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Researchers in many disciplines work with ranking data.  This data type is unique in that it is often 
deterministic in nature (the ranks of items k-1 determine the rank of item k), and the difference in a 
pair of rank scores separated by k units is equivalent regardless of the actual values of the two ranks 
in the pair.  Given its unique qualities, there are specific statistical analyses and models designed for 
use with ranking data.  The purpose of this manuscript is to demonstrate a strategy for analyzing 
ranking data from sample description through the modeling of relative ranks and inference regarding 
differences in ranking patterns between groups.  An example dataset of university faculty ratings of 
job characteristics was used to demonstrate these various methods, and the ways in which they can be 
tied together to obtain a comprehensive understanding of a ranking dataset.  The analyses were carried 
out using libraries from the R software package, and the code for this purpose is included in the 
appendix to the manuscript. 

Introduction 

 Ranking data arises from situations in which a 
finite number of entities, such as sports teams, product 
brands, political candidates, television programs, or job 
qualities, are ranked relative to one another.  There are 
many examples of ranking data in an array of academic 
disciplines, including education (Acuna-Soto, Liern, & 
Perez-Gladish, 2021) psychology (Regenwetter, et al., 
2007), health care (Hackert, et al., 2019; Bothung, et al., 
2015; Craig, et al., 2009), quality of life (Peiro-Palomino 
& Picazo-Tadeo, 2017), sociology (Harakawa, 2021), 
market research (Kamishima & Akaho, 2006), and 
political science (Moors & Vermunt, 2007; Gormley & 
Murphy, 2008).  The breadth of these examples 
demonstrates the great utility of rankings as a tool for 
understanding human behavior and other scientific 
phenomena.  Throughout this manuscript, the entities 
being ranked will be referred to as items.  

 The mechanism for rankings can come in the form 
of a sample of raters, television viewers, voters, or 
professional sports competitions.  Whichever 

mechanism is used to rank the items, this type of data 
share some common qualities.  By its very nature, 
ranking data has a deterministic quality that is not 
found in most other data situations.  Determinism in 
this context refers to the fact that given the first k-1 of 
k rankings, the kth item can only take a specific value.  
For example, if we know that among a set of 4 tennis 
players, Novak Djokovic is ranked first, Rafael Nadal 
second, and Roger Federer third, Andy Murray must 
be ranked fourth.  It should be noted that this 
deterministic quality is not present if ties are allowed.  
In that case, it is possible for two or more of the items 
to have the same rank, and thus the ranking pattern of 
items k-1 does not dictate the ranking of item k.  In 
addition to the deterministic nature of the scores, a 
second signal feature of ranking data is that typically 
the difference in scores between any pair of items with 
adjacent rankings is equivalent, regardless of the actual 
values.  For example, the difference between rankings 
4 and 5 is equal to the difference between rankings 1 
and 2.  A third unique quality of ranking data is with 
respect to their correspondence with the set of 
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permutations of the data.  Specifically, common 
analytic approaches such as histograms or analysis of 
variance (ANOVA) are not appropriate for use with 
ranking data because the set of all possible 
permutations from which the ranks are drawn do not 
have a natural linear ordering (Fischer, et al., 2019; 
Alvo & Yu, 2014).  Therefore these commonly used 
techniques will not yield meaningful results and 
alternative methods, such as those described in this 
paper, are needed.  As described above, all items are 
ranked by all raters.  However, this design is not always 
used, and in some cases raters are asked to rank only a 
subset of the k items.  For example, individuals may be 
asked to rank their three top candidates for office from 
a set of 10 in an election.  This data structure presents 
the researcher with unique data analysis challenges, and 
though interesting, will not be addressed in this 
manuscript.   

Study purpose 

 The purpose of the current work is to describe and 
to demonstrate a strategy for analyzing a set of ranking 
data, from the initial description of the sample through 
inferential models for characterizing the ranking 
patterns and investigating relationships between one or 
more covariates and these patterns.  The goal in this 
demonstration is to provide researchers with a 
complete example for how to consider ranking data 
from an analytic perspective, and how to synthesize the 
results from these multiple techniques in order to gain 
a full picture of the ranked phenomena being studied.  
The data analyses include a description of the rankings, 
as well as model based explorations of the rankings, 
and investigations of relationships between the 
rankings and substantively relevant covariates.  The 
example analyses were conducted using the R software 
package, with an eye to providing the reader with the 
tools necessary to successfully investigate their own 
ranking data.  Therefore, the R code for conducting 
these analyses appears in the appendix and the example 
data are available as supplementary materials to the 
manuscript. 

Sample description 

A first step in most data analyses involves an 
exploration of the sample using descriptive statistics.  
This is certainly true of ranking data for which we are 
interested in the mean ranks of the items, as well as the 
pairwise comparisons of the items and the distribution 

of ranks for each of the items.  The mean rank for item 

i (𝑚𝑖) is defined as  

𝑚𝑖 =
∑ 𝑛𝑗𝑣𝑗(𝑖)𝑡!

𝑗=1

𝑛
     (1) 

 

Where 

𝑣𝑗 =All possible rankings of the t objects 

𝑥𝑥𝑣𝑗(𝑖) =Rank score given to object i in ranking  j 

𝑛𝑗 =Observed frequency of ranking j 

𝑛 = ∑ 𝑛𝑗
𝑡
𝑗=1   

A lower value for 𝑚𝑖 indicates that the item is 
more favored by the members of the sample; i.e., has 
received a higher ranking with 1 being most favorable.  
For example, if item 1 has a mean rank of 2.4 and item 
2 has a mean rank of 3.9, we would conclude that item 
1 was typically ranked higher than item 2.  

Another useful description of the sample is the 
frequency of pairwise comparisons of the item 
rankings.  In other words, how frequently was item A 
preferred over item B?  Table 1 includes a pairwise 
matrix for a simple example of 3 items that were 
ranked by 10 individuals.  In this example, we can see 
that item 1 was ranked above item 2 five times, and 
above item 3 three times.  In contrast, item 2 was 
ranked above item 1 8 times, and above item 3 10 
times.  Another way in which the rankings can be 
described is based on the marginal frequency of each 
rank for each of the items.  These results can be 
presented in a marginal ranking matrix, as in Table 2.  
For this hypothetical example, item 2 most frequently 
received a top ranking, followed by item 1, and then 
item 3.  Item 3 was most frequently the lowest ranked. 

In addition to describing the sample in terms of 
central tendency and relative ranking, we may also want 
to ascertain whether the pattern of rankings is random 
in nature.  One way to do that is to test the null 

hypothesis that the mean rank is equal to 
(𝑡+1)

2
 for t 

ranked items.  For the three ranked items, the mean 
under the null hypothesis of a random ranking would 

be 
(3+1)

2
= 2.  In other words, if the rankings provided 

by the members of the sample had no systematic 
pattern  (i.e.,  were  random  in  nature), then the mean   
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Table 1. Example pairwise ranking matrix for three ranked items 

 Item 1 Item 2 Item 3 

Item 1 0 5 3 

Item 2 8 0 10 

Item 3 2 2 0 

 

Table 2. Example marginal ranking matrix for three ranked items 

 Item 1 Item 2 Item 3 

Item 1 2 5 3 

Item 2 8 1 1 

Item 3 0 2 8 

 

 

ranking would be 2.  The test statistic for this null 
hypothesis is 

𝑄 =
12𝑛

𝑡(𝑡+1
∑ (𝑚𝑖 −

𝑡+1

2
)

2
𝑡
𝑗=1   (2) 

 

Where 

𝑚𝑖 =Mean rank for item i 

𝑡+1

2
=Mean under null hypothesis of a random ranking 

 

Q is distributed as a Chi-square statistic with degrees of 
freedom of t-1. If the p-value associated with Q and t-

1 degrees of freedom is ≤ 0.05, we would reject the 
null hypothesis that all items have the same mean rank. 
In rejecting the null hypothesis, we would conclude 
that the rankings provided by members of the sample 
were not random in nature. 

Together, these descriptive statistical methods 
provide the researcher with important information 
about the general patterns of the rankings produced by 
members of the sample.  The mean ranking for each 
item reflect how popular/positive (or not) the 
members of the sample found each of them.  An 
understanding of the popularity of individual items can 
be deepened through a consideration of their relative 
and marginal ranks.  In other words, how likely was 
one item likely to be preferred to each of the others, 

and how frequently was each item given each ranked 
value?  Answering these questions provides the 
researcher with a deeper understanding of the relative 
rank of each item than does the mean ranking alone.  
Finally, the statistical test of the null hypothesis of 
randomness yields information regarding the 
systematic nature of the ranking process used by the 
sample.  If the null hypothesis of this test is rejected, 
we would conclude that in the population, the items 
are ranked in a systematic fashion; i.e., some are given 
higher ranks on average than are others.   

Multidimensional scaling 

Another aspect of the ranking process that may be 
of interest to researchers are patterns of relationships 
among item rankings.  One approach for investigating 
these patterns involves the application of unfolding 
multidimensional scaling (UMDS), which has been 
recommended for use with ranking data (Alvo & Yu, 
2014; Armstrong, et al., 2014).  MDS with ranked data 
has been used in a variety of research areas including 
health sciences (e.g., Krabbe, Salomon, & Murray, 
2007), marketing (e.g., Adlakha & Sharma, 2020; Jeong 
& Kwon, 2016), and psychology (Askell-Williams & 
Lawson, 2002) among others.   

 The goal of this analysis is to reduce the 
dimensionality present in a set of data (e.g. j raters by i 
rated items) to two or three dimensions, and then to 
examine the proximity of objects of interest (e.g., raters 
to ranked items, ranked items to one another) in this 
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low dimensional space.  The goal when reducing the 
dimensionality of the data in this fashion is to retain 
the essential underlying relationships among the raters 
and items while also simplifying it so that these 
relationships are easier to discern.   

 The data upon which UMDS operates is in the 
form of an item by rater rectangular distance matrix, 
where distances express proximity of a rater to an item.  
A pair that is ranked more closely together will be 
associated with a smaller distance value.  A commonly 
used measure of distance/dissimilarity is Euclidean 
distance: 

𝑑𝑖𝑗 = √(𝒚𝒊 − 𝒙𝒋)
′
(𝒚𝒊 − 𝒙𝒋)  (3) 

Where 

𝒚𝒊 =Set of rankings given by judges to item i 

𝒙𝒋 =Set of item rankings given by judge j 

The value of 𝑑𝑖𝑗 represents the relative preference of 

item i for judge j.  Therefore, smaller values reflect that 
judge j prefers item i.  It should be noted that there are 
a number of other distance measures that can be used 
with UMDS including the Hamming distance 
(Hamming, 1950), the Kendall distance (Kidwell, et al., 
2008; Alvo & Cabilio, 1995), and the Cayley distance 
(Fligner & Verducci, 1986), among others.   

UMDS works by finding a small number (e.g., 2) 
of dimensions that contains most of the information 
available in the raw ranking data.  The optimal solution 
minimizes the Stress function, which is expressed as: 

𝑆𝑡𝑟𝑒𝑠𝑠 = ∑ (𝛿𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑖<𝑗   (4) 

Where 

𝛿𝑖𝑗 =Estimated distance between item i and rater j 

based on UMDS 

𝑑𝑖𝑗 =Observed distance between item i and rater j  

The resulting model yields coefficients for each rater 
and each item for each of the dimensions.  Therefore, 
if a 2-dimensional solution is used, UMDS finds 
coefficients for each rater and item for each of the 

dimensions that yields values of 𝛿𝑖𝑗 that minimize the 

Stress value in equation (4).  The performance of the 
model is represented as the percent of the variance in 

the observed data that is accounted for by the MDS 
model.   

 As an example to demonstrate UMDS consider 
Table 3, which displays the ranks provided by three of 

the raters and the corresponding estimates of 𝑑𝑖𝑗 based 

on a 2-dimensional UMDS.  Rater 1 provided the 
following rank ordering of the job qualities:  Contract, 
Salary, Chair Support, Travel budget, Health care, 
Workload.  The estimated distances for this rater from 
each of these qualities was: 0.34, 0.79, 0.88, 1.24, 1.04, 
1.60.  These results confirm that, with the exception of 
Travel budget, the model estimated distances conform 
to the rank ordering provided by the rater.  More 
specifically, we see that based on the distance estimates 
Rater 1 valued Contract most strongly, followed by 
Salary, and then Chair support.  They were least 
concerned with Workload, as reflected both in the 
observed rank and the UMDS estimated distance.   

 Table 4 includes the UMDS coefficients for each 
of the first three raters as well as for the on the rated 
items, with respect to each of the dimensions.  From 
these results, we can see that raters 1 and 3 are relatively 
far apart on the first dimension; i.e., their coefficients 
are further from one another than either is from that 
of rater 2.  An examination of the rankings illuminates 
this spread, in that the rank ordering of the job qualities 
for Raters 1 and 3 were quite different, with the 
exception that they both valued Salary relatively highly.  
The coefficients for the items also show that Salary and 
Health care were most closely associated with one 
another, as were Chair support and Travel budget.  
Contract and Workload had coefficients that differed 
from the other items and from one another.  Most 
often, the results of a MDS analysis are expressed in 
the form of a graph displaying the location of the items 
and raters in 2-dimensional space, as demonstrated in 
the results below. 

When applied to ranking data, UMDS provides 
the researcher with insights into the relative popularity 
of the ranked items to one another.  By viewing the 
relative locations of the items to one another on a 2-
dimensional scatterplot of the dimension weights, it is 
possible to see which items tended to be ranked 
similarly by members of the sample.  For example, if 
two items appear close together in the plot, we can 
conclude that members of the sample tended to rank 
them close together (e.g., 1, 2 or 4,5).  In addition,  by
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Table 3.  Rankings and UMDS estimated 𝑑𝑖𝑗 values for the first three raters:  2-dimensional solution 

Rater* Contract+ Salary Health care Workload Chair support Travel budget 

Rankings 

1 1 2 5 6 3 4 

2 3 1 2 4 5 6 

3 6 1 2 3 5 4 

Estimated Distance 

1 0.34 0.79 1.04 1.60 0.88 1.24 

2 1.01 0.21 0.53 1.03 0.99 1.32 

3 1.42 0.30 0.35 0.91 1.35 1.40 

*Rater refers to the individual providing the rankings.  Here they are numbered 1, 2, and 3 

+Columns include the items being ranked from 1 to 6 by each rater. 

 

Table 4.  UMDS coefficients for items and the first three raters:  2-dimensional solution 

Rater or item Dimension 1 Dimension 2 

1 -0.53 0.05 

2 0.15 0.04 

3 0.54 -0.12 

Contract -0.86 0.15 

Salary 0.24 -0.14 

Health care 0.39 -0.44 

Workload 0.94 0.69 

Chair support -0.33 0.91 

Travel budget -0.38 -1.17 

 

 

plotting the locations of the items on the same graph 
along with the rater locations, we can gain insights into 
the relative popularity of the individual items.  Those 
items that are more centered among the persons are 
more popular than are those items that appear at the 
periphery of the cloud of participants.  Finally, an 
examination of the participant locations can reveal the 
extent to which there may be different subgroups 
among the raters.  For example, if the plot reveals two 
distinct groupings of individuals based on their MDS 
weights, we can conclude that there are two separate 

ways in which the individuals ranked the items.  
Conversely, if the plot reveals a single group of points 
based on the MDS weights, we would conclude that 
most of the participants ranked the items in a similar 
fashion.  Finally, the performance of the UMDS is 
typically evaluated in terms of the proportion of 
variability in the observed rankings that the model 
accounts for.  A higher proportion of explained 
variance indicates that the model better accounts for 
the variability in the observed rankings.  These issues 
will be revisited in the extended example below. 
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Plackett-Luce model 

One of the more useful modeling tools available 
specifically for use with ranking data is the Plackett-
Luce model (PLM; Plackett, 1975).  This modeling 
approach has been used in a variety of settings 
involving ranked data, such as in medicine (Mollica & 
Tardella, 2014), management science (Farias, 
Jagabuthla, & Shah, 2013), wine tasting (Bodington & 
Malfeito-Ferreira, 2017), school psychology 
(Bargogliotti, et al., 2021), and ecological research 
(Lohr, Cox, & Lepczyk, 2012).  There have also been a 
number of developments and extensions to the PLM, 
including a mixture model version (Collins & Tardella, 
2017), a Bayesian estimator (Mollica & Tardella, 2020), 
a mixed effects PLM (Bockenholt, 2001), a robust 
estimator for crowd sourced preference data (Han, 
Pan, & Tsang, 2018), and a nonparametric PLM 
(Caron, Teh, & Murphy, 2014).  In addition, there are 
a number of in-depth treatments focused on the 
application of the PLM, to ranked data (e.g., Turner, et 
al., 2020; Yu, Gu, & Xu, 2019; Turner, van Etten, Firth, 
& Kosmidis, 2018; Alvo & Yu, 2014; Glickman & 
Hennessey, 2015).   

 The PLM is designed to model the probability of a 
specific rank ordering for a set of I items and is based 
on Luce’s axiom (Luce, 1959), which states that for a 
set of items, S, the probability of selecting item i from 
the set is given by: 

𝑃(𝑖|𝑆) =
𝛼𝑖

∑ 𝛼𝑖𝑖∈𝑆
    (5) 

Where 

𝛼𝑖 =Worth of item i 

Based on this axiom, we can view the rank ordering of 
the I items as a sequence of choices from the items 
remaining in set S.  In other words, when an individual 
ranks a set of options from most to least favored, they 
are selecting the most favored item from the set of S 
items that have yet to be ranked.  Once the first ranking 
is made, the individual selects the next item to rank 
from the remaining S-1 item, and so on.  The 
probability of ranking the items in a particular order 

(𝜋) can then be expressed in the PLM as: 

𝑃(𝜋) = ∏
𝛼𝑖

∑ 𝛼𝑖𝑖∈𝐴𝑖

𝐼
𝑖=1     (6) 

Where 

𝐴𝑖 =Set of alternatives from which item i is chosen. 

The model parameters can be estimated using either 
maximum likelihood or Bayesian methods.  For the 
example described below, maximum likelihood was 
used. 

The key parameter in the PLM is item worth, 
which reflects the importance of the item and 
corresponds to the ranks provided by the subjects.  
Higher values of the worth reflects greater importance 
of the item as reflected in the rankings.  In other words, 
items that are given a higher rank will also have a higher 
worth value.  In order for the model to be identified 
(i.e., for the item parameters to be estimable), the 
worth parameter for one of the items is typically set to 
0 so that the other item worth values reflect the relative 
importance of each non-reference item vis-à-vis the 
reference.  An alternative method for identifying the 
model is to set the mean of the worth parameters as 
the reference, in which case the individual item worth 
values reflect the importance of the item to the average 
item worth.  Finally, we can also view the relative 
importance of the items in terms of the probability of 
its being selected as the most important.  This 
conversion can be done using the axiom expressed in 
equation (5).  The PLM also produces standard errors 
for the item parameters.  These standard errors can be 
used to construct a test statistic for testing the null 

hypothesis that 𝛼𝑖 = 0.  When a single item serves as 
the reference, this statistic tests whether a given item 
has equal worth to the reference, whereas when the 
item worth mean is the reference the test would assess 
whether a specific item’s worth differs from the mean 
worth across items. 

Fit of the PLM to the data is reflected in the 
residual deviance statistic, which is part of the standard 
output of the model.  The residual deviance reflects the 
difference between the rankings predicted by the PLM 
and those actually observed in the data.  When this 
difference is small, the model is said to fit the data well, 
whereas large values of the deviance indicate poor 
model-data fit.  Determining whether the deviance is 
large can be done by comparing it to the degrees of 
freedom either using the Chi-square statistic  or the 
ratio of the deviance to the residual degrees of freedom 
(Agresti, 2013).  When the model fits well, the ratio of 
the deviance to degrees of freedom is approximately 1.  
In addition, the deviance is distributed approximately 
as a Chi-square statistic with residual degrees of 
freedom, and can therefore be used for statistical 
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hypothesis testing (Turner, et al., 2021a; Agresti).  The 
null hypothesis of this test is that the model fits the 
data well.  Therefore, a non-significant Chi-square test 
result would mean that the model provides good fit to 
the observed data.  It should be noted that the users-
manual for the PlackettLuce R package indicates 

that the residual deviance can be used for inference 
regarding model-data fit (Turner, et al.).  However, it is 
also true that there is not a great deal of literature 
investigating the distribution of this statistic in the 
context of the PLM.  Therefore, it is recommended 
that interpretation of the deviance in this context be 
undertaken with some care, and the reader continue to 
read new research regarding the use of the deviance 
statistic and other methods for assessing model fit. 

Plackett-Luce model with covariates 

One of the primary advantages to researcher using 
the PLM is that it can be extended to investigate 
relationships between the rankings and other variables 
associated either with the item or the rater.  This PLMC 
model is particularly useful when the researcher is 
interested in ascertaining the extent to which specific 
qualities of the raters (or of the items) is related to the 
item worth parameters.  For example, it may be of 
interest to know the extent to which an employee’s 
years of experience is related to how they rank the 
importance of various aspects of their job.  The PLMC 
allows the researcher to include years of experience as 
a covariate for the set of ranks, and provides an 
estimate of this relationship in the form of a coefficient 
very similar to what is obtained using linear regression.  
Mathematically, the PLMC is written as 

𝑙𝑜𝑔(𝛼𝑖) = 𝛽0 + 𝛽1𝑥𝑗1 + ⋯ + 𝛽𝑝𝑥𝑗𝑝  (7) 

Where 

𝛽0 =Intercept that is fixed by the constraint ∑ 𝛼𝑖 =𝑖

1. 

𝛽𝑝 =Coefficient for covariate p 

𝑥𝑗𝑝 =Value of covariate p for rater j 

If the hypothesis test for 𝛽𝑝 is statistically significant, 

we would conclude that there is a relationship between 

the covariate and the worth of item i.  The sign of 𝛽𝑝 

reflects the nature of this relationship (positive or 
negative).  Referring back to the years of experience 
example, a statistically significant positive coefficient 
with respect to the item number of vacation days 

would indicate that employees with more experience 
are more likely to rate the number of vacation days 
provided by their employer as being a more important 
aspect of their job. 

The fit of the PLMC can be compared with that 
of the PLM using the difference between the deviance 
statistics for the two models, which is distributed as a 
Chi-square statistic with degrees of freedom equal to 
the difference in degrees of freedom for the two 
models.  The null hypothesis of this test is that the two 
models fit the data equally well.  Therefore, a 
statistically significant Chi-square difference test would 
indicate that the models provided different degrees of 
model fit.  In addition to the Chi-square, fit of the 
models can be compared using the Akaike Information 
Criterion (AIC), which penalizes the deviance for 
model complexity (i.e., the number of parameters 
estimated by the two models).  The model with the 
smaller AIC is considered to be the better fitting, once 
model complexity is taken into consideration. 

Plackett-Luce tree (PLT) 

An alternative approach for investigating 
relationships between rater covariates and the PLM 
worth parameters is with a Plackett-Luce tree (PLT).  
Like the PLMC, the PLT is designed to assess whether 
specific rater traits are associated with rater 
characteristics.  However, rather than expressing this 
relationship in the form of a linear model, as in 
equation (7), the PLT is based upon a recursive 
partitioning algorithm (Strobl, Wickelmaier, & Zeileis, 
2011).  This algorithm can be used to automatically 
identify interactions among the covariates with respect 
to item worth values.  The PLT algorithm works using 
the following steps: 

1. Fit the PLM to the full sample. 

2. Assess the stability (statistically significant 
differences) of worth parameters across 
differing values of each possible split for each 
covariate.   

3. If instability is found, split the sample using the 
covariate with the largest statistically significant 
difference at the cut-point where the model fit 
improves the most. 

4. Repeat steps 1-3 within each split until no 
statistically significant instability (differences in 
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the covariates) is found for the worth 
parameter. 

The results of the PLT comes in the form of a graph 
displaying the tree resulting from the algorithm 
described above. 

Taken together, the PLM, PLMC, and PLT 
provide the researcher with information regarding not 
only the relative importance of each item, but also how 
rankings of these items might (or might not) be related 
to traits associated with members of the sample.  In 
addition, the specific item parameters and their 
associated standard errors can be used to develop 
statistical tests comparing the relative ranking of items 
versus one another.  Thus, whereas descriptive 
statistics such as the means and relative frequencies of 
ranks provide a general description of the sample 
rankings, the results of Plackett-Luce family of models 
give researchers insights into individual factors that are 
associated with ranking behavior, and whether two 
items are likely to have different rankings in the 
population.  If the comparison of the worth parameters 
for two items are found to differ statistically, we would 
conclude that indeed respondents viewed them as 
having different levels of importance.  This 
comparison, along with the model examining 
relationships between covariates and rankings are 
demonstrated in the example below. 

 

Methods 

As stated above, the goal of this manuscript is to 
provide the reader with a full example of how ranked 
data can be modeled using libraries in the R software 
package.  Therefore, a real world example dataset was 
used, with the R code included in the appendix and the 
data available at 
https://scholarworks.umass.edu/pare/vol27/iss1/7/.  
In this section, the sample, measures, and data analytic 
techniques are described.  The results of these analyses 
are then presented in the next section of the 
manuscript. 

Study participants 

The participants in this study were 41 non-tenure 
track higher education faculty members from whom 
data were collected using a survey administered by a 
researcher who was independent of the university.  The 
faculty were employed in a variety of departments 

across a single university, with varying levels of 
experience and education.  Participants completed 
informed consent forms and their data was completely 
anonymous. 

Methods 

Study participants were presented with a set of six 
job qualities and asked to rank them from most to least 
important.  The items to be ranked were: 

Contract length 

Salary 

Health care plan 

Workload (number of classes taught) 

Chair support 

Travel budget 

Respondents were asked to rank the data from most to 
least important (1=most important to 6=least 
important), with tied rankings not allowed.  In 
addition, each respondent was asked the number of 
years that they had been teaching and their highest 
degree.  The years of experience were collected as 1=0-
5 years, 2=6-10 years, 3=11-15 years, 4=16-20 years, 
and 5=21+ years.  The degree data were classified as 
1=BA/BS, 2=MA/MS, 3=Specialist/Masters+, 
4=PhD/EdD.  Data were collected using the Qualtrics 
(Qualtrics, 2020) online platform.   

Data analysis 

A variety of analyses were used to explore the 
rankings of the job qualities listed above.  These 
analyses correspond to those described in the previous 
section of the manuscript, and were conducted using 
libraries from the R software package (R Core Team, 
2021).  Descriptive statistics, including the sample 
mean ranks, as well as the pairwise and marginal ranks 
were used to provide insights into typical behavior of 
the respondents.  These descriptive statistics were 
obtained using the destat function within the pmr 

R library (Lee & Yu, 2015).  The null hypothesis of 
random ranking behavior was also tested using the Chi-
square statistic, which was calculated using statistics 
obtained from the destat function.  In addition, 

UMDS, using the smacofRect function from the 

smacof R library (Mair, de Leeuw, Groenen, & Borg, 

2021), was employed in order to gain insights into 
relationships of the ranks among the six items, and the 

https://scholarworks.umass.edu/pare/vol27/iss1/7/
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respondents.  UMDS was fit to the data using the 
Euclidean distance, as well as the Kendall and 
Hamming distance measures.  Results for all three 
approaches were quite similar, and only those for the 
Euclidean distance are reported below.  The PLM was 
fit to the data using the PlackettLuce function 

from the R PlackettLuce library (Turner, 

Kosmidis, Firth, & van Eten, 2021b) in conjunction 
with the prefmod library (Hatzinger & Maier, 2017), 

with quasi-standard errors for the worth parameter 
estimates obtained using the qvcalc R library (Firth, 

2020).  The PLMC with both experience and highest 
degree serving as covariates was fit to the data using 
the rol function from the pmr R library.  Finally, a 

PLT was used to investigate the possibility of 
interactions between highest degree and years of 
teaching experience in terms of the ranking behavior.  
This tree model was employed using the pltree 

library from the PlackettLuce R library.   

 

Results 

Sample description 

The mean ranks for the six items appear in Table 
5.  Salary was the highest ranked job quality on average, 
followed by health care.  The least favored (lowest 
sample means) items were travel budget and workload.  
Table 5 also includes the pairwise rank comparisons for 
the set of items.  Recall that these values reflect the 
number of times that the row item was ranked higher 
than the column item.  For example, Salary was ranked 
higher than contract by 30 of the 41 study participants.  
From these results, we can confirm that salary was the 
most popular (highest ranked) job quality, with 
pairwise comparison values ranging between 30 and 38 
when compared to the other items; i.e., it received a 
higher rank than each of the other qualities from 
between 30 and 38 of the study participants.  In 
contrast, travel budget was not ranked higher than any 
of the other items by a majority of the respondents.  It 
performed best compared to workload, against which 
it was given a higher rank by 13 individuals.   

The marginal frequencies, which appear at the 
bottom of Table 3, provide more evidence regarding 
the most and least popular items.  Salary received the 
highest rank 24 times, and the second highest rank 7 
times, and was never the lowest ranked item.  Health 
care was the highest ranked item for 4 respondents, 

and the second highest for an additional 19 
respondents.  In contrast to these popular items, the 
travel budget was the least valued by study participants, 
with 31 of them ranking it either lowest or next to 
lowest.  Workload yielded a bimodal distribution of 
ranks with 11 individuals placing it third, and 13 
placing it fifth. 

In order to assess whether the pattern of ranks 
departed from what we would expect were they 
completely random, the Chi-square test was used, as 
described above.  The mean rank under the null 

hypothesis for this calculation was 
𝑡+1

2
=

6+1

2
= 3.5.  

The Chi-square statistic for this problem was 78.99, 
with degrees of freedom of 5 (6-1), yielding a p-value 
less than 0.001.  Thus, if =0.05, we would reject the 
null hypothesis and conclude that there was a 
nonrandom pattern to the ranks provided by the 
participants.  In other words, we would conclude that 
in the population some of the job qualities are ranked 
as more important than are others. 

UMDS 

In order to gain insights into how the ranked items 
are related to one another, UMDS with 2 dimensions 
was fit to the data using the smacofRect function 

from the smacof R library.  The plot was created 

using the mdpref function from the pmr R library.  

This model explained approximately 55% of the 
variance in the rankings.  Figure 1 displays the locations 
of the 6 items and 41 respondents on dimensions 1 and 
2.  First, we note that salary is most central with respect 
to the study participants, which reflects that it was the 
highest ranked of the items by many individuals.  In 
contrast, travel budget and workload lay furthest from 
the cloud of participant points, which is expected given 
that they were the lowest ranked items for most raters.  
The locations of health care, contract and chair support 
relative to the participants indicates their midlevel 
rankings as also shown in Table 5. 

Based on the distribution of job categories in 
Figure 1, dimension 1 appears to reflect the contrast 
between workload and contract, such that those who 
ranked workload relatively more highly were also more 
likely to rank contract terms relatively lower.  In 
addition, dimension 1 also reveals that ranks for salary 
and health care were closely related to one another; i.e., 
those who ranked salary highly also tended to rank 
health care highly.  The second dimension displays the
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Figure 1.  Plot for ranked items and study participants for the 2-dimensional MDS solution 

 

 

 

contrast between travel budget versus contract, chair 
support, and workload.  In other words, within 
individual respondents, those who ranked travel 
budget relatively higher tended to rank the other three 
items somewhat lower.  Once again, on the second 
dimension salary and health care were located in 
relatively close proximity to one another. 

 

Plackett-Luce model 

Two versions of the PLM were fit to the data, with the 
first treating the first item in the list (contract) as the 
reference and the second using the mean worth as the 
reference.  Both models were fit using the 
PlackettLuce function from the 

PlackettLuce R library.  Table 6 includes  the  

worth   estimates,   standard errors,  Z  test  statistics 
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Table 5.  Descriptive statistics for ranks of six employment items 

 Contract Salary Health care Workload Chair support Travel budget 

Mean 3.42 1.81 2.73 4.34 3.61 5.10 

(SD) rank (1.66) (1.45) (1.23) (1.30) (1.55) (1.18) 

Pairwise rank comparisons 

Contract 0 11 13 26 23 33 

Salary 30 0 34 38 32 38 

Health care 28 7 0 36 28 35 

Workload 15 3 5 0 17 28 

Chair support 18 9 13 24 0 34 

Travel budget 8 3 6 13 7 0 

Marginal rank frequencies 

 1 2 3 4 5 6 

Contract 8 5 6 11 6 5 

Salary 24 7 5 4 1 0 

Health care 4 19 7 7 3 1 

Workload 0 3 11 5 13 9 

Chair support 5 5 9 9 8 5 

Travel budget 0 2 3 5 10 21 

 

Table 6.  Plackett-Luce model parameter estimates for job characteristics data with reference item 

Item Worth Standard error Z p 

Contract* 0 NA NA NA 

Salary 1.57 0.30 5.20 <0.001 

Health care 0.77 0.28 2.68 0.007 

Workload -0.48 0.28 -1.73 0.08 

Chair support -0.09 0.27 -0.35 0.73 

Travel budget -1.17 0.30 -3.92 <0.001 

*Contract is the reference item 

 

(ratio of estimate to standard error), and the p-values 
associated with the test statistic.  From these results, 
we see that salary and health care both had statistically 
significant positive worth values, meaning that they 
were higher ranked (more valued) than contract terms 

by the participants.  Conversely, travel budget had a 
statistically significant negative coefficient, indicating 
that it was rated as less valuable than contract terms.  
The worth estimates for workload and chair support 
were not significantly different than that of contract.   
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If we are interested in comparing the worth values 
for items other than the reference, we can obtain the 
covariance matrix for the parameter estimates and use 
them with the standard errors to construct a test 
statistic.  For example, we may wish to compare the 
worth of the two most popular items, salary and health 
care.  The covariance between the parameter estimates 
is 0.05, a value which can be obtained using R.  The 
test statistic for comparing the two coefficients is then 
calculated as: 

𝑧 =
𝛼𝑠𝑎𝑙𝑎𝑟𝑦−𝛼ℎ𝑒𝑎𝑙𝑡ℎ 𝑐𝑎𝑟𝑒

√𝑆𝐸𝑠𝑎𝑙𝑎𝑟𝑦
2 +𝑆𝐸ℎ𝑒𝑎𝑙𝑡ℎ 𝑐𝑎𝑟𝑒

2 −2𝐶𝑂𝑉(𝛼𝑠𝑎𝑙𝑎𝑟𝑦,𝛼ℎ𝑒𝑎𝑙𝑡ℎ 𝑐𝑎𝑟𝑒)
=

1.57−0.77

√0.302 +0.282 −2(0.05)
= 3.06  

Because this value is greater than 2 (which is associated 

with a 2-tailed  of 0.05), we would reject the null 
hypothesis that the two items have equivalent worth 
values and conclude that the worth of salary was 
greater than that of health care.  In other words, the 
raters values salary more than they did health care. 

Table 7 includes the worth estimates, standard 
errors, and associated hypothesis test statistics and p-
values for each item when the mean worth served as 
the reference.  Recall that in this case, the worth 
estimates reflect the importance of an item relative to 
the mean ranking across the items.  Thus, salary and 
health care were both ranked significantly higher than 
average, whereas workload and travel budget were 
ranked significantly lower than average by the 
participants.  Contract and chair support had ranks that 
were statistically equivalent to the overall average.  The 
estimated probabilities that each item received the  

highest rank appear in Table 8.  We can see that salary 
clearly was most likely to be ranked first, followed by 
health care.  Each of the other items had probabilities 
of being top ranked at or below 0.1. 

 As described above, we can evaluate the 
performance of the PLM using the residual deviance 
statistic, which for this model was 382.72 with 516 
degrees of freedom.  The ratio of the two was 0.74, 
which based on the commonly used rule of thumb 
(Agresti, 2013) would suggest good fit of the model to 
the data.  If we assume that the deviance follows the 
Chi-square distribution, the p-value for the goodness 
of fit test was 0.99, also indicating that the PLM fits the 
data well.  Again, use of the deviance statistic in this 
way has been suggested as possible based on the 
PlackettLuce users-manual (Turner, et al.,  

2021b). However, further work in this regard would 
seem to be warranted, given that there has not been a 
great deal of empirical evaluation as to its performance 
as a measure of fit.. 

Plackett-Luce model with covariates and Plackett-
Luce trees 

In this example, it is of interest to assess whether 
there are relationships between specific characteristics 
of the participants, level of education and years of 
experience, and the worth of each item.  This analysis 
can be conducted using the PLMC, which is described 
above and is fit to the data using the PlackettLuce 

function.  The models for each covariate were fit using 
R and the resulting model coefficients and standard 
errors appear in Table 9.  Statistical significance for 
each coefficient can be inferred using the ratio of the 
model parameter estimate and its associated standard 
error.  The null hypothesis being tested by this statistic 

 

Table 7.  Plackett-Luce model parameter estimates for job characteristics data with mean as the reference  

Item Worth Standard error Z p 

Contract -0.10 0.18 -0.53 0.60 

Salary 1.47 0.20 7.24 <0.001 

Health care 0.65 0.18 3.65 <0.001 

Workload -0.58 0.18 -3.18 0.002 

Chair support -0.19 0.18 -1.06 0.29 

Travel budget -1.27 0.21 -6.08 <0.001 
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Table 8.  Probabilities that job quality items received the highest rank  

Item Probability of being highest ranked 

Contract 0.10 

Salary 0.49 

Health care 0.22 

Workload 0.06 

Chair support 0.09 

Travel budget 0.03 

 

Table 9.  Coefficients and standard errors for experience and degree with item worth 

Item Experience 

coefficient 

Experience 

standard error 

Degree coefficient Degree standard 

error 

Contract 1.54 1.18 0.90* 0.45 

Salary -0.14 0.29 -0.04 0.60 

Health care 0.40 0.32 -0.09 0.68 

Workload 0.31 0.30 -0.52 0.64 

Chair support -0.04 0.30 -0.01 0.59 

Travel budget -0.12 0.31 0.33 0.60 

 

is that there is not a relationship between the covariate 
and the item worth, with values greater than 2 leading 
to rejection of the null.  Based on the results in Table 
9, the relationship between degree and contract length 
was positive and statistically significant.  Therefore, we 
conclude that participants with more advanced degrees 
tended to give contract length higher ranks.  None of 
the other coefficients were statistically significant. 

The fit of the PLM and PLMC can be compared 
in order to determine whether inclusion of the model 
covariates provides better fit to the data than does 
excluding them.  As noted in the descriptions of the 
PLM and PLMC, this comparison can be made using a 
Chi-square difference test and the AIC statistic.  The 
Chi-square test statistic for this example is calculated 
using deviance values and degrees of freedom obtained 
from the R output as: 

𝜒Δ
2 = 𝜒PLM

2 − 𝜒PLMC
2 = 447.69 − 441.43 =

6.26   

 

The degrees of freedom for 𝜒Δ
2 is calculated as: 

𝑑𝑓Δ = 𝑑𝑓PLM − 𝑑𝑓PLMC = 610 − 600 = 10. 

We can then use R to obtain the p-value for 𝜒Δ
2 with 

𝑑𝑓Δ. 

pchisq(q=6.26,df=10,lower.tail=FALSE) 

The resulting p-value is 0.79, which is larger than our 

 of 0.05 meaning that we do not reject the null 
hypothesis that the models yield the same fit to the 
data.  In other words, including the experience variable 
as a predictor of the ranks does not improve the fit of 
the model to the data.  In addition, as noted above, we 
can compare the fit of the models using the AIC where 
the model with the smaller value is taken to yield the 
best fit after accounting for model complexity. The 
AIC for the PLM without covariates was 457.69, 
whereas the AIC for the PLMC with experience as the 
covariate was 461.43.  Thus, we would conclude that 
after we account for model complexity, the PLM with 
no covariates yielded better fit to the data.  
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 We can go through the same steps for the PLMC 

with highest degree as the covariate.  The 𝜒Δ
2 and 𝑑𝑓Δ 

are calculated below. 

𝜒Δ
2 = 447.69 − 426.93 = 20.56   

𝑑𝑓Δ = 610 − 600 = 10. 

The p-value for this test statistic is 0.02, based on the 
following R command. 

pchisq(q=20.56,df=10,lower.tail=FALSE) 

The AIC for the model with grad degree was 446.93, 
which was smaller than the AIC for the model without 
covariates (457.69).  Taken together, these results 
indicate that the PLMC with highest degree yielded 
better fit to the data than did the PLM with no 
covariates.  This finding confirms the statistical 
significance of the relationship between degree and 
contract length, which was described above. Finally, 
in order to further investigate the relationships 
between participant covariates and item worth, a PLT 
was fit to the data using the pltree function from 

the PlackettLuce R library.  As described above, 

the PLT is particularly effective for exploring 
interactions of the covariates with regard to the item 
worth parameters.  For this example, the PLT model 
did not find any statistically significant splits with 
regard to either of the covariates.  Therefore, the 
resulting tree was simply a single node including all of 
the participants.  The worth estimates yielded by the 
tree were very close to those provided by the PLM as 
displayed in Table 4. 

Synthesis of results 

Now that the results from the various analyses 
have been described, it is important to synthesize them 
in order to obtain a more complete picture of the 
rankings considered in this study.  Based upon both the 
raw sample means, the centrality of its position in the 
UMDS plot, and the PLM worth estimates, it is clear 
that respondents valued the salary paid by their 
employer most highly, followed by the health care 
insurance coverage that they received.  They ranked the 
travel budget as being least important.  In addition, the 
hypothesis tests associated with the PLM revealed that 
salary was the single most important job quality of 
those included in this study.  In sum, respondents 
valued salary as the most important job quality, 
followed by health care coverage, and they valued 
travel budget least among the traits that they ranked. 

The results of the UMDS revealed that 
respondents who valued salary highly also tended to 
value health care highly as well.  In other words, the 
two job qualities that were most highly ranked 
individually were also ranked highly by the same 
participants.  In addition, the UMDS results revealed 
that rankings of contract terms, chair support, and 
workload were loosely associated with one another 
such that higher ranks for one were associated with 
higher ranks for the others.  In contrast, individuals 
who ranked travel budget more highly tended to give 
lower ranks to contract terms, chair support, and 
workload.  With respect to qualities of the respondents 
themselves, the results presented above showed that 
individuals with a higher terminal degree were more 
likely to give higher ranks to the terms of the contract.  
Otherwise, none of the demographic information 
associated with the respondents was related to their 
ranking behavior.   

Taken together, we can see that the respondents 
tended to value salary and health care coverage the 
most, that rankings on these two job qualities were 
positively correlated with one another, and that 
between the two salary was significantly more 
important to the respondents than was health care.  In 
addition, these were the only two job qualities that were 
likely to be ranked first by most respondents.  The 
rankings of other aspects of the job, including contract 
terms, chair support, and workload were positively 
associated with one another, though not as strongly as 
was the case for salary and health care.  Contract term 
rankings were also positively related to level of the 
terminal degree of the study respondent.  The scores 
given to travel budget were not related to rankings 
given to any other job quality, and indeed the travel 
budget was viewed as the least important from among 
those included in this study.  

 

Conclusion 

The goal of this manuscript was to describe a 
strategy for analyzing ranking data, and to demonstrate 
the utilization of that strategy with an existing dataset.  
Ranking data presents special challenges to researchers, 
not least because the scores provided by members of 
the sample are partially deterministic.  In other words, 
when an individual is asked to rank a set of 6 items 
from most to least favorable, the rankings of the first 
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5 items will by necessity determine the rank of the 6th 
item.  In addition, ranking data is generally of interest 
en toto, rather than each ranked item being an 
independent entity.  The fact that the permutations 
from which the rankings emerge do not have a natural 
linear ordering also makes use of standard statistical 
methods less than optimal.  As we saw in the extended 
example presented above, the primary research interest 
was in how the full set of items was ranked, as opposed 
to the ranking for a single item.  Furthermore, when 
covariates were included in the analysis, we were 
interested in how they were related to full pattern of 
rankings rather than the rank given to a single item in 
the set.  For these reasons, specific methods for dealing 
with ranking data are necessary, with standard models 
and approaches being too limited when it comes to 
understanding the full pattern of ranked scores. 

 Although the models for ranking data may be 
unique, the overall strategy for examining ranks is 
relatively similar to that used with other types of data.  
xFor example, we will generally want to begin our 
analysis with an examination of descriptive statistics.  
In this context, description of the sample involves 
calculating the mean and standard deviation of the rank 
for each item.  In addition, it is important to present 
both pairwise and marginal rank frequencies as a way 
of fully exploring the patterns that members of the 
sample valued the various items.  We saw, for example, 
that whereas salary and health care were clearly the two 
most important job qualities for the non-tenure line 
faculty, the third and fourth most important items were 
less clear.  Contract had a slightly higher sample mean 
than did chair support, and work load was more 
frequently ranked third than either of these other two 
items.  On the other hand, chair support had nearly 
equal numbers of respondents ranking it third, fourth, 
and fifth.  Thus, it is difficult to say with much certainty 
what the third most important job quality is, for 
example.  The descriptive information provides useful 
insights into this issue. 

The strategy for analyzing ranking data also 
included models for examining relationships among 
the rankings and between the rankings and covariates 
associated with the raters themselves.  MDS is a 
powerful tool for investigating how item rankings are 
related to one another, and how individual respondents 
cluster with respect to the ranked items.  In this case, 
we saw that salary and health care were consistently the 

two most highly ranked items, given that they appeared 
close together in the middle of the participant cluster.  
In contrast, the travel budget lay furthest from the 
participant cloud and from the other ranking items.  
Together, these results reflect the consistent lack of 
importance with which the participants rated this 
element.   

 The relative importance of the ranking items can 
be further explored using the PLM.  This approach 
provides information about the worth placed on the 
items by the study participants, as well as whether these 
worth values differ from one another in the 
population.  A major advantage of the PLM is its ability 
to incorporate both item and person covariates for the 
rankings.  In the contract faculty example, two 
participant level covariates were included in the model 
in order to ascertain whether they are associated with 
the individual worth assigned to each of the items.  
From these analyses, we saw that the highest degree 
attained by the respondent was associated with the 
worth assigned to contract length, such that those with 
a higher terminal degree gave this item a higher rank. 

 The statistical tools necessary to analyze ranking 
data are available in the R software environment.  As 
demonstrated here, they can be applied in a relatively 
straightforward manner and the results integrated so as 
to provide a full picture of the ranking patterns and the 
covariates that are associated with them.  Therefore, 
researchers who are faced with this type of data have a 
variety of options available to them for gaining deeper 
insights into the rankings provided by a sample than 
could be obtained through more traditional statistical 
tools that treat items in isolation.  It is hoped that the 
current manuscript and the accompanying R code will 
prove to be helpful for researchers who work with 
ranking data. 
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Appendix 
 

library(readxl) 
library(pmr) 
library(PlackettLuce) 
library(prefmod) 
library(qvcalc) 
library(smacof) 
 
#READ AND PREPARE THE DATA# 
#Experience: 1=0-5, 2-6-10, 3=11-15, 4-16-20, 5=21+ 
#Degree: 1=BA/BS, 2=MA/MS, 3=Specialist, 4=PhD 
 
faculty.rankings<-data.frame(faculty.survey[,1:6]) 
faculty.rankings.agg<-rankagg(faculty.rankings) 
 
#DESCRIPTION OF THE SAMPLE# 
faculty.desc<-destat(faculty.rankings.agg) 
faculty.desc #DESCRIPTIVES 
sd(faculty.survey$contract) 
sd(faculty.survey$salary) 
sd(faculty.survey$health_care) 
sd(faculty.survey$workload) 
sd(faculty.survey$chair_support) 
sd(faculty.survey$travel_budget) 
 
#SMACOFF# 
faculty.smacof = smacofRect(faculty.survey[,1:6], itmax=1000)  
plot(faculty.smacof, joint=TRUE, plot.type="confplot", what="both")  
plot(faculty.smacof, plot.type = "Shepard")  
 
#MUTLIDIMENSIONAL PREFERENCE# 
mdpref(faculty.rankings.agg, rank.vector=T) #2 dimensions 
mdpref(faculty.rankings.agg, rank.vector=T, ndim=3) #3 dimensions 
 
#TEST FOR RANDOM MEAN# 
null_mean<-rep(3.5,6) 
A<-((12*41)/(6*(6+1))) 
chi<-A*sum((faculty.desc$mean.rank-null_mean)^2) 
chi 
dchisq(chi,5) 
 
#COMPARE RANKINGS ACROSS GROUPS# 
bachelors.rankings<-faculty.survey[ which(faculty.survey$degree==1),1:6] 
graduates.rankings<-faculty.survey[ which(faculty.survey$degree>1),1:6] 
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bachelors.rankings.agg<-rankagg(bachelors.rankings) 
graduates.rankings.agg<-rankagg(graduates.rankings) 
 
bach.ranks<-destat(bachelors.rankings.agg) 
grad.ranks<-destat(graduates.rankings.agg) 
chisq.test(cbind(as.vector(bach.ranks$mar), as.vector(grad.ranks$mar))) 
fisher.test(cbind(as.vector(bach.ranks$mar), as.vector(grad.ranks$mar))) 
 
t.test(bachelors.rankings[,1],graduates.rankings[,1]) 
t.test(bachelors.rankings[,2],graduates.rankings[,2]) 
 
#PHI COMPONENT AND WEIGHTED DISTANCE BASED MODEL# 
faculty.phicom<-phicom(faculty.rankings.agg) 
faculty.wdbm<-wdbm(faculty.rankings.agg, dtype="foot") 
faculty.phicom@min 
faculty.wdbm@min 
faculty.phicom@coef 
faculty.wdbm@coef 
 
#PlackettLuce analysis# 
faculty.rankings2<-as.rankings(faculty.rankings) 
faculty.mod_mle <- PlackettLuce(faculty.rankings2, npseudo=0) 
coef(faculty.mod_mle) 
coef(faculty.mod_mle, log=FALSE) 
summary(faculty.mod_mle)  #CATEOGRY 1 WORTH IS THE REFERENCE 
summary(faculty.mod_mle, ref=NULL)  #MEAN WORTH IS THE REFERENCE 
 
faculty.mod_mle.itempars<-itempar(faculty.mod_mle, vcov=TRUE) 
 
#QUASI STANDARD ERRORS# 
faculty.qv<-qvcalc(faculty.mod_mle) #QUASI STANDARD ERRORS 
summary(faculty.qv) 
plot(faculty.qv, xlab="Job qualities", ylab="log of worth", main="Log worth of 

job qualities for contract faculty") 
 
 
#ITEM PROBABILITIES FOR TOP RANK# 
faculty.itempars<-itempar(faculty.mod_mle, ref= 1, log = TRUE, vcov=TRUE) 
attributes(faculty.itempars) 
 
itempar(faculty.mod_mle, ref=1:6) 
faculty.itempars.probabilities<-itempar(faculty.mod_mle, ref= 1:6) 
attributes(faculty.itempars.probabilities) 
faculty.itempars.probabilities 
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#PLACKETTLUCE MODEL WITH COVARIATES# 
faculty.survey$grad<-ifelse(faculty.survey$degree>1,1,0) 
summary(rol(faculty.rankings2,faculty.survey$experience)) 
summary(rol(faculty.rankings2,faculty.survey$grad)) 
 
#PLACKETTLUCE TREE# 
faculty.n<-nrow(faculty.survey) 
faculty.g<-group(faculty.rankings2, index = rep(seq_len(faculty.n), 1)) 
faculty.tree <- pltree(faculty.g ~ grad+experience, data = faculty.survey, 

minsize = 2, maxdepth = 3) 
faculty.tree 
plot(faculty.tree) 
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