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Although educational research and evaluation generally occur in multilevel settings, many analyses 
ignore cluster effects. Neglecting the nature of data from educational settings, especially in non-
randomized experiments, can result in biased estimates with long-term consequences. Our 
manuscript improves the availability and understanding of artificial neural networks, an underutilized 
method trending in other disciplines. This method also shows promise for dealing with challenges 
faced by educational researchers, such as analyzing clustered data. Therefore, we simulated data to 
generalize the potential benefits of artificial neural networks to different data types. We also compared 
artificial neural networks to more familiar methods and investigated the time it demanded to perform 
each technique. Hence, readers can decide when it may be more appropriate to use one method 
instead of another. 
 

Introduction 

 Education research and evaluation are dynamic, 
often due to their multilevel and observational nature. 
The methodological challenges associated with 
multilevel, observational data include potential 
selection bias, non-negligible clustered effects, and 
omitted variable bias (Barnard et al., 2013; Bellara, 
2013; Yang et al., 2017). Theoretically, researchers 
address each of these challenges to estimate unbiased 
causal effects of educational interventions and policies. 
But, in practice, attempts to account for complexity, 
such as students nested within schools and the many 
possible combinations of interactions between 
student-level and school-level confounders, may lead 
to low convergence rates and inaccurate estimates. 
Furthermore, “big data” makes model specifications 
challenging to align with theory-based relationships 
due to many confounders. 

 This study aims to improve the availability and 
understanding of artificial neural networks (NN), a 

long-existing method underutilized in education 
research. NN is robust to assumptions of conventional 
statistical models and does not require manual 
specification of complex relationships (Collier & Leite, 
2020). In recent simulation and empirical studies 
related to public health and drug safety, NN produced 
more accurate estimates than conventional methods 
while estimating propensity scores for single-level 
treatments (Setoguchi et al., 2008). The current paper 
demonstrates how to apply NN to estimate propensity 
scores for scenarios more likely to appear in 
educational research. 

 

Literature Review 

 Rosenbaum and Rubin (1983) first introduced 
propensity score methods to deal with selection bias in 
single-level observational experiments. Later, several 
researchers extended propensity score methods to 
multilevel settings (Arpino & Mealli, 2011; Eckardt, 
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2012; McCormick et al., 2013; Xiang & Tarasawa, 
2015). However, as mentioned above, these 
researchers focused exclusively on binary 
(treatment/control) treatments. Zhu et al. (2015) 
pointed out an important gap in the literature, i.e., no 
propensity score approach to cover continuous, 
multilevel treatments in public health. 

 Continuous, multilevel treatments also are 
common in education research and evaluation. A 
highly relevant example due to Covid-19 is online 
learning. A continuous treatment could be students’ 
time spent using online test-prep platforms before 
taking an end-of-course examination (e.g., Aeite et al., 
2019; Mitten et al., 2021). If students exposed to the 
online treatment live in different places (each place 
with its own educational standards), a multilevel 
propensity score analysis with continuous treatment 
exposure could reduce selection bias. This technique 
would require several special considerations, including 
deciding how to model the impact of confounding 
variables at the student and home environment levels. 
Failure to solve covariates’ hierarchy may lead to biased 
estimated effects of the online test-prep exposure 
(Thoemmes, 2009). With the growing appeal of 
propensity score methods and the surging need to 
study causal relationships in educational environments, 
researchers need to be informed and apply the most 
optimal estimation methods. 

Propensity Scores in Multilevel Settings 

 When estimating generalized propensity scores 
(GPS) for multilevel settings, the traditional 
approaches include single-level (SL), fixed-effect (FE), 
random-intercepts (RI), and random-slopes (RS) 
models. We discuss these approaches in the following 
section. 

 Generalized Linear Models.  A SL model takes 
no notice of the hierarchical nature of the data, while 
both FE, RI, and RS models include a cluster-specific 

intercept for each 𝑗 cluster to explain the unobserved 
heterogeneity among clusters (Schuler et al., 2016).  

The individual level covariates X and cluster level 
covariates W are included in a SL model (Thoemmes 
& West, 2011): 

𝑒(𝑥, 𝑤) =  𝛽0 +  ∑ 𝛽𝑝𝑋𝑖 + ∑ 𝛽𝑞𝑊𝑗 +𝑄
𝑞=1

𝑃
𝑝=1

 ∑ 𝛽𝑖𝑊𝑗𝑋𝑖
𝐼
𝑖=1        (1) 

where 𝑒(𝑥, 𝑤) is the estimated GPS, 𝛽0 is an intercept, 

∑ 𝛽𝑝𝑋𝑖
𝑃
𝑝=1  is a vector of regression coefficients and 

individual-level covariates, ∑ 𝛽𝑞𝑊𝑗
𝑄
𝑞=1  is a vector of 

regression coefficients and cluster-level covariates, and 

∑ 𝛽𝑖𝑊𝑗𝑋𝑖
𝐼
𝑖=1  denotes all possible interactions between 

individual- and cluster-level covariates.  

 A FE model includes a dummy coded indicator C 
for each cluster: 

𝑒(𝑥, 𝑤) = ∑ 𝛽𝑝𝑋𝑖 + ∑ 𝛽𝑐𝐶𝑖 +  ∑ 𝛽𝑖𝐶𝑖𝑋𝑖 
𝐼
𝑖=1

𝐶
𝑐=1

𝑃
𝑝=1    

(2) 

where ∑ 𝛽𝑖𝐶𝑖𝑋𝑖 
𝐼
𝑖=1 represents all possible interactions 

between individual-level covariates and indicators of 
each cluster. In practice, researchers should not include 
cluster level covariates in FE models to avoid perfect 
collinearity. 

 Random effects models may include random 
intercepts, slopes, or both. A full random effects model 
estimates generalized propensity scores based on both 
fixed and random effects: 

𝑒(𝑥, 𝑤) =  𝛾00 +  ∑ 𝛾𝑝0𝑋𝑖𝑗
𝑃
𝑝=1 +  ∑ 𝛾0𝑞𝑊𝑗 +𝑄

𝑞=1

 ∑ 𝛾1𝑖𝑊𝑗𝑋𝑖𝑗 +  𝑢0𝑗 +  ∑ 𝑋𝑖𝑗𝑢1𝑗 
𝑃
𝑝=1

𝐼
𝑖=1   (3) 

where ∑ 𝛾𝑝0𝑋𝑖𝑗
𝑃
𝑝=1  represents the regression 

coefficients and individual-level covariates,  

∑ 𝛾0𝑞𝑊𝑗
𝑄
𝑞=1  is a vector of regression coefficients and 

cluster level covariates, ∑ 𝛾1𝑖𝑊𝑗𝑋𝑖𝑗
𝐼
𝑖=1  is the vector of 

all interactions between individual-level and cluster-

level covariates, 𝑢0𝑗 is the random effects influencing 

the intercept of each cluster j, and ∑ 𝑋𝑖𝑗𝑢1𝑗
𝑃
𝑝=1  is the 

random effects influencing each of the regression 
slopes of individual-level covariates. The random 
effects, u are assumed to the normal distribution with 

a mean of zero and an estimated variance of 𝜏 
(Thoemmes & West, 2011).  

 Previous literature on GPS estimation for 
multilevel settings is mixed. For example, Arpino and 
Mealli (2011) favored the FE model, while Kim and 
Seltzer (2007) favored random effects models. Both 
approaches allow the treatment assignment to differ 
across clusters. However, FE models are limited in that 
they 1) may not properly estimate propensity scores 
when sample sizes within clusters are small and 2) may 
have convergence issues if the number of clusters is 
large (Thoemmes & West, 2011). Nevertheless, an 
advantage of FE models is that they remove all 
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confounding due to cluster-level covariates without 
specifying said covariates in the propensity score 
model. An RI model is the simplest case of a random 
effects model based on the FE model with a randomly 
varying cluster effect (Schunck, 2013). A full random 
effects model (RS) is often perceived as the most 
realistic model because it allows heterogeneity in both 
intercepts and slopes (Li et al., 2013).  

 Generalized linear models are attractive for 
propensity score analysis because they are relatively 
familiar to educational researchers and are easy to carry 
out in statistical software (e.g., R, SAS). However, there 
are several limitations for most familiar methods, 
including insufficient attention to crucial assumptions 
(e.g., the correct concretization of complex 
relationships), small sample bias with maximum 
likelihood, and unstable estimates with large numbers 
of covariates (Keller et al., 2013; Maroco et al., 2011; 
Schumacher et al., 1996; Setoguchi et al., 2008; Weitzen 
et al., 2004). Any of these limitations could lead to 
failing to achieve covariate balance, resulting in biased 
estimates of treatment effects (Rubin, 2010). This 
article will discuss covariate balance further in a later 
section as it is an essential outcome for our study. Next, 
we discuss artificial intelligence (AI), an academic 
discipline started in 1956 (Crevier, 1993).  AI is gaining 
popularity in the context of propensity score 
estimation. 

 Artificial Intelligence.  Today, artificial 
intelligence or “AI” is a trending topic. AI is “a 
system’s ability to interpret external data correctly, to 
learn from such data, and to use those learnings to 
achieve specific goals and tasks through flexible 
adaptation” (Kaplan & Haenlein, 2019). AI can be 
helpful in propensity score estimation because it can 
identify underlying patterns between treatments and 
confounding variables using machine learning without 
being explicitly programmed. 

 Many classification algorithms in machine learning 
can outperform the classical methods for propensity 
score estimation, mainly when processing the data with 
many covariates, including neural networks (NN), 
linear classifiers, decision trees, particularly 
classification and regression tree (CART), and boosting 
(Glynn et al., 2006; McCaffrey, 2004; Setoguchi, 2008, 
Weitzen et al., 2010). For example, Breiman (2001) 
pointed out that NN performs well with small sample 

sizes (i.e., when seven or fewer observations exist per 
confounder).  

 Artificial Neural Networks.   McCulloch and 
Pitts (1943) introduced NN, a series of algorithms 
motivated by the formation of the nervous system. NN 
uses layers of nodes, and each node exchanges 
information similarly to neurons in the brain. 
Information is transferred based on calculations 
specified by the researcher. Various types of NN have 
been developed for different purposes. For example, 
Apple’s “Hey Siri” uses NN to discover voice patterns. 
Nevertheless, all NN include one input layer (i), a user-

specified number of “hidden” layers (ℎ𝑛), and an 
output layer (o). All layers contain a number of nodes 
(also specified by the researcher) that connect to other 
nodes in the next layer by weights (Duda & Hart, 
2006). Deep learning, a subset of machine learning, 
focuses solely on NN with multiple hidden layers. 
Figure 1 is an example of a deep learning NN because 
it includes multiple hidden layers.  

 The inner workings of a NN (for this study) can be 
divided into several steps: (1) the information is input 
to the input layer, which transfers the information to 
the hidden layer; (2) the interconnection between the 
two layers randomly assigns weights to each input; (3) 
a bias is added to each input after the weights are 
multiplied by each input separately; (4) the weighted 
sum is transferred to the activation function; (5) the 
activation function selects nodes for feature extraction; 
(6) the model applies an activation function to the final 
layer to provide the output; and, (7) the weight is 
adjusted, and the output is backpropagated to 
minimize the error (Chen, 1995; Chen et al., 2019; 
Zhang et al., 2018). 

 Training neural networks. Collier and his 
colleagues (2021) trained NN to estimate GPS for 
continuous treatments using data on food and 
nutrition by 1) splitting the data for training and testing 
(80% and 20% of the entire data set), 2) selecting 
hyperparameters (e.g., the number of nodes), 3) 
checking the training data set with the continuous 
treatment values while holding the treatment and 
covariates fixed, and 4) reweighting iteratively until the 
mean squared error was low. 

 Training NN improves the accuracy of propensity 
scores,  which  is  critical  before  proceeding  to 
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Figure 1. Neural Network Design 

 

 

subsequent steps in any propensity score analyses. Too 
little training results in a misspecified propensity score 
model. Training too much will yield a well-performing 
NN on the training dataset but not on the test data 
(Brownlee, 2018; Zhang et al., 2019). The former 
model is an underfit model with high bias and low 
variance, while the latter is an overfit model with low 
bias and high variance. In both cases, the model is not 
generalized. A generalized model will detect patterns in 
similar data, such as new data from the same 
population of students. Researchers can improve an 
underfit model by training with more data, whereas 
addressing an overfitting model may be achieved by 
tailoring its hyperparameters and complexity 
(Lawrence & Giles, 2000; Srivastava et al., 2014; Tetko 
et al., 1995).  

Computational Budget. Readers new to NN 
may consider the effort that goes into training 
computationally expensive. NN relies on several 
hyper-parameters with varying degrees of complexity; 
thus, these methods are onerous for educational 
researchers to apply to their unique research studies. 
Therefore, the means to automatically solve some 
problems in these design choices have been identified 
to reduce computational cost. 

 The research area that seeks to reduce the human 
effort in training is called “automated machine 
learning” (AutoML). There are many definitions of 
AutoML relative to its use and its benefits to 
educational researchers. For example, AutoML 
reduces the demand for intricate data science, enabling 
both educational content experts (often non-machine 
learning experts) to automatically build machine 
learning models without requiring too much machine 
learning knowledge (Zöller & Huber, 2021).  

 Several studies suggest that NN trained with 
AutoML has better results than NN trained by 
machine learning experts (Bergstra et al., 2011, 2013; 
Thornton et al., 2013). For example, Google AutoML 
(https://cloud.google.com/automl/) enables 
researchers to train high-end models with little effort 
and machine learning expertise. AutoML may be an 
effective strategy for reducing the computational 
resources needed to train NN in educational settings.   

 Covariate Balance. Covariate balance refers to 
the similarity of the distribution of covariates for 
different treatment exposure levels or groups (Austin, 
2019). If covariate balance is not achieved, researchers 
should change the GPS model (e.g., include 
interactions) (Rubin, 2010). 

https://cloud.google.com/automl/
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 Stratification is historically an approach to control 
the confounding from covariates. It is trendy for 
removing the confounding from a small number of 
covariates. As researchers add covariates, the number 
of strata increases and the sample size within the strata 
become scarce. Numerical methods and graphical 
visualizations can assess the balance of covariates when 
studied participants are stratified on the estimated GPS 
(Rai et al., 2018). The current study illustrates 
stratification, but readers who need to control for 
many covariates are encouraged to review the literature 
on alternative methods (McCaffrey et al., 2013). 

 Methodological investigations of alternative 
approaches to estimating propensity scores are on the 
rise (Ferri-García & Rueda, 2020). In the last decade, 
NN, particularly deep learning, gained popularity in 
various fields; however, no research applies deep 
learning models to estimate GPS for continuous 
multilevel treatments. To date, Collier and Leite (2021) 
is the only study to estimate GPS with NN for 
continuous treatments in the single-level setting. Still, 
they only focused on comparing different machine 
learning algorithms and did not assess covariate 
balance, computational time, or bias in average 
treatment effects (ATEs). Hence, this article adds to 
the existing literature by 1) estimating GPS with NN 
for continuous treatments in multilevel settings and 2) 
comparing GPS estimated with NN and traditional 
methods based on covariate balance, computational 
time, and bias in ATEs. 

 

Methods 

Monte Carlo Simualtion Study 

 A Monte Carlo simulation study allowed us to 
measure the performance of GPS estimation methods 
on across hypothetical scenarios relevant to 
educational settings. We generated the clustered data 
(e.g., students nested within schools) with three 

individual-level covariates (𝑋1 − 𝑋3) and one group-

level covariate 𝑊. The continuous treatment 𝑍𝑖𝑗 

mimicked student exposure to an online test-prep 
program using the linear regression model:  

𝑍𝑖𝑗 =  𝛽0 +  𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 + 𝛽3𝑋3𝑖𝑗 + 𝜋 𝑊𝑗 +

𝑠0𝑗 + 𝑠1𝑗𝑋1𝑖𝑗 + 𝑠2𝑗𝑋2𝑖𝑗 + 𝑠3𝑗𝑋3𝑖𝑗 + 𝑟𝑖𝑗 , 

where 𝑍𝑖𝑗 referred to the continuous treatment of 

the ith individual in the jth cluster, 𝛽1  , 𝛽2, 𝛽3 were the 
effects of level-1 (i.e., student level) covariates on 
treatment which were specified as .4, -.3, and .4 

respectively. The individual level covariates (𝑋1 − 𝑋3) 
were generated randomly from normal distributions. 

𝑋1𝑖𝑗 and 𝑋2𝑖𝑗 were independent of cluster (cluster-

level) membership, whereas 𝑋3𝑖𝑗 was generated 

depending on cluster membership.  Also, 𝜋 =  −.4 
was the regression coefficient of the cluster-level 
covariate on the continuous treatment which was 

defined as 𝜋𝑗~ 𝑁(0, 𝜎𝑗
2). 𝑠0𝑗 was the cluster intercepts 

drawn from a normal distribution. The random slopes 

of individual-level covariates 𝑠1𝑗, 𝑠2𝑗 , 𝑠3𝑗 were set to 

zero which assumed the same effects of individual-
level covariates on treatment across clusters. The term 

𝑟𝑖𝑗 represented the student-level residuals and were 

drawn from a logistic distribution with mean of zero 

and variance of 𝜋2/3. For a half of our total iterations 
(i.e., 500), we omitted one individual level covariate in 
the GPS model to introduce omitted variable bias. 
Such bias occurs in most quantitative analyses in 
educational research and can bias estimated ATEs. 

The continuous outcome was generated with the 
following model:  

𝑌𝑖𝑗 =  𝛾0 +  𝛾1𝑍𝑖𝑗 + 𝜂1𝑋1𝑖𝑗 + 𝜂2𝑋2𝑖𝑗 +

𝜂3𝑋3𝑖𝑗 + 𝜅 𝑊𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑇𝑖𝑗 + 𝜀𝑖𝑗, 

where 𝑌𝑖𝑗 were the continuous outcomes of the ith 

individual in cluster j. 𝜂1, 𝜂2, 𝜂3 are the fixed effects of 
three individual-level covariates on the outcomes 

which were set as 0.4, -0.3, and 0.4 respectively, and 𝜅 
is the fixed effect of the cluster-level covariate which 
was set as -0.4. We simulated our effects of covariates 
on the outcomes based on the range of effects from 
existing propensity score simulation studies (e.g., 

Abdia et al., 2017; Collier et al., 2021). The intercept 𝛾0 

was specified as 1 and 𝛾1 was 0.5, the effect of the 
treatment on the outcome. We selected a small effect 
of the treatment because educational interventions 
frequently have small effects (Kraft, 2018). The 

variances of both random intercept 𝑢0𝑗 and the 

random slopes of treatment 𝑢1𝑗 were set to 1 and the 

values of 𝑢0𝑗 and 𝑢1𝑗 were drawn from normal 

distributions. The variance of 𝜀𝑖𝑗, which represented 
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the within-cluster variance, was also drawn from 
normal distributions.  

Also, we manipulated the sample sizes (n) by using 
different cluster sizes and different equally sized 

clusters of 𝑛𝑗 : (J, 𝑛𝑗) = (50, 500), (50, 1000), (50, 1500); 

(100, 1000), (100, 2000), (100, 3000); (200, 2000), (200, 
4000), and (200, 6000). We performed all simulations 
in R (R core, 2020). The entire experiment was 
performed on a Linux operating system. However, the 
packages we used to train models to estimate GPS were 
not operating system-dependent. 

 Machine Learning Training Procedures. We 
used 80% of each simulated dataset for training. We 
used the remaining 20% to test the accuracy of 
propensity score approaches with mean squared error 
(MSE) as a performance measure. According to 
Dobbin and Simon (2011), optimal splitting typically 
ranges from 40% to 80% of the full data. The MSE is 

 𝑀𝑆𝐸 =  
1

𝑁
∑ (�̂�𝑛 − 𝑅𝑛)2𝑁

𝑛=1 ,   (4) 

where �̂� is a vector of 𝑁 predicted GPS and 𝑅 is a 
vector of actual GPS. Collier et al. (2021) also used 
MSE to train NN to estimate GPS for single-level 
continuous treatments. 

 Propensity Score Approaches. Five different 
models were used to estimate GPS: a single-level 
model (SL) with cluster-level confounders, a random 
intercept model (RI), a random slope model (RS), a 
single level neural network (NN) with cluster-level 
confounders, and a multilevel neural network 
(HLM.NN) model with cluster indicators. 

 We estimated regression-based models using the lm 
function and the lme4 package in R (Bates et al., 2015). 
The deep learning models were implemented with the 
automl package (Boulangé, 2020). Unlike existing 
Monte Carlo simulations that required researchers to 
manually test the different combinations of NN model 
parameters, the automl tool that we used allowed for 
autotuning of hyperparameters (e.g., number of nodes, 
number of hidden layers) with the algorithm called 
metaheuristic PSO (Particle Swarm Optimization). 
This optimization algorithm started with a random set 
of hyperparameters (considered as a random particle in 
the space) and discovered the optimal solution for 
estimating GPS in the converging process. We used 
two functions in the automl package to do the automatic 
training (i.e., automl_train) and make predictions based 

on the trained model (i.e., automl_predict). The output 
predictions were the estimated GPS.  

Propensity Score Stratification. After obtaining 
the GPS from each of the five models, we followed the 
steps proposed by Hirano and Imbens (2004) and Leite 
(2017) to evaluate these approaches. We stratified 
subjects into five equal-size mutually exclusive subsets 
based on the obtained GPS. Within each stratum 
where subjects were assigned roughly similar GPS, the 
effects of continuous treatment were estimated by 
fitting regression models.  

 Average Treatment Effect Estimation. Then, 
the overall ATEs were estimated by pooling the strata-
specific estimates across five strata (Austin, 2011; 
Rosenbaum & Rubin, 1984). We modeled the 
outcomes as a function of the continuous treatment 
and estimated generalized propensity scores.  

 Analysis. Our study focused on three outcomes 
that are of interest to educational researchers using 
propensity score analyses: 1) percentage of covariates 
that achieved balance, 2) bias of ATEs, and 3) 
computational budget. We used descriptive statistics 
and graphs, split-plot ANOVA, and classification and 
regression trees (CART) to capture the differences in 
outcome variables under different manipulated 
conditions. The descriptive statistics and graphs helped 
us explain the bias and variance of ATEs. Generalized 

eta squared (GES) 𝜂2 effect sizes from the split-plot 
ANOVAs were used to examine the contribution of 
manipulated factors where cluster size, number of 
clusters, and omitted variable bias were the between-
dataset conditions, and five GPS estimation methods 
were the within-dataset factor. We fit the CART model 
using the rpart package (Therneau & Atkinson, 2019). 
CART helped us better capture interactions among 
manipulated conditions and visualized the simulation 
results. 

 

Results 

Evaluation of Covariate Balance 

 Our first outcome, the percentage of covariates 
that achieved balance, was based on covariates with an 
absolute value of standardized mean difference less 
than 0.1 (Leite, 2017). Each of our manipulated 
conditions had a significant effect on covariate balance, 

as expressed by 𝜂2 shown in Table 1. The highest-
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ranking order effect was the three-way interaction 
between the number of clusters, cluster size, and the 
GPS method. A regression tree in Figure 2 provides 
more insight into the interaction.  

 At the top, the root node shows that 94% of 
covariates achieved balance on average. The number 
below indicates the proportion of the simulations in 
this node (here at the top level, it is all simulations, 
100%). Next, traveling down the tree branches to the 
following nodes, Figure 2 shows if the cluster size was 
10, move left, and if 20 or 30, move right. If the cluster 
size was 10, only 88% of covariates achieved balance, 
while the other bucket shows on average 97% of 
covariates achieved balance.  

 Further down the left side of the regression tree, 
when HLM.NN, RS, and NN estimated GPS, 83% of 
the covariate achieved balance on average. On the 
other hand, when the other methods (SL and RI) were 

implemented, 96% of the covariates achieved balance 
on average. When the SL and RI models were 
implemented, and the number of clusters was 50, 88% 
of the covariates achieved balance on average. The 
final node on the right side, “the number of clusters = 
50,” shows that 100% of simulations achieved balance 
for other numbers of clusters (i.e., 100 and 200). 

 The right side of the regression tree shows that 
when cluster size was not ten and NN estimated GPS, 
91% of covariates achieved balance. And when other 
methods estimated GPS and the number of clusters 
was not set at 100, all simulations performed 100% 
covariate balance. More complexity was shown when 
the number of clusters was 100. For example, when the 
number of clusters was 100 and GPS was estimated 
with HLM.NN and SL, with the cluster size of 20, 87% 
of the covariates achieved balance.

 

Table 1. Effects of Manipulated Conditions on Covariate Balance 
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Figure 2. CART Diagram for Effects of Manipulated Conditions on Covariate Balance 

 

 

Bias of Average Treatment Effects 

 We kept the population’s ATE equal to 0.5 across 
simulations. Figure 3 shows box plots of the ATEs 
across all conditions. The box plots indicate that ATE 
using GPS from the HLM.NN had the most minor 
variance and bias. Whereas the ATEs calculated from 
GPS estimated with SL and the NN performed most 

similar in terms of variance and bias. Outcome models 
based on the RI and RS models had the largest bias and 
variance. 

 Table 2 depicts the mean bias of ATEs. Across 
conditions, the RI and RS models yielded higher bias 
compared with deep learning models and the SL 
model. The HLM.NN performed very similarly for 
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both with and without omitted variable bias. All other 
methods, including NN, yielded comparably higher 
bias when covariates were omitted from the GPS 
model. To better understand the bias and variance of 
ATE in the presence of omitted bias, we ran three 
additional simulations and plotted the continuous 
treatment and outcomes and the regression line. 

 Plots in Figure 4 were created using three 
additional simulated datasets. Ideally, the linear 
regression line would fit mid-way through the actual 

data points. The lines estimated with GPS from the 
HLM.NN best fit the data. The plots align with the 
mean bias shown in Table 2 because the regression 
lines based on the NN and the SL models fit the data 
better than the RI and RS model, but not as well as the 
HLM.NN. Visually, there appears to be slight variance 
across the plots. Little variance across methods also 
aligns with box-plots in Figure 3, because the plots 
represent a single condition, and the box plots show all 
conditions. We would expect more variance across 
conditions rather than within a condition. 

 

Figure 3. Box Plot of Average Treatment Effects 
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Table 2. Summary of Mean Bias of Average Treatment Effects 

 

 

Computational Budget 

Table 3 shows the effects of manipulated 
conditions on the amount of time to train the GPS 

models. As expected, 𝜂2 indicated substantial 
differences in training time based on the GPS method 

(𝜂2= .04), the number of clusters (𝜂2= .01), and cluster 

size (𝜂2= .01). We also found significant effects of the 
following two-way interactions: 1) the number of 
clusters and GPS method, and 2) omitted variable bias 
and method. The following three-way interactions 
impacted the training time: 1) number of clusters, 
omitted variable bias, and GPS method; 2) the number 
of clusters, cluster size, and GPS method. To better 
explain these differences, we provided a table of the 
average training times (seconds) for each condition in 
Table 4. 

Table 4 shows how much longer it took to train 
the deep learning models than generalized linear 
models. There was also a two-way interaction between 
the number of clusters and the GPS method. In most 
cases, training time increases with increases in the 
number of clusters for deep learning techniques, but  

training time does not vary much in similar cases 
with other methods. Readers are encouraged to review 
Seger (2018) for more information on one-hot 
encoding and how it may improve computability with 
machine learning models. We did not one-hot encode 
our clusters, which may have reduced the efficiency of 
the deep learning techniques. 

Average training times did not vary at all for the 
SL model, yet training time was considerably different 
at each cluster size with deep learning models. In most 
cases, training times were reduced when variables were 
omitted from the GPS models. And when variables 
were omitted and there were fewer clusters, the average 
training times were reduced for deep learning models. 

 

Discussion 

 Educational research and evaluation rely on 
multilevel data, making accounting for both individual-
level and cluster-level confounders vital for accurate 
findings. Austin (2011) explained how GPS methods 
offer a less parametric alternative to traditional  
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Figure 4. Regression Line Fit Across Simulated Data 
 

 

 

regression adjustment when accounting for multilevel 
confounders. While applying propensity score 
techniques to educational data has become more 
frequent in recent years (Harris & Horst, 2016), the 
literature on GPS for continuous multilevel exposure 
is limited to regression-based estimation. Collier et al. 
(2021) first introduced deep learning as a more robust 
estimator to sample size and treatment distribution in 
a Monte Carlo simulation for single-level settings. The  

present study extends that methodological research to 
the multilevel setting and deepens the discussion 
around the practicality of machine learning in 
educational studies. For example, existing propensity 
score simulation studies (e.g., Chen, 2014; Leite et al., 
2015) mainly focus on covariate balance and ATEs, but 
this study asks researchers to consider the 
computational budget and the overall efficiency of 
machine learning for propensity score estimation.
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Table 3. Effects of Manipulated Conditions on Computational Budget 

 

Table 4. Computational Budget in Seconds for Deep Learning and Generalized Linear Models 
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Summary of Findings  

Overall, the HLM.NN performed the best across 
all simulated conditions. The propensity scores 
estimated with HLM.NN consistently yielded the most 
accurate ATEs. To date, no previous studies 
investigated continuous multilevel settings with deep 
learning. However, our findings using HLM.NN were 
expected based on recent Monte Carlo simulations on 
single-level continuous treatments and proofs from 
seminal works (Collier et al., 2021; Rosenbaum & 
Rubin, 1983; 1984).  Collier et al. (2021) found that the 
deep learning model correctly estimated GPS. And 
Rosenbaum and Rubin’s (1983, 1984) proofs provide 
evidence that a correctly specified propensity score 
model will balance covariates and result in an unbiased 
estimate of the treatment effect. 

 Aligned with Shuler et al. (2016), cluster size and 
the number of clusters were significant predictors of 
covariate balance in our study. When the cluster size 
was 10, and the number of clusters was 50, the RI 
model averaged a 96% covariate balance. The single-
level NN averaged 97% covariate balance for larger 
cluster sizes (>10). Covariate balance was least optimal 
using the single-level NN model when dealing with 
omitted variable bias, cluster size was 10, and the 
number of clusters was equal to 50 and 200. 

 Existing literature on cluster heterogeneity in 
propensity score estimation almost exclusively focuses 
on the omitted variable bias at the cluster level. In said 
cases, multilevel models (e.g., RI and RS models) can 
achieve a good balance (Arpino & Mealli, 2011; Fan, 
2020: Li et al., 2013; Schuler et al., 2016). Instead, our 
simulation focused on omission at the individual level, 
a case where this robustness did not hold for 
conventional multilevel models. While models with 
random intercepts and slopes are not robust to the 
omission of individual-level confounders, our findings 
suggest that deep learning models provide more 
protection against omitted individual-level 
confounders. In addition, deep learning may be 
particularly advantageous when individual-level 
characteristics have not been measured or are not 
available to the researcher. 

 

Implications for Practice in Education 

Educational research and evaluation generally 
occur in a multilevel setting (Raudenbush & Schwartz, 

2020). Our findings confirm earlier methodological 
results and reveal some new implications for 
educational researchers who conduct propensity score 
analysis with continuous treatments in multilevel 
settings. Therefore, we recommend the following 
based on this paper’s results: 

1. Sample GPS methods to see if they lead to 
similar covariate balance and ATEs. 

2. Researchers should select variables with 
caution. Adding even a single confounder to a 
deep learning model can yield drastically 
different performance. 

3. Deep learning may be helpful to confirm a 
theory about the treatment assignment. For 
example, better covariate balance using a NN 
may indicate an interaction in the treatment 
assignment (e.g., cross-level interaction). 

4. NN architectures are not created equally. 
Researchers using the same data but different 
training methods (e.g., the 80/20 rule) and 
different hyperparameters can yield various 
performances.  

5. Novice users should consider packages that 
automate the process of tuning 
hyperparameters, but it can take a while to run 
when they have a large number of covariates. 

 Recent criticism of machine learning for 
propensity score estimation presumes extreme time 
and computer memory requirements (Alam et al., 
2019). The present Monte Carlo experiment provided 
evidence that training time for deep learning models 
far exceeds conventional approaches. However, more 
running time yielded better performance in terms of 
achieved covariate balance and less ATE bias thanks to 
automation. In addition, automation can save 
educational researchers time by not having to manually 
specify hyperparameters. 

 Using NN for propensity score estimation is 
available in many computer programming languages 
(i.e., Python, C++) and statistical packages, including 
R (Nagy, 2009) and SAS. For example, NeuroLab is an 
open-source NN library for Python, which contains 
training algorithms and a flexible framework to create 
and explore NN (García Roselló, 2003). Sknn package 
in Scikit-Neural Network library for Python can easily 
and quickly train deep neural networks for continuous 
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and categorical treatments/interventions (Maryasin & 
Lukashov, 2020). In R, the automated machine 
learning (automl) package is a quick tool to automate 
machine learning algorithms to real-world problems.  

 

Limitations of the Study 

Findings from this study provide applied 
researchers with an easy-to-use method for GPS 
estimation with deep learning NN and demonstrate 
how NN can achieve more accurate ATEs when 
individual-level cofounders are missing. However, this 
study is not exhaustive of all possible conditions when 
dealing with real-world data. In particular, we did not 
test how deep learning handles multiple types of 
missing data- such as omitted variable bias at the 
cluster level and data missing not at random (MNAR). 
Investigating missing data with deep learning is critical 
because analyses may result in biased ATEs if missing 
data are not appropriately addressed using propensity 
score methods (Malla et al., 2018). 

Stratification potentially reduces bias due to the 
misspecification of treatment assignment. We found 
robustness to omitted variable bias (i.e., 
misspecification) using stratification with the 
HLM.NN. However, propensity score methods such 
as weighting and hybrid procedures are avenues for 
future research. 

It could be indicated that we did not compare 
GPS estimation and outcome model combinations. 
The challenge is that NN does not have slopes like a 
regression. Since the slope is typically used to measure 
the ATE in propensity score analysis, research is 
needed to convert NN’s weights into slopes before 
testing estimation and outcome model combinations.  

Machine learning is still new to most educational 
researchers, but the procedures we demonstrated can 
reduce the anxiety around training and selecting 
hyperparameters. While it may take time for automated 
methods such as AutoML to train the deep learning 
model to estimate propensity scores, most applied 
researchers only work with one dataset. Therefore, 
applied researchers do not have to worry much about 
the computational burden of NN compared to 
methodologists running thousands of simulated 
datasets. Methodologists who wish to use NN in 
simulations and other users who simulate data for 

power analyses should consider methods like parallel 
computing to make the code run faster. 

 A recent review of graduate training in educational 
statistics and research methods programs in the U.S. 
shows that there was little to no mention of AI and 
machine learning methods (Randall et al., 2021). We 
believe this is why NN is understudied in educational 
research today. AI is a moving target that always seems 
advanced until people use it and get familiar with it. 
Hopefully, our paper moves the target further by 
keeping educational researchers up-to-date on the 
effectiveness of NN- a trending topic in propensity 
score analysis. 
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