sample size of 
109 (198-89) in the effect size lies between .2 to .3. 
For power fixed at .8, a slightly smaller largest 
difference in the sample size is 68 (124-56). The 
power analyses point out that the major factor that 
can affect sample size is the effect size. In particular, 
for a move of effect size in the lower range, the 
impact on sample size is greater. These two graphs 
confirm the most sensitive area of effect size that 
causes a large change in the required sample size is 
between .2 to .4. If the size of the effect is known to 
be around say between .7 and .8, a researcher will be 
more comfortable as the changes in sample size are 
much easier to control. On the contrary, if the effect 
size of past studies shows lower effect sizes around .2, 
the impact on the required sample size can turn out as 
a major issue as the decision on the required sample 
size can vary tremendously with a small change in 
effect size. 

 

 

library(pwr) 

pwr.t.test(d           = 0.1, 

           power       = 0.8, 

           sig.level   = 0.05, 

           type        = "one.sample", 

           alternative = "two.sided") 

 

 

pwr.t.test(d           = 0.9, 

           power       = 0.8, 

           sig.level   = 0.05, 

           type        = "one.sample", 

           alternative = "two.sided") 

 
 
Figure 2. Varying Effect Size with A Fixed Power to Generate Sample Size  
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Two Sample Paired and Independent t-test 

A paired t-test aims to examine whether there is a 
difference between two means for the same group of 
subjects. Often the two means are separated by time, 
occasion, or condition. For instance, a comparison of 
pre-intervention and post-intervention to examine 
whether there is a shift in mean after the intervention. 
The independent two-sample t-test, on the other 
hand, is to determine whether there is a statistically 
significant difference in means between two unrelated 
groups. Calculate the required total sample size for 

paired t-test and independent t-test is to specify 
type=”paired” for the former and the latter 
type=”two.sample” under the pwr.t.test function. The 
required sample sizes for the paired t-test and 
independent t-test are 198 and 393 respectively for 
the same specifications stated in the one-sample t-test 
power analysis. As paired t-test using the same 
subjects for a study, the required sample size is about 
half of that under an independent t-test. This is 
understandable as a within-subject study generally 
requires a lesser sample size. 

 

 

 

 

library(pwr) 

pwr.t.test(d=0.2,power=.8,sig.level=.05, 

           type="paired", 

           alternative="two.sided") 

 

 

 

 

 

 

 

library(pwr) 

pwr.t.test(d=0.2,power=.8,sig.level=.05, 

           type="two.sample", 

           alternative="two.sided") 

 

 

 

 

 

 To calculate the power given the sample size for 
an independent t-test, omitted the argument power 
will generates the power value. The following example 

 generates a power of .72 given a sample size of 325 
and effect size of .2. 

 

 

 

 

 

 

library(pwr) 

pwr.t.test(d=0.2,n=325,sig.level=.05, 

           type="two.sample", 

           alternative="two.sided") 

 

 

 

 

 

 

 Figure 3 shows the effect on sample size by 
varying the effect size and power for the paired t-test. 
The syntax for generating the power curve and the 
table of sample size is listed in Appendix C. The 
power curve shows the level of effect size primarily 
determines the size of the sample required. An effect 
size of .1 with a power of .8 generates a sample size of 

787 whereas a higher effect size of .6 with the same 
power of .8 reduces the required sample size to 24. 
Similar exponential decreases in sample size are noted 
for all the ranges of power from .6 to .8.  The 
difference in sample size is wider for small effect size 
is also observed.  
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 Practical research studies generally face unequal 
sample sizes, this can happen earlier at the planning 
stage. Sample determination for unequal sample size 
could be determined using the function pwr.t2n.test 
under the package pwr. The following shows two 
examples of calculating the value of power under the 
unbalanced independent t-test. The first example 
specifies the two sample sizes for n1=350 & n2=300 
and n1=400 & n2=250 for the second example. 
While the total sample size for both examples is 650, 
the first example generates a higher power of .72 and 
the second example produces a lower power of .69.  

 The above results indicate that when the ratio of 
n1 and n2 is closer to one for the first example 
(350/300 = 1.17), the power is higher at .72, and 
when the ratio is further away from equality (400/250 
= 1.6) for the second example, the power becomes 
lower at .70. The concern becomes what are the 
changes in power for a study with a high and a low 
effect size. Figure 4 prints three graphs setting effect 
sizes at 0.2, 0.3, and 0.4. The simulation of the ratio 
of sample size varies from 1:5 to 5:1, with a total 

 

Figure 3. Power Curve: Paired t-test Sample Size Estimation 

 

 

 

 

 

library(pwr) 

pwr.t2n.test(d=0.2,n1=350,n2=300, 

             alternative="two.sided") 

 

 

 

 

 

library(pwr) 

pwr.t2n.test(d=0.2,n1=400,n2=250, 

             alternative="two.sided") 
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sample size of 600, generating three scenarios to give 
three notings for a research study that intends to use a 
setting with unequal sample size. First, the peak in 
power is when the ratio is equal to one. Second, the 
symmetry pattern of the ratio is observed. Third, the 
higher the effect size, the less variation in power for 
unequal ratios. For the effect size set at .2, the power 
value is at a peak of .686 and drops to .446 when the 
ratio is either 1:5 or 5:1. When the effect size 
increases to 0.3, the differences in the magnitude in 

power between equal ratio and extreme ratio reduces. 
The impact on power becomes quite small for the 
effect size of 0.4. The systematic property of power to 
the sample ratio indicates when planning for a study, 
trying to avoid an unequal sample size ratio is always 
preferred to achieve a higher power especially when 
the expected effect size is small. When the effect size 
is large, the influence of unequal sample size on 
power becomes a trivial one. 

 

Figure 4. Power by Varying Sample Size Ratio and Effect Size of Unbalanced Independent t-test  

 
 

Welch’s t-test – Unequal Variances 

 When equal variances in the population are 

violated, 𝜎1
2 ≠ 𝜎2

2, Welch’s t-test is generally 
suggested (Delacre, Lakens, & Leys, 2017; Fagerland 
& Sandvik, 2009; Welch, 1937). Power analysis that 
considered unequal standard deviation thus also 
developed. The function power.welch.t.test from the 
package MKPower provides the power analysis for 
Welch’s t-test. The following shows three examples of 
specifying the standard deviations for sample 1 (sd1) 
and standard deviation for sample 2 (sd2) as (sd1, 
sd2). The ratio of the sd for the three examples 
specifies the two standard deviations as (1, 1), (0.5, 
1.5), and (0.1, 2) respectively. The power values for 
the three specifications produce .87, .77, and .56 
respectively. 

 The three examples below demonstrate that the 
ratio of sd1 and sd2 do affect the level of power. The 
three power graphs in Figure 5 further illustrate the 
changes in the power by setting the delta with values 
5, 6, and 7 and varying the ratio of the two standard 

deviations from 1:9 to 9:1. The first observation is 
that when the two standard deviations have the same 
value, the value of power is at the peak and reduces 
when the ratio of standard deviations is further apart. 
The symmetrical power by inverting the ratio is also 
observed. The third observation is the higher the 
value of delta, the effect on the power is lower. The 
practical implication is that the more deviate in the 
characteristic of the two samples, the lower is the 
impact on power even if the two standard deviations 
differ.   

 

Bayesian Approach Using Bayes 
Factor 

 The Neyman–Pearson hypothesis testing has a 
long history of more than 50 years, however, 
numerous articles have criticized the frequentist 
approach in hypothesis testing (e.g., Wagenmakers, 
2007, and Hubbard & Lindsay, 2008). While the 
pioneer Cohen (1992, 1988) play an important role in 
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the earlier development of effect sizes and power 
analysis under the frequentist approach, and the 
development is mainly on the frequentist approach, 
the movement towards using the Bayesian approach 
for carrying out power analysis is growing (de Santis, 
2007; Joseph et al., 2008; M’Lan et al., 2006; Rahme & 
Joseph, 1998; Shen et al, 2021; Shen et al, 2022; 
Simon, 1999; Wang & Gelfand, 2002) especially new 
free add-on R packages like SDDbain is made 

available with simple syntax specification to carry out 
Bayesian power analysis. This shift is also applied to 
the application of Bayesian power analysis for the t-
test. 

 The central idea of Bayesian inferences is that a 
priori beliefs are updated with observed evidence and 
both are combined into a posterior distribution. The 
posterior distribution is used to predict subsequent

 

library(MKpower) 

power.welch.t.test(n = 20, delta = 1,  

  sd1=1.0, sd2=1.0) 

 
 

 

 

 

library(MKpower) 

power.welch.t.test(n = 20, delta = 1, 

  sd1=0.5, sd2=1.5) 

 

 

 

 

 

library(MKpower) 

power.welch.t.test(n = 20, delta = 1,  

  sd1=0.1, sd2=2.0) 

 

Figure 5. Power by Varying Standard Deviation Ratio and Effect Size of Welch t-test 
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to show the procedure to generate sample size to 
evaluate t-test hypotheses using the approximate 
adjusted fractional Bayes factor (AAFBF) 
implemented in the R package bain (Gu et al, 2021) 
which carry out informative hypotheses using Bayes 
factors. 

Bayes Factor 

 The Bayes factor (BF) is one of the oldest and 
most widely used indices for carrying out testing a 
hypothesis under the Bayesian framework. It 
compares the predictive ability of two competing 

models corresponding to both the hypotheses 𝐻0 and 

𝐻1, indicating the degree of evidence a data set shifts 

the balance between the null hypothesis 𝐻0 and the 

alternative hypothesis 𝐻1 (Jeffreys, 1935). BF is a 

continuous measure of evidence for 𝐻1 over 𝐻0. 
When the Bayes factor is 1, the data is equally well 
predicted by both models, showing the evidence of 
not favoring either model over the other. When the 

BF increases above 1 the evidence favors 𝐻1 over 𝐻0. 
On the contrary, when the BF decreases below 1, the 

evidence favors 𝐻0 over 𝐻1 (Dienes and Mclatchie, 

2018). More specifically, 𝐵𝐹01 is the ratio of the two 

marginal likelihoods 𝑝(𝑑𝑎𝑡𝑎|𝐻0) and 𝑝(𝑑𝑎𝑡𝑎|𝐻1), 
each of which is calculated by integrating the 
respective model parameters according to their prior 
distribution (Kelter, 2021) as shown in Equation 1. It 

is noted 𝐵𝐹10 = 1 𝐵𝐹01⁄  that specifies the evidence 

favors 𝐻1 over 𝐻0. 

𝐵𝐹01 =
𝑝(𝑑𝑎𝑡𝑎|𝐻0)

𝑝(𝑑𝑎𝑡𝑎|𝐻1)
, 𝐵𝐹10 =

1

𝐵𝐹01
=

𝑝(𝑑𝑎𝑡𝑎|𝐻1)

𝑝(𝑑𝑎𝑡𝑎|𝐻0)
  

     (1) 

Package SSDbain: Approximate Adjusted 
Fractional Bayes Factor and Informative 
Hypothesis 

 The advantage of using the Bayes factor becomes 
apparent over the incessant debate between 
frequentist and Bayesian hypothesis testing 
(Wagenmakers, 2007).  However, it has suffered from 
two limitations. The specification of the prior can 
turn into a difficult task when prior information is 
weak or unavailable, and the computation can be very 
time-intensive. The package SSDbain (Fu, 2021) 
adopts the fractional Bayes factor (O’Hagan, 1995; 
O’Hagan, 1997) which is a partial Bayes factor 
method (de Santis & Spezzaferri, 1997, 1999) to 
address the limitation of using an appropriate prior 

distribution to determine the sample size using the 
approximate adjusted fractional Bayes factor 
(AAFBF) implemented in the R package bain (Gu et 
al, 2021). The basic idea of AAFBF is that a fraction 
of the data parameter is used to give the amount of 
information for specifying the prior as training, and 
the remaining fraction is used for testing the 
informative hypotheses. Another advantage of 
AAFBF is that instead of using an intrinsic Bayes 
factor (Berger & Pericchi, 1996) that is an average of 
the partial Bayes factors based on all possible minimal 
training samples that require more computer time, it 
partially reduces the time-intensive issue even though 
the time taken can still problematic when the number 
of data sets sampled from the null and alternative 
populations to determine the required sample is large. 

 Another feature of the package SSDbain is that an 
informative hypothesis is made possible. An 
informative hypothesis goes beyond the traditional 
hypothesis setting that could consist of equality 
and/or inequality constraints among the parameters 
of interest as well as the ordering of group means in 
order. The major advantage of evaluating a set of 
informative hypotheses using Bayesian model 
selection is that prior information can be incorporated 
into the analysis. Another advantage of evaluating 
informative hypotheses is that more power is 
generated with the same sample size (Fu et al, 2021). 

Function SSDttest 

 This current paper introduces the function 
SSDttest R from the package SSDbain (Fu, Hoijtink 
& Moerbeek, 2021) to generate the sample size 
requirement for carrying out Bayesian power analysis 
for the Bayesian t-test and Welch’s t-test. The 
function SSDttest generates the required sample size 
based on the updated priors following the fractional 
Bayes methodology as fractional priors. The 
specification of the t-test and Welch’s t-test model are 
specified in Equations 2 and 3 respectively (Fu et al, 
2021). 

𝑦𝑝 = μ1D1p + 𝜇2D2p + ϵp    ~𝑁(0, 𝜎2)  (2) 

𝑦𝑝 = μ1D1p + 𝜇2D2p + ϵp    ~𝑁(0, D1p𝜎1
2 +

D2p𝜎2
2)      (3) 

where D1p = 1 for person 𝑝 = 1, … , 𝑁 and 0 

otherwise, D2p = 1 for person 𝑝 = 𝑁 + 1, … ,2𝑁, 
and 0 otherwise, N denotes the common sample size 
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for groups 1 and 2, ϵp denotes the error in prediction, 

𝜎2 denotes the common within-group variance for 

both groups 1 and 2, and 𝜎1
2 and 𝜎2

2 denote the 
different within-group variances for groups 1 and 2, 
respectively. The prior distributions for the t-test and 
Welch’s t-test are stated below for the former has a 
common variance in Equation 4 and the latter with 
different variances in Equation 5 (Gu et al, 2018; 
Hoijtink et al, 2019). 

ℎ1(𝝁|𝐲, 𝐃𝟏, 𝐃𝟐) = 𝑁 ([
0
0

] , [

1

𝑏

�̂�2

𝑁
0

0
1

𝑏

�̂�2

𝑁

])  

     (4) 

 

ℎ1(𝝁|𝐲, 𝐃𝟏, 𝐃𝟐) = 𝑁 ([
0
0

] , [

1

𝑏

�̂�1
2

𝑁
0

0
1

𝑏

�̂�2
2

𝑁

])  

     (5) 

 

where b is the fraction of information in the data used 
to specify the prior distribution. 

Six Scenarios – The Bayesian approach 

 There are seven arguments under the function 
SSDttest that needs to specify to carry out sample size 
calculation. The first argument, type, is to specify 
whether it is a t-test or a Welch t-test. If type=’equal’, 
the Bayesian t-test is used; if type=’unequal’, the 
Bayesian Welch’s t-test is specified. The 
population_mean argument specifies the population 

means of the two groups under 𝐻1 and 𝐻2. The third 
argument var indicates the two within-group 
variances. The eta argument specifies the probability 
that the Bayes factor is larger than the BFthresh if 

either the null hypothesis or the alternative hypothesis 
is true. The Hypothesis argument specifies the 
hypothesis. When Hypothesis=’two-sided’ is 

specified, the hypotheses are 𝐻0: μ1 = 𝜇2 and the 

alternative hypothesis 𝐻1: μ1 ≠ 𝜇2. Hypothesis=’one-

sided’ states the null hypothesis 𝐻0: μ1 = 𝜇2 and the 

alternative hypothesis 𝐻1: μ1 > 𝜇2 . The last 
argument T specifies the number of datasets sampled 
from the null and alternative populations (Fu, 2021).  

 The following provides 6 scenarios to illustrate 
the use of package SSDbain, function SSDttest by 

varying the BF threshold, and 𝜂 to illustrate their 
effects on sample size for both Bayesian t-test and 
Bayesian Welch’s t-test. Scenarios 1 to 3 are catered 
for the Bayesian t-test and Scenarios 4 to 6 for the 
Bayesian Welch’s t-test. Scenario 1 sets the base 
reference and generates the Bayesian t-test for 
carrying out a two-sided test. The specification of this 

base reference sets BFthresh to 3 and 𝜂 = 0.8. The 
setting of Scenario 4 is the same as Scenario 1 but for 
Bayesian Welch’s t-test. This is carried out by 
changing the argument type = “unequal” and 
specifying the two unequal variances by stating the 
argument Var = c(4/3,1/3). Scenarios 2 and 5 reduce 

the BFthresh to 2 and Scenario 3 and 6 increase 𝜂 to 
0.9 respectively for the Bayesian t-test and Welch’s t-
test. 

 The following provides the syntax for generating 
the sample size of the 6 scenarios. The full syntax is 
given for the first three scenarios. For the three 
corresponding Bayesian Welch’s t-tests, scenarios 4 to 
6, only the changes in syntax are stated. The results of 
Scenario 1 is the researcher should execute their study 
using the sample between 92 and 104. For Scenario 4, 
the number of sample sizes required is between 107 
and 123. 

 

Scenario 1 Scenario 4 
library(SSDbain) 

set.seed(1234567) 

TTest11 <- SSDttest(type='equal', 

  Population_mean = c(0.5,0), 

  var             = NULL, 

  BFthresh        = 3, 

  eta             = 0.8, 

  Hypothesis      = 'two-sided', 

  T               = 10000) 

TTest11DF <- data.frame(TTest11) 

TTest11DF[c(5,10,15)] 

TTest21 <- SSDttest(type='unequal', ... 

  Var = c(4/3,1/3), 

... 

 

 
 



Practical Assessment, Research & Evaluation, Vol 27 No 18 Page 12 
Tan., Power Analysis with R 

 
 By reducing the BFthresh from 3 to 2, the 
required sample size for Scenario 2 reduces to 

between 81 and 94 and for Scenario 5, the sample size 
required is between 96 to 111. 

 

Scenario 2 Scenario 5 
library(SSDbain) 

set.seed(1234567) 

TTest12 <- SSDttest(type='equal', 

  Population_mean = c(0.5,0), 

  var             = NULL, 

  BFthresh        = 2, 

  eta             = 0.8, 

  Hypothesis      = 'two-sided', 

  T               = 10000) 

TTest12DF <- data.frame(TTest12) 

TTest12DF[c(5,10,15)] 

TTest22 <- SSDttest(type='unequal', ... 

  Var = c(4/3,1/3), 

... 

  
 

 With the 𝜂 increases from 0.8 to 0.9, the required 
sample increases to between 130 to 200 for Scenario 3 
and between 149 to 208 for Scenario 6. 

 In summary, when the BF threshold decreases, 
the required sample decreases. On the contrary, an 

increase in 𝜂 will accompany an increase in sample 
size. The required sample size for Welch’s t-test is 
higher than the t-test since the variances are unequal.  

 

 

Scenario 3 Scenario 6 
library(SSDbain) 

set.seed(1234567) 

TTest13 <- SSDttest(type='equal', 

  Population_mean = c(0.5,0), 

  var             = NULL, 

  BFthresh        = 3, 

  eta             = 0.9, 

  Hypothesis      = 'two-sided', 

  T               = 10000) 

TTest13DF <- data.frame(TTest13) 

TTest13DF[c(5,10,15)] 

TTest23 <- SSDttest(type='unequal', ... 

  Var = c(4/3,1/3), 

... 

  
 
 

Summary and Conclusions 

 The procedure of choosing an appropriate sample 
size using the various R packages is the main focus of 
this paper. Both the frequentist and the Bayesian 
approaches to carrying out power analysis are 
illustrated with syntax, and examples and the 
implications of using the various approaches and 
practical concerns on the determination of sample 
size, power, and effect size are discussed. Table 1 
summarises the functions to generate power analysis 
from the R Base functions (R Core Team,  2021), 
package pwr (Champely, 2020), package MKPower 
(Kohl, 2020), package WebPower (Zhang & Mai, 

2021; Zhang & Yuan, 2018), package MKpower 
(Kohl, 2020), and package SSDbain (Fu, 2021). 

 For one sample t-test, this paper provides a 
written function and an R program to examine the 
sensitivity by varying a factor to examine the output 
of power analysis. The function 
PowerCurve.OneSample.FixedN plots the effect of 
the power given a numeric input of sample size, and 
the R program generates a power curve by varying the 
sample and effect size given the level of power. Both 
power curves show that the most sensitive factor 
affecting the sample size is the effect size. The same 
results could also be determined for the paired t-test 
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power analysis. The practical concern is that if a 
researcher is unaware of the size of the effect, effect 
size becomes the crucial factor that has to be taken 
more seriously for the determination of sample size. 
Examining the power curve provides a useful way for 
choosing an appropriate sample size and examining 
the sensitivity of factors affecting the sample size. In 
practice, it is often found sample sizes could differ for  

two independent samples. A researcher that  

takes note of the effect of sample size for unbalanced 
design on the power will help to decide on the 
selection of an appropriate sample. A similar 

phenomenon could also be observed for Welch’s t-
test when the ratio of two variances differs. The 
implication of unequal variances to power analysis 
about effect size also could help a researcher to make 
a reasonable decision when faced with unequal 
variances. 

 The six scenarios of the two-sample Bayesian 
power analysis show the evidence that the higher the 
deviation from equal variances, the higher the 

specified 𝜂, the higher the BF setting, and the higher 
the required sample size.   

 

Table 1. Functions for Power Analysis 

Function Description 

Base  

power.t.test(type="one.sample") Power calculation for one sample t-test 

power.t.test(type="one.sample") Power calculation for independent t-test 

power.t.test(type="paired") Power calculation for paired t-test 

Package pwr  

pwr.t.test(type="one.sample") Power calculation for one sample t-test 

pwr.t.test(type="two.sample") Power calculation for independent t-test 

pwr.t.test(type="paired") Power calculation for paired t-test 

pwr.t2n.test() Power calculations for two samples with unequal n t-test 

Package WebPower  

wp.t(type="one.sample") Power calculation for one sample t-test 

wp.t(type="two.sample") Power calculation for independent t-test 

wp.t(type="paired") Power calculation for paired t-test 

wp.t(type="two.sample.2n") Power calculations for two samples with unequal n t-test 

Package MKpower  

power.welch.t.test(sd1=,sd2=) Power calculation for Welch’s t-test of unequal variance 

Package SSDbain  

SSDttest(type="equal") Power calculation for Bayesian t-test using Bayes Factor  

SSDttest(type="unequal") Power calculation forBayesian Welch’s t-test using Bayes Factor 
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Discussion 

 The importance of carrying out power analysis is 
clearly stated by Cohen (1988) that estimating the 
expected statistical power before beginning research 
by power analysis is crucial to avoid making a wrong 
conclusion. The mathematical equations provided by 
Cohen (1988, 1992) give the relation between effect 
size, sample size, type I error rate, and power. Setting 
the power at 80%, with type I error rate α specifies as 
.05, the minimum sample size per group are 394, 64, 
and 26 for small (d = 0.2), medium (d = 0.5), and 
large (d = 0.8) effect sizes respectively for an 
independent sample two-sided t-test. This rule of 
thumb becomes almost a standard reference for 
carrying out frequentist power analysis. However, in 
practice, sample size determination is not a 
straightforward statistical computation issue. The rule 
of thumb set by the authority such as Cohen’s 
recommendation for the broad effect sizes categories 
of the small, medium, and large to cover the range of 
effect  sizes  are  commonly  referred  to  as  a general  

guide. However, other practical factors could go 
beyond statistical issues that affect the determination 
of sample size. Dong & Maynard (2013) distinguish 
two types of factors: discretionary and inherent 
factors. Discretionary factors are factors based on the 
researcher’s judgment and statistical-based decision. 
Inherent factors, on the other hand, are factors 
outside of the researcher's control that depend on the 
nature of the intervention, the study design, and the 
characteristics of the true effect.   

 Most often, the best first response to answer an 
appropriate sample size for a t-test is not a number, 
but a sequence of relevant questions to ascertain the 
ultimate research concern on the expected effect. A 
study’s size and structure depend on the research 
context, including the researcher’s objectives and 
proposed analyses. This goes back to the fundamental 
concern of carrying out power analysis is that a well-
designed research project has to take account of the 
study to have a meaningful size impact, that there is a 
high probability the study will detect it and not too 
big a sample size in wasting unnecessarily sources to 
collect extra data (Legg & Nagy 2006). For instance, a 
research study that aims to use a more sophisticated 
analytic technique may require a larger sample than 
simple techniques. When unequal variances of two 
samples need to be considered, the required analytical 

requirements not only differ from the usual t-test but 
the unequal variances need to know beforehand to 
determine the impact to derive the sample size. Most 
often, in practice, due to cost constraints, achieving a 
level of power is almost practically impossible. 
Determining the sample size thus goes beyond using a 
derived formula but to carrying out the necessary 
sensitivity analysis to determine a whole range of 
sample sizes that take into consideration the inherent 
factors that could affect the sample size. 

 For Bayesian power analysis, the nature and the 
importance of the research could be considered in 
determining the sample size, the flexibility lies in the 
specification of the value of BF. A large BF thresh 
value for high-stakes research and a lower BF for a 
lower stake study is one of the guidelines one could 
adopt. Similarly, a high value of η such as .90 for 
high-stake research and reduce accordingly for lower-
stake study. For instance, in pharmaceutical research, 
a new headache relief drug compared to an existing 
competitor could specify a low BF whereas, for 
cancer and COVID research, a high BF is generally 
expected (Fu et al, 2021). 

 Choosing between using the frequentist and 
Bayesian approach is still an open debate. From the 
Bayesian perspective, unknown parameters are 
random variables following certain distributions. 
Therefore, developing a Bayesian method assuming 
the parameters are random variables to resolve the 
issue of uncertainty. But, the choosing of a BF 
threshold and η can be equally subjective. Researchers 
may have to refer to the general recommendation of 
common values for BF to set at 3, 5, or 10. Probably, 
the greatest disadvantage of using the Bayesian 
approach is that the time taken can be far too long to 
generate the output. Fu et al (2021) recommend the 
number of datasets to perform the SSDttest be to set 
at least 10,000. This can take some time, using a PC 
notebook. 
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Appendix A.  

Graphing Power by Fixing Sample Size and Graphing Sample Size Required by Fixing Power for One-Sample t-test 
 
A-1.Function PowerCurve.OneSample.FixedN 
 
library(pwr) 

library(ggplot2) 

library(ggrepel) 

PowerCurve.OneSample.FixedN <- function(n){ 

  ES <- seq(.1,0.9,.1)  # Vector of effect size 

  samp.out <- NULL 

  for(i in 1:length(ES)){ 

    power <-  pwr.t.test(d=ES[i],n=n,sig.level=.05,type="one.sample")$power 

    power <-  data.frame(effect.size=ES[i],power=power) 

    samp.out <- rbind(samp.out,power) 

  } 

  print(samp.out) 

  ggplot(samp.out, aes(effect.size,power,label=effect.size))+ 

    geom_line(color="pink") +  

    geom_point(color="red") + 

    geom_text_repel(color="red") +  

    theme(plot.title=element_text(hjust=0.5,size=15), 

          plot.subtitle=element_text(hjust=0.5,size=12)) + 

    geom_hline(yintercept = .8,lty=2, color='blue', size=1.1) + 

    labs(title = paste0("t-test Power Curve for n=", n), 

         subtitle = "Effect Size from 0.1 to 0.9 by 0.1", 

         x     = "Cohen's d", 

         y     = "Power") 

} 

 

A-2. Function PowerCurve.OneSample.FixedPower 

 
library(pwr) 

library(ggplot2) 

library(ggrepel) 

PowerCurve.OneSample.FixedPower <- function(p){ 

  ES <- seq(.2,0.9,.1)  # Vector of effect size 

  samp.out <- NULL 

  for(i in 1:length(ES)){ 

    sample.size <-  pwr.t.test(d=ES[i],power=p,sig.level=.05,type="one.sample")$n 

    sample.size <-  data.frame(effect.size=ES[i],sample.size) 

    samp.out <- rbind(samp.out,sample.size) 

  } 

  print(samp.out) 

  ggplot(samp.out, aes(sample.size, effect.size, label=round(sample.size)))+ 

    geom_line(color="pink") +  

    geom_point(color="red") + 

    geom_text_repel(color="red") +  

    theme(plot.title=element_text(hjust=0.5,size=15), 

          plot.subtitle=element_text(hjust=0.5,size=12)) + 

    labs(title = paste0("One Sample t-test\nVary Sample & Effect Size for Power = ", p), 

         subtitle = "Effect Size from 0.2 to 0.9 by 0.1", 

         y     = "Effect Size", 

         x     = "Sample Size") 

} 

p <- 0.8 

PowerCurve.OneSample.FixedPower(p) 

p <- 0.6 

PowerCurve.OneSample.FixedPower(p) 

library(ggplot2) 

library(ggrepel) 

PowerCurve.OneSample.FixedPower <- function(p){ 

  ES <- seq(.2,0.9,.1)  # Vector of effect size 
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  samp.out <- NULL 

  for(i in 1:length(ES)){ 

    sample.size <-  pwr.t.test(d=ES[i],power=p,sig.level=.05,type="one.sample")$n 

    sample.size <-  data.frame(effect.size=ES[i],sample.size) 

    samp.out <- rbind(samp.out,sample.size) 

  } 

  print(samp.out) 

  ggplot(samp.out, aes(sample.size, effect.size, label=effect.size))+ 

    geom_line(color="pink") +  

    geom_point(color="red") + 

    geom_text_repel(color="red") +  

    theme(plot.title=element_text(hjust=0.5,size=15), 

          plot.subtitle=element_text(hjust=0.5,size=12)) + 

    geom_hline(yintercept = .8,lty=2, color='blue', size=1.1) + 

    labs(title = paste0("t-test Power Curve for Power = ", p), 

         subtitle = "Effect Size from 0.2 to 0.9 by 0.1", 

         y     = "Power", 

         x     = "Sample Size") 

} 

p <- 0.8 

PowerCurve.OneSample.FixedPower(p) 

p <- 0.6 

PowerCurve.OneSample.FixedPower(p) 
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Appendix B. 

Package WebPower, Function wp.t 
 

The R syntax to duplicate the power analysis in the main text for the one-sample, two-sample paired t-test, two-
sample independent, and unbalanced independent t-test are printed below using the function wp.t under the 
package WebPower package. The plot function generates the power curve for the one-sample t-test also provided. 
 
Table B-1. One-Sample t-test – Estimate Power 
 
 

 

library(WebPower) 

wp.t(n1=60, d=0.2, type="one.sample") 

 

 

 

 

 

wp.t(n1=60, d=0.2, type="one.sample", 

     alternative = c("greater")) 

 

 

 

wp.t(n1=60, d=0.2, type="one.sample", 

     alternative = c("less")) 

 

 

 

Plot1 <- wp.t(n1=60, d=seq(0.2,0.9,0.01), 

              type="one.sample") 

plot(Plot1$d,Plot1$power, 

 type = "l",col = "red",lwd = 3, 

 main = "Package WebPower,Function wp.t\n N = 60", 

 xlab = "Cohen's d", 

 ylab = "Power") 
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Plot2 <- wp.t(n1=100, d=seq(0.2,0.9,0.01), 

              type="one.sample") 

plot(Plot2$d,Plot2$power, 

 type = "l",col = "blue",lwd = 3, 

 main = "Package WebPower,Function wp.t\n N = 100", 

 xlab = "Cohen's d", 

 ylab = "Power") 

 
Table B-2. One-Sample t-test – Estimate Sample Size 

 
library(WebPower) 

wp.t(d=0.1, type="one.sample", 

     power=0.8, 

     alternative = c("two.sided")) 
 

wp.t(d=0.9, type="one.sample", 

     power=0.8, 

     alternative = c("two.sided")) 

 

 
Table B-3. Two-Sample Paired and Independent t-test – Estimate Sample Size 

 

library(WebPower) 

wp.t(power=.8, d=0.2,  

     type="paired", 

     alternative="two.sided") 

 

wp.t(power=.8, d=0.2,  

     type="two.sample", 

     alternative="two.sided") 

 
 
Table B-4. Two-Sample Independent t-test – Estimate Power 
 

library(WebPower) 

wp.t(d=0.2, n1=325, 

     type="two.sample", 

     alternative="two.sided") 
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Table B-5. Unbalanced Two-Sample Independent t-test – Estimate Power 
 
 

 

library(WebPower) 

wp.t(n1=300,n2=350,d=0.2,  

     type="two.sample.2n", 

     alternative="two.sided") 

 

 

 

 

 

wp.t(n1=400,n2=250,d=0.2,  

     type="two.sample.2n", 

     alternative="two.sided") 
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Appendix C. 

R Program – Obtain Power Curve by Varying Effect Size and Power Value 
 
library(pwr) 

# Range of Effect Sizes 

d <- seq(0.1,0.6,0.05) 

nd <- length(d) 

 

# Power Values 

p <- seq(.6,.8,.05) 

np <- length(p) 

 

# Obtain Sample Sizes 

samsize <- array(numeric(nd*np), dim=c(nd,np)) 

for (i in 1:np){ 

  for (j in 1:nd){ 

    result <- pwr.t.test(n = NULL, d = d[j], 

    sig.level = .05, power = p[i], type = "paired", 

    alternative = "two.sided") 

    samsize[j,i] <- ceiling(result$n) 

  } 

} 

 

# Plot Power Curve 

xrange <- range(d) 

yrange <- round(range(samsize)) 

colors <- rainbow(length(p)) 

plot(xrange, yrange, type="n", 

  xlab="Effect Size (d)", 

  ylab="Sample Size (n)" ) 

 

# add power curves 

for (i in 1:np){ 

  lines(d, samsize[,i], type="l", lwd=2, col=colors[i]) 

} 

 

# add annotation (grid lines, title, legend) 

abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89") 

abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2, 

   col="grey89") 

title("Sample Size Estimation for Paired t-test\n 

  Sig=0.05 (Two-tailed)") 

legend("topright", title="Power", as.character(p), 

   fill=colors) 

 

# ----------------------- # 

# Print Sample Size Table # 

# ----------------------- # 

ttestPairedN <- samsize 

colnames(ttestPairedN) <- c(round(p,2)) 

rownames(ttestPairedN) <- c(round(d,2)) 

ttestPairedN 
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Effect 

Size 

Power 

0.60 0.65 0.70 0.75 0.80 

0.10 492 552 620 696 787 

0.15 220 247 277 311 351 

0.20 125 140 157 176 199 

0.25 81 90 101 113 128 

0.30 57 64 71 80 90 

0.35 42 47 53 59 67 

0.40 33 37 41 46 52 

0.45 27 30 33 37 41 

0.50 22 24 27 30 34 

0.55 19 21 23 25 28 

0.60 16 18 20 22 24 
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Appendix D. 

Base Function power.t.test 
 
 The R syntaxes and outputs using the base function power.t.test are printed below. 
 
Table D-1. One-Sample t-test – Estimate Power 
 
power.t.test(d           = 0.2, 

             n           = 60, 

             sig.level   = 0.05, 

             type        = "one.sample", 

             alternative = "two.sided") 

 
power.t.test(d           = 0.2, 

             n           = 60, 

             sig.level   = 0.05, 

             type        = "one.sample", 

             alternative = "one.sided") 

 
 
Table D-2. One-Sample t-test – Estimate Sample Size 
 
 

 

 

power.t.test(d           = 0.1, 

             power       = 0.8, 

             sig.level   = 0.05, 

             type        = "one.sample", 

             alternative = "two.sided") 

 

 

 
 

 

 

power.t.test(d           = 0.9, 

             power       = 0.8, 

             sig.level   = 0.05, 

             type        = "one.sample", 

             alternative = "two.sided") 

 

 

  

 
 
 
 
 
 
 
 
 
 



Practical Assessment, Research & Evaluation, Vol 27 No 18 Page 26 
Tan., Power Analysis with R 

 
Table D-3. Two-Sample Paired and Independent t-test – Estimate Sample Size 
 
 

 

power.t.test(d           = 0.2, 

             power       = 0.8, 

             sig.level   = 0.05, 

             type        = "paired", 

             alternative = "two.sided") 

 

  
 

 

power.t.test(d           = 0.2, 

             power       = 0.8, 

             sig.level   = 0.05, 

             type        = "two.sample", 

             alternative = "two.sided") 

 

 
 

 
Table D-4. Two-Sample Independent t-test – Estimate Power 
 
 

 

 

power.t.test(d           = 0.2, 

             n           = 325, 

             sig.level   = 0.05, 

             type        = "two.sample", 

             alternative = "two.sided") 
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Appendix E. 

Rule of Thumb – Effect Size Description of Cohen’s d 
 
Table E-1. Rule of Thumb – Effect Size Description of Cohen’s d 
 

Description Cohen (1988) Sawilowsky (2009) 
Lovakov & 
Agadullina (2021) 

Gignac & Szodorai 
(2016) 

Tiny  d < 0.1   

Very Small d < 0.2 0.1 <= d < 0.2 d < 0.15 d < 0.20 

Small 0.2 <= d < 0.5 0.2 <= d < 0.5 0.15 <= d < 0.36 0.20 <= d < 0.41 

Medium / Moderate 0.5 <= d < 0.8 0.5 <= d < 0.8 0.36 <= d < 0.65 0.41 <= d < 0.63 

Large d >= 0.8 0.8 <= d < 1.2 d >= 0.65 d >= 0.63 

Very Lare  1.2 <= d < 2.0   

Huge  d >= 2   
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