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Large-scale assessment survey (LSAS) data are collected via complex sampling designs with special
features (e.g., clustering and unequal probability of selection). Multilevel models have been utilized to
account for clustering effects whereas the probability weighting approach (PWA) has been used to
deal with design informativeness derived from the unequal probability selection. However, the
difficulty of applying PWA in multilevel models (MLM) has been generally underestimated and
practical guidance is scarce. This study utilizes an empirical as well as a Monte Carlo simulation
investigation to examine the performance of the multilevel pseudo maximum likelthood (MPML)
estimation based on information derived from the Early Childhood Longitudinal Study Kindergarten
cohort of 2010-2011 (ECLS-K:2011). Variance components and fixed effects estimators across four
estimation methods including three MPML estimators (i.e., weighted without scaling, weighted size-
scaled and weighted effective-scaled) and the unweighted estimator are provided. Practical guidance
about the use of sampling weights in MLM analyses of LSAS data is also offered.
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Introduction

Nowadays, large-scale education data have been
regularly analyzed to provide generalizable research
evidence that can inform education research, policy
and practice. Such data have been collected through
large-scale assessment surveys (LSAS) conducted by
national agencies such as the National Center for
Education Statistics (NCES) and international
organizations such as the International Association for
the Evaluation of Educational Achievement (IEA) and
the Organization for Economic Co-operation and
Development (OECD). LSAS typically employ multi-
stage, complex sampling designs that involve
stratification and cluster sampling. For example, multi-
stage sampling has been used in international LSAS

such as the Program for International Student
Assessment (PISA), the Trends in International
Mathematics and Science Study (TIMSS) and the
Progress in International Reading Literacy Study
(PIRLS) (Martin & Mullis, 2012; OECD, 2014) .

LSAS data are advantageous to education
researchers. First, they provide reliable measures of
students’ academic achievement as well as plentiful
information about students, their family backgrounds
and schools that allow education researchers to
investigate various research questions. Second, LSAS
are designed to provide information about national
probability samples of students that represent well-
defined populations of interest (e.g., 4™ graders in the
U.S.), which facilitates researchers making explicit
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projections of statistical inference from samples to
populations.

The complex sampling designs used in LSAS
involve some special features. One important aspect of
complex sampling designs is unequal probability of
selection, which can take place at different stages of the
sampling design. For example, to ensure representation
of minority students in the sample, American Indian
students may be sampled with a higher probability than
white students. Similarly, rural schools may be sampled
with a higher probability than suburban schools to
assure representation of schools from the countryside.
When unequal probability of selection is utilized in
multi-stage sampling, the ensuing sample may be
informative at that stage. When the sample is
informative, the distribution of a variable (e.g., the
mean and the variance) may be different than that in
the population. For example, because of the
informativeness of the sampling design, the
distribution of student achievement in mathematics in
the sample could have a lower mean than that in the
population. Therefore, it is important in statistical
inference to take into account the informativeness of
sampling designs whenever it exists (Laukaityte &
Wiberg, 2018).

Another important facet of complex sampling
designs is the nesting structure of the data (e.g,
students nested within classrooms and schools). This
grouping of individuals into larger units (e.g., students
grouped into schools) creates a dependency in the data.
As a result, the assumption about the independence of
observations (and the residuals) which is fundamental
in typical linear models such as multiple regression,
becomes no longer tenable. Specifically, students in the
same classroom or school are more alike compared to
students in different classrooms or schools. This is
typically known as the clustering effect and is a
consequence of cluster sampling. LSAS in the field of
education sample clusters such as schools or
classrooms in which students are grouped into and the
generated clustering effect needs to be addressed
appropriately during data analysis. In practice, this
translates to adjusting the standard errors of the
regression estimates for clustering, which typically
results in augmented standard errors.

To analyze data collected from LSAS that
incorporate  multi-stage  sampling,  appropriate
statistical tools are needed. In particular, multi-level

models (MLM) have been increasingly used to analyze
LSAS data in educational research because they fit well
with the multi-stage sampling scheme. MLLM take into
account clustering effects by design (i.e., the estimation
naturally adjusts the standard errors of estimates),
partition the outcome variance into components
aligned with different levels that correspond to
sampling stages, and define conceptually the model
used at each level (e.g., student, classroom, school)
(Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).
However, conducting MLM analysis does not
necessarily account for the informativeness of the
sample derived from the unequal probability of
selection of units in LSAS. To tackle this issue,
weighted MLLM estimation has been proposed and
used.

Nevertheless, the difficulties and challenges
involved in applying sampling weights to MLM
analysis of LSAS data have been partly neglected. First,
these LSAS datasets provide many different kinds of
weights that may perplex the analysts. For instance,
TIMSS 2011 provides many weights variables
including: (1) weighting factors and weights for
nonresponse adjustment at the school, classroom and
student  level respectively (e, WGTFACI,
WGTADJ1, WGTFAC2, WGTAD]J2, WGTFAC3
and WGTAD]J3); (2) school and student overall
weights (i.e., SCHWGT and TOTWGT); (3) senate
weights (l.e., SENWGT) and house weights (ie.,
HOUWGT); (4) replicate weights (i.e., Jackknife zone
and replicate code). Subsequently, selecting the
appropriate weights for various model-based analyses
could be challenging. Although LSAS data user
manuals generally recommend incorporating sampling
weights in the data analysis, practical guidance
regarding how to use sampling weights in MLM
analysis is not available. Therefore, it is likely that
analysts would encounter difficulties in selecting the
appropriate weights for statistical analysis, such as
which weights to use in a two-level model with
students and schools. Second, unlike unweighted
analysis or weighted single-level model analysis, there
is some variation in MLM analyses that incorporate
sampling weights. As a result, it is unclear which
weighted estimation method would be preferred and
under what conditions.

Therefore, providing research evidence and
practical guidance to inform researchers about how to
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incorporate sampling weights in MLM analysis of
LSAS data is seriously needed. The purpose of the
present study is timely. It focuses on a commonly used
computational method, the design-based probability
weighting approach (PWA), which typically involves
MLM. Specifically, this study provides empirical and
Monte-Carlo simulation evidence of the performance
of a broadly used estimation method, namely the
multilevel pseudo maximum likelihood (MPML)
(Asparouhov, 2006; Rabe-Hesketh & Skrondal, 20006).
Data from the Early Childhood Longitudinal Study —
Kindergarten Class of 2010-2011 (ECLS-K:2011) are
utilized (Tourangeau et al., 2018).

Literature Review

With regard to weighted MLM methods, three
main approaches have been proposed and discussed.
One proposed method is the weighted ANOVA
method for one-way random-effects ANOVA models
(Graubard & Korn, 1996; Jia et al,, 2011; Korn &
Graubard, 2003). Another proposed method is the
probability-weighted iterative generalized least squares
(PWIGLS) based on the iterative generalized least
squares  (IGLS) approach  (Goldstein,  1980;
Pfeffermann et al., 1998). The third proposed method
is the MPML estimation method (Asparouhov, 20006;
Rabe-Hesketh & Skrondal, 2006). MPML and
PWIGLS are typically the preferred methods
compared to the weighted ANOVA approach because
of their applicability including software development.
Specifically, based on the literature and authors’
investigation on software programs, the MPML has
been used in STATA, Mplus and SAS whilst the
PWIGLS has been implemented in LISREL, HLLM and
MLwiN (Chantala & Suchindran, 2006; West &
Galecki, 2011).

Overall, there is no consensus in the literature
about the best weighted estimation method that
involves MLM. One simulation study suggested that
the PWIGLS outperformed the MPML method (Cai,
2013), whereas other studies found that the MPML
worked better than the PWIGLS in terms of
computational simplicity, flexibility, and applicability
(Asparouhov & Muthen, 2007; Kovacevi¢ & Rai, 2003;
Leite et al., 2015). Evidence seems to suggest that the
MPML could be easily used in more complicated
statistical models for continuous, binary and ordinal

outcomes (e.g., see Asparouhov, 2006; Asparouhov &
Muthén, 2007; Grilli & Pratesi, 2004; Koziol et al.,
2017; Rabe-Hesketh & Skrondal, 2006), whereas the
PWIGLS is mainly used to model continuous
outcomes (e.g., Pfeffermann et al., 1998). The present
study focuses on the MPML method because it is more
flexible, versatile, and easy to implement with
mainstream software programs such as STATA (the
software program we used in this study).

The literature review revealed there is a lack of
sufficient empirical evidence and guidance about
applying sampling weights in MLM when using LSAS
data. There are several practical, simulation, and
methodological issues that need to be addressed
concerning the incorporation of sampling weights in
MILM in the context of LSAS data.

From a practical point of view, deciding whether
to use weights in statistical analysis or not, especially
with regard to incorporating complex sampling
weights, varies across different disciplines. For
example, in biostatistics and public health, researchers
typically use sampling weights whereas researchers in
economics and econometrics generally do not apply
weights in their analyses (Bollen et al, 2016). In
education, practices about involving sampling weights
in data analyses have been mixed, that is, some
researchers use sampling weights when analyzing LSAS
data, whilst others do not (Laukaityte & Wiberg, 2018).
Such disciplinary differences in dealing with sampling
weights generally stem from whether a certain
discipline adopts a model-based, a design-based or a
combined approach to analyze data.

From a simulation point of view, prior findings
obtained from simulation studies wete not as
applicable to LSAS data in education, because such
data have special features with respect to sampling
designs and data structures. To illustrate, in prior
simulation research about two-level models, the small
sample size of level-1 units and level-2 units was
identified as a source of bias in estimation
(Pfeffermann et al., 1998). However, in education,
LSAS data typically have large sample sizes at both
levels. Consider a typical two-level data structure
where, for example, first level units (e.g., students) are
nested within second level units (e.g., schools). In
LSAS data, the number of level-2 units (the clusters) is
rather large. For instance, the ECLS-K:2011 has more
than eight hundred schools. In addition, the cluster
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sample size is relatively large (e.g., on average between
20 to 30 units per cluster). For example, PISA 2015 has
about 30 students per school on average across 70
countries and economies, and the ECLS-K:2011 has
more than 20 students per school. As a result, potential
estimation bias attributed to small cluster sample sizes
(e.g., less than 10 students per school) or small number
of clusters (e.g., less than 20) is rather unlikely when
analyzing LSAS education data. Moreover, prior
simulation studies showed that estimation bias is also
linked with small intraclass correlation (ICC) values
(see Asparouhov, 2000; Jia et al., 2011). Nevertheless,
in LSAS education data, the average ICC value when
student achievement is the outcome is not that small
(e.g., less than 0.05). For example, the average ICC
value in unconditional (intercept only) models in
various national probability samples in the U.S. was

0.22 when student achievement was the outcome
(Hedges & Hedberg, 2007).

From a methodological point of view, the
informativeness of the sampling design, which implies
that the sample is different than the population, as well
as weights scaling at lower level need to be taken into
account in MLM. First of all, the design
informativeness is of utmost importance for the
current study because an informative design warrants
weighted estimation. LSAS education data typically
adopt a two-stage sampling design where, for example,
clusters such as schools are selected with unequal
probabilities in the first stage, and within these selected
schools, students are selected with unequal
probabilities or simple random sampling in the second
stage. This implies the sampling design is informative
at least at the cluster (school) level.

The  terms  informativeness  and  non-
informativeness have been used to describe the effect
of the sampling design in model-based analysis.
According to Pfeffermann (1993), a sampling design is
non-informative when samples are drawn using simple
random sampling. In contrast, the sampling design is
informative when samples are selected using unequal
probability sampling (i.e., units are selected with
different probabilities) (Pfeffermann, 1993). Formally
defined, the sampling design is informative when the
distribution of sample units (e.g., small size schools) is
different than that in the population; otherwise the
sampling is non-informative (Binder et al., 2005). From
a design-based perspective, design informativeness has

been used to describe the difference in distribution
between a sample and its population due to unequal
probabilities of selection of units in the sample.
However, from a model-based perspective, design
informativeness is evident when the selection
probabilities are contingent on the dependent variable
even after conditioning on all other covariates included
in the model, otherwise the sampling design is non-
informative (Grilli & Pratesi, 2004; Koziol et al., 2017).

Second, to ensure weights are not too large (e.g.,
due to extremely small probabilities of unit selection),
and to reduce bias in the estimation especially when the
cluster sample size is small, scaling sampling weights at
the lower level has been hypothesized as a potential
solution (Pfeffermann et al., 1998; Stapleton, 2002;
Asparouhov, 2000). The scaling of sampling weights
refers to some normalization operation (i.e.,
multiplying the weights by some scaling constant) such
that “the sum of the weights is equal to some kind of
characteristic of the sample, for example, the total
sample size” (Asparouhov, 2000, p.442). The scaling of
the lower level sampling weights in particular has been
used as the primary tool for bias reduction in
estimation  methods  including the MPML
(Pfeffermann et al., 1998; Stapleton, 2002). Several
scaling methods have been proposed and tested.
However, there is a lack of agreement in regard to
which scaling method is the best (Asparouhov, 2000).
For example, Pfeffermann et al. (1998) recommended
the use of the size scaling method in their simulation
study to reduce bias caused by an informative sampling
design. Stapleton (2002) reported that the effective
scaling method provided unbiased estimates in MLM
estimation. Asparouhov (2006) pointed out that
different scaling methods may have different effects
depending on the estimation techniques employed.
Nonetheless, even with rescaled weights, survey
weighted estimators of variance components in MLM
could still be grossly biased (Korn & Graubard, 2003).
Details on the main scaling methods are provided in
the methods section.

The Present Study

This study aims to provide empirical and
simulation evidence as well as practical guidance about
how to incorporate sampling weights in MLM. The
ECLS-K:2011 is used as a typical example of LSAS
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data. Specifically, the present study examines the
performance of three MPML estimators: a) weighted
and without scaling, b) weighted using size scaling, and
c) weighted using effective scaling. These three
estimators are then compared with an unweighted
estimator obtained using MILM analysis of the ECLS-
K:2011 data.

Both empirical and simulation investigations are
conducted to address the following two research
questions (RQ)s).

RQ (1): Would the four estimation methods (i.e.,

unweighted, weighted without scaling, weighted

size-scaled and weighted effective-scaled) generate

similar or different estimates using two-level
models to analyze the ECLS-K:2011 data?

RQ (2): Which estimation method would perform
better in a simulation study based on the sampling
design of ECLS-K:2011?

There are three main contributions of the present
study. First, the empirical and simulation analyses are
grounded in realistic sampling designs and parameter
estimates values, derived from the ECLS-K:2011 data.
The empirical and simulation evidence produced will
be directly applicable to analyses of other LSAS
education data (e.g., PISA, NAEP) that have a similar
sampling design to the ECLS-K:2011. Hence, the
results of this study should be of interest to many
education researchers.

Second, this study utilizes the STATA software to
examine the performance of MPML, instead of Mplus
and SAS that have been used in previous work (Cai,
2013; Koziol et al, 2017; Laukaityte & Wiberg, 2018).
Because STATA is widely used in education,
economics and social sciences, offering new and useful
information about how to use STATA to conduct
weighted MLM analysis of LSAS data should be
valuable to many researchers.

Third, in the simulation component of the study,
the quality of the parameter estimators including fixed-
effects and variance components is appraised in terms
of relative bias (RB), root mean square error (RMSE)
and coverage rate (CR) within the context of LSAS
data (e.g., ECLS-K:2011). These three criteria have
been used to evaluate estimation quality in simulation
studies conventionally (Cai, 2013), but have not been
fully utilized in the field of education. For example,
prior similar simulation studies had only provided

point estimates (i.e., the mean) of their simulation
results (see Laukaityte & Wiberg, 2018).

Methodology

Data

The ECLS-K:2011 is the latest cycle of the early
childhood longitudinal program sponsored by the
NCES. As a large-scale longitudinal study, it followed
a sample of kindergarten students from diverse ethnic
and socioeconomic backgrounds through elementary
school grades (ie., K-5). Data were collected on
students, classrooms and schools. The ECLS-K:2011
provided information on children’s development in
early grades and their early school learning experiences.
Researchers may use ECLS-K:2011 data to examine
how students’ cognitive, social and emotional
development may be related to various family,
classroom and school variables in grades K-5.

The ECLS-K:2011 adopted a multi-stage complex
sampling design that involved clustering, stratification,
and unequal probability of selection at different stages.
Specifically, a three-stage stratified sampling strategy
was employed in which 90 geographic regions served
as the primary sampling units (PSUs). Then, samples
of public and private schools with 5-year-old children
were collected within the sampled PSUs with
probabilities proportional to measures of population
size (PPS). The population size refers to the total
number of 5-year-old children in the population of
schools in the U.S. At the third stage, on average nearly
20 students were randomly selected within each
sampled school using simple random sampling (SRS)
(Tourangeau et al,, 2018). The first-stage (sampled
PSUs) weights were not provided and prior studies
showed that ignoring this level of weights does not
have an impact on statistical inference (Stapleton &
Kang, 2018). Therefore, the ECLS-K:2011 could be
regarded as a two-stage complex sampling design that
sampled schools and then students within schools,
given that only school- and student-level sampling
weights were provided. In the ECLS-K:2011 public
data file, the PSU ID was suppressed but school- and
student-level overall weights that had been adjusted for
nonresponse were provided. We used data from
kindergarten. The original data included 18174
students from 968 schools representing the student
population of kindergarteners in the U.S. in 2010-2011.
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Table 1 presents the descriptive statistics of
sampling weights in which there is only one school-
level final base weight (W2SCHO), whilst there are 11
student-level final base weights adjusted for
nonresponse that are associated with student
assessments, parents, teachers, and care-giver
questionnaires and interviews in the fall and spring of
kindergarten. Balanced repeated replication (BRR)
weights (l.e., “W1C1” to “W1C80”) and jackknife
repeated replication (JRR) weights (i.e., “W1COSTR”
and “W1COPSU) were not considered because these
weights were derived from the statistical estimation of
the sampling variance and thus are not actual sampling
weights. We focused only on sampling weights that are
suitable for MLLM analysis.

Based on the covariates we used, we selected the
student base weight W12ACO because it adjusted for
nonresponse associated with the spring kindergarten
teacher-level questionnaire and the fall kindergarten
child assessment. However, the student base weights
W12ACO could not be used as is, because it also
included school base weights (W2SCHO). Therefore,
the student specific weights was computed as the ratio
of W12AC0 / W2SCHO to get the pure student-level
specific weights. The level-2 (school) base weights
W2SCHO was used as is. Notice that the mean of the
school-level weights was 64.24 and the mean of the
student-level weights was 3.47. The former was almost
20 times larger than the latter, suggesting that the
sampling selection at the school level was the driving
force in terms of design informativeness. The analytic
sample in MLLM included 8486 students in 631 schools
for the empirical investigation.

Statistical Model

In education, a two-level model (e.g., individuals
nested within clusters), typically means the first-level
units are students and the second-level units are
schools. We used two-level random intercept models
including the null model (without covariates) and two
conditional models with covariates, model I and model
II. The equations (1) and (2) represent the null model
and conditional model respectively:

Yij = Bo+u + ey

u~N(0,02) £~N(0,02), M)
Yij = Bo + COV ;B + u; + ¢

u~N(0,02) &~N(0,02), )

where ;, j represent student and school respectively, y;;
is the dependent vatiable, B is the intercept, COV
refers to a row vector of predictors at the student and
school level, B represents a column vector of
regression coefficients, # is a school-level random
effect and e is a student-level residual. Both # and ¢ are
assumed to follow normal distributions with zero
means and variances of o2 (the between-school
variance) and 62 (the within-school variance)
respectively.

For the empirical analysis, the outcome was math
scores in the spring of kindergarten. Model I included
the following level-1 (student level) variables: prior
math scores in the fall, child age in months, gender,
race, language spoken at home, SES (i.e., a composite
measure of the child’s socioeconomic status that
included information about parental education,
occupation and income), class size (i.e., the actual
number of students in a specific classroom), and
teacher education, certificate and experience (i.e., years
of teaching experience). Model II also included the
following level-2 (school level) wvariables: school
location, school sector (ie., private or public),
enrollment in kindergarten, and school SES (i.e., two
variables representing the percentage of students in a
school eligible for free lunch or reduced-price lunch).

The variables, prior math scores, age, SES, class
size, teacher experience, school enrollment, and school
SES were continuous variables. The remaining
variables were categorical and were coded as follows:
a) gender was coded as a dummy variable taking the
value of 1 if the student is a female and 0 otherwise, b)
four dummy variables were constructed for race (i.e.,
Black, Hispanic, Asian, and Pacific Islander and
American Indian) with Whites being the reference
group, ¢) language spoken at home was coded as a
dummy variable taking the value of 1 if English was
spoken at home and 0 otherwise, d) teacher education
was coded as a dummy variable taking the value of 1 if
the teacher had a master’s or other advanced degree
and 0 otherwise, ¢) teacher certificate was coded as a
dummy taking the value of 1 if the teacher did not have
a regular/standard state certificate and 0 otherwise, f)
three dummy variables were created for school
location (i.e., suburban, town, rural) with city being the
reference group, and g) school sector was coded as a
dummy variable taking the value of 1 if the school was
private and zero otherwise.



Page 7

Practical Assessment, Research & Evaluation, 10/ 27 No 13

Shen & Konstantopoulos, Incorporating Complex Sampling Weights

PLI'ST=N 037 SunySiop [enboun=gm [ TONBIAI( PIEPURIS=S 910N

SaITenuonsann
96T 98°9%71 ¥L'8LT  80°€TT Jopraoxd ared [00y2s-19 8 PUB -310J3q Y} PUB SMIIAIUT JudIed uspredropury 0ZdTIM
Suuds pue uspeSIopuLy [[B] POg YHM pajeIoosse asuodsauou 10) pAsnipy
) ) . : sarrenmon sanb 1opraoid o129 [00Yds-IoY e pUE -210Jaq SN} PUE
fre  sgeeel LOLLCOR marazaur juared uareSIspuny [[e] ) PIm pajeIdosse asuodsamou 10] paisnlpy WZd1m
) ) . : JUAWISSISSE PO U)ESIOPUTY [[8f oY) pue Jreuuonsanb
861 9896 8v 0Ll 80'eTT [PAd]-Iayoe?) uapedIopury Suuds au) yim pajerasosse asuodsamou 10§ paisnlpy 0OVTIM
) ) . . saxeuuonsanb J1ayoed) [249]
€T So6011 CLLl  B0ECT -piyo uopedopury Suuds pue ey oyl yim pajeroosse asuodsauou 10j paisnlpy 01z1M
) - . . MBTAISII -
OvT CL556 e juared uapredropury Suwrds 10 [[eJ I9(IIo M PaJeIOOSSE asuodsauou 10] paIsnipy 0dT 1A
. . . . SMATATDI
e 6L crste  80'ece wared uapeSiapuny Sulids pue (e a1 Ym pajeroosse asuodsamou 10§ paisnlpy 0dTI M
¥9'1 99'696 Pr8LT  80'€Tz  matasomr jwored uopediopury Suuids o) yum pajeroosse asuodsamou 10§ paisnlpy 0dZM
89T £7°066 0TP81  80°€TC  MorAmdr juared uapeSiopuny [e o) s pajeroosse asuodsarou 10§ pajsnlpy 0dTM
: ) . . armeuuonsanb
sl el AR R 197082) [9AS[-P[I]0 UDLIESIOPUTY [[EJ ) YHIM pajeroosse asuodsamou 10§ pajsnlpy OLLM
} ) . . ameuuonsanb
Vel 64086 $90el  80tET [9AS[~19Y2E3) UIEIISPUTY [[B] ) YHMm pajerdosse asuodsamou 10j paisnlpy fvim
vyl 8856 PO'8PT  80'€TT  WUAWSSISSE P[IO ULEBISPUDY [[6] O} YILM PAIeIoosse asuodsamiou 1of paisnipy 00TM
(s)ySram asegq) [249] Juapm§
961 €0°CLE 98'Ly  ¥Ty9  QIeUIONSIND I0jenSIUIIpE [00GOS ) Y PAJRIo0sse dsuodsaon 10§ pisnipy O0HOSTM
(yS1am asegq) [9A3] [00Y2S
dMN XeN as ey uonduosa(y Juounsnipy SWSTOM

$IYSroM Jo somspels 9AndiIdsa(T °[ d[qe.L



Practical Assessment, Research & Evaluation, 10/ 27 No 13

Page 8

Shen & Konstantopoulos, Incorporating Complex Sampling Weights

The empirical research question addressed with
model I is whether teacher variables are associated with
students’ math scores controlling for student
covariates. The empirical question addressed with
model 1I is whether school characteristics are related
to students’ math scores controlling for student and
teacher covariates. We compared the estimates and
statistical inference among four MLM estimators
produced from an unweighted model and three
weighted models with and without scaling. The
modified student-level weights W12AC0 / W2SCHO
and the school-level base weights W2SCHO were used.

Suppose 8 represents all parameters to be
estimated, namely, the intercept (B), the regression
coefficients B and the variances components, 02 and
02. The conditional normal likelihood for student 7 in
school / can be expressed as:

1 Wij=¥;)?
Lij(Blyij) = \/ﬁexp [— ;ng], 3)

where )Qlj is the estimated cluster or group mean for
the /” school depending on the cluster-level variance
02. Thus, the marginal likelthood for school /is

Li(0) = [*TT7, Li;(01yi)d(uy)du, 4

where ¢(uj) is the density function of u;, and the
overall marginal likelihood is

L(8) = ITjZ1 L; (). ®)

For computational convenience, the log-likelihood
form denoted by /below is used:

1(8) = T4 log [ {exp [T, logLyj (81u)T}e(u;)dy,. (6)

Population data are rarely available to analyze and
thus typically sample data are used in empirical data
analysis. Rather than using simple random sampling,
large-scale data such as the ECLS-K:2011, adopt multi-
stage complex sampling designs to obtain national
probability samples of well-specified populations in a
cost-effective way. Sampling weights are then created
based on probabilities of sample selection.

Suppose the data are collected using a two-stage
sampling design and the probability of selection at the
first stage is p; (e.g., probability of school selection)
and the conditional probability of selection at the
second stage is p;|; (e.g., probability of selection of

students within the selected schools). The
corresponding weights at the first and second stage are
w; and Wy; respectively. To account for potential
effects arising due to unequal probabilities of selection,
it is important to incorporate the level-specific
sampling weights in the log-likelihood function. In a
MILM, the log likelihood needs to take into account the
cluster-level (e.g., school-level) variance. The MPML is
then written in a multilevel model as

10) = ZJty wilog [ {exp [E,L, wy;logLij (81u)]}p(w)dy,. (7)

The sampling weights can be computed as the inverse
of the probability of selection at each stage: pl for j*
j

unit (e.g., school) and pi for 7 unit within /” cluster
ij

(e.g., a student within a school). Substituting the

weights with probabilities, equation (7) becomes

1O) = Tt log [ texp [T,L, - logLy; Ol (8)

Previous studies had suggested that some scaling
procedure is necessary for the individual-level
sampling weights (e.g., Stapleton, 2002). Incorporating
the scaling constants in equation (7) results in

1(8) = X1 widzlog [ (exp [X,L, wyArlogLy (Olu)T}e (). (9)

In equation (9) above 4 is the scaling constant for
the model level-1 weights and 4, is the scaling constant
for the model level-2 weights. The scaling constant
A, does not affect the point estimates because the log-
pseudolikelihood is multiplied by a scalar and as a
result the log-pseudolikelihood is merely rescaled (see
Rabe-Hesketh & Skrondal, 20006). Although there is no
consensus about which scaling method should be the
gold standard for the lower-level sampling weights,
two approaches have been proposed to provide the
least biased estimates (Asparouhov, 2006; Pfeffermann
et al., 1998; Potthoff et al., 1992; Rabe-Hesketh &
Skrondal, 2006; Stapleton, 2002). They were referred
to as size and effective scaling following the language
used in STATA. Specifically, the size scaling constant
is defined as

lsize = M ’
L=y Wilj
and the effective scaling constant is defined as
i
— =1 Wilj
Aleffective - 7%]—2 (1 1)
Wy
i=1"tlJ
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The motivation to use size scaling is to represent
the number of elements in a cluster to reduce bias, but
both scaling approaches are a function of the cluster
sample size 7. When the weights variable n; is fixed,
these two scaling methods are equal (Pfeffermann et
al., 1998). The application of scaling varies by
estimation method (e.g., PWIGLS or MPML) and by
software programs (e.g., Mplus, SAS) (see Asparouhov,
2000; Cai, 2013).

With regard to computational algorithms, the
MPML estimators could be obtained via any
optimization algorithms such as the expectation
maximization (EM) algorithm, the accelerated EM
algorithm or the Quasi-Newton algorithm (see
Asparouhov, 2006). There is no closed form solution
for the MPML estimators in a random intercept model
without predictors when the cluster sample size is
unbalanced. However, in balanced data (i.e., each
cluster has the same sample size), the unweighted
maximum likelihood estimators (MLE) are available
(McCulloch et al, 2008). Using the Laplace
approximation, a  well-known  method for
approximating the marginal densities, Asparouhov
(2006) derived a closed form solution for the
parameters of a random intercept model without
predictors when the cluster sample size is constant
across all clusters (i.e., a balanced design). Based on the
scaling methods illustrated in Asparouhov (2000), we
derived the analytic expressions for both the no scaling
and scaling cases that corresponded to some of the
analyses of our study. These results are provided in the
Appendix of this manuscript.

Simulation

The simulation mimicked the ECLS-K:2011
design, a commonly used sampling design for national
probability samples (Koziol et al., 2017; Stapleton &
Kang, 2018). First, our simulation setup used an
informative design as in the ECLS-K:2011, in which
the first-sampling stage (i.e., the school) used PPS and
the second-sampling stage (i.e., the student) used SRS.
Second, the ICC was set as 0.20 based on the data with
02 =0.25 and 0Z=1. This is also the typical clustering
effect in U.S. national probability samples of
achievement data indicated in the What Works
Clearinghouse (What Works Clearinghouse, 2020).
Third, the simulation followed an unbalanced design
based on the sample sizes in the ECLS-K:2011 data.

Following Pfeffermann et al. (2006), we first used
the sample data including the covariates vectors to
generate the population values, and then applied the
sampling design in ECLS-K:2011 to select 50 schools
and 12 students within each selected school. The
specific simulation steps are as follows.

Step 1. Generate the random intercept for the 7
school. One binary (i.e., public versus private school)
and one continuous (ie., school enrolment in
kindergarten) variable were included in the model in
the first step:

Boj = Yo + r1Public + r,SchoolEnroll + u;
(u;~N(0,0%),j = 1to 793). (12)

Step 2. Generate pj and w; and sample 50 schools
among 793 schools with p;. To make the sampling
probability p; close to the distribution of the real data,
we first truncated the random effect u; at the lower tail

by -1.50, and the upper tail by 1.50, (see Pfeffermann
et al., 1998). Then the informative selection model at
the school level was defined as

1
Pi = Tremn o=z (13)

" 1+exp (4-2uj)’

The school sampling rate was about 0.02 on
average. Schools were sampled with selection
probability proportional to school size. The sampling
weights w; were computed as the inverse of the

probability of selection p;.

Step 3. Generate p;); and sample 12 students with
each school. The p;; is defined by

12
jth Cluster sample size

pijj = (14)

The student sampling rate was about 0.65 within
each school. Then wy)j was computed as the inverse of

Pijj-

Step 4. Generate the outcome variable y;; as

Yij = Boj + B1female + Bage + €;;
(ij~N(0,1),i = 1to 12,j = 1 to 50). (15)

One binary (i.e., female versus male student) and
one continuous (i.e., student age in months) variable
were included in the model in the fourth step.
Following Pfeffermann et al. (2000), we selected a
sample of 50 schools from the original ECLS-K:2011
data, which is treated as the population, and then 12
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students were selected from each sampled school (total
sample size n = 600) based on the finite population
model and sampling schemes. The Monte Carlo
simulation process was repeated 1000 times. The true
parameters values are listed in Table 6.

Following Fideh and Nathan (2009) and Cai
(2013), the quality of estimates was evaluated using
three criteria: empirical RB, RMSE and 95% CR. The
RB indicated the degree to which the estimate deviates
from the true population value including direction
(negative or positive) and magnitude. The RMSE was
used to measure differences between values predicted
by a model (i.e., an estimator) versus the values that
were observed. Small values of RB and RMSE indicate
a high degree of unbiasedness and precision of the
estimators respectively. The 95% CR showed the level
of confidence in capturing the true parameter value
based on a traditional t-test. Higher CR values indicate
a higher degree of confidence in capturing the true
population mean value. Muthén and Muthén (2002)
suggested that when parameter bias is within 10% of
the true value and coverage over 91% in the estimation
is considered good (Muthén & Muthén, 2002).

Speciﬁcaﬂy, the RB is defined as

1 31000
RB =~ [—%:27°(6, - )], (16)
and the RMSE is defined as
1000 02
RMSE(0) = J [ 222 (6:—0)7], a7)
where § = 21000 0, (here we used the empirical

1000
mean theta to represent the true theta) and x represents

each of the 1000 iterations. The CR in this study was
set at 95%, which is the percentage that a true
parameter value falls within the t-test based 95%
confidence region of estimates (Cai, 2013).

Results

The design effect (DE) has been widely used to
determine the efficiency of survey designs (see Kish,
1965; Kish, 1992; Loht, 2019). Therefore, it is crucial
to consider the DE when evaluating the quality of the
MPML estimation in the context of LSAS data. There
are two types of design effects: a) one that captures the
unequal probability of selection and b) one that
captures the clustering of the multi-stage sampling and

MLM (Gabler et al., 1999). The unequal weighting
effect (UWE) in equation (18) below captures the DE
due to disproportional weighting (Chatrchi &
Brisebois, 2015), namely

- _ nZiWiz _ 2
UWE(y) = Tow? 1+ cvy,,
(=1,2, ..., n), (18)

where y is a sample mean, w; is the final sample
weights for the /" individual, and Cv‘f,i is the coefficient
of variation (CV) of the weights squared, which
denotes the relative variance of the sample weights.
The UWE provides information about the variability
of the weights to better understand how the precision
of the estimation might be affected due to the unequal
weighting.

In the last column of Table 1, we provided the
UWE information for all 12 sampling weights. For
student base weights, the UWE values ranged from
1.34 to 2.56. The UWE wvalue for the weight we used
(W12ACO) was 1.58. In our simulation study, the
mean and the standard deviation of the UWE across
students base weights in 1000 simulation iterations was
1.96 and 0.31 respectively. The range of UWE was
between 1.28 and 3.01. It appears that the UWE values
in our simulation were qualitatively similar to the
empirical UWE values of students base weights in the
ECILS-K:2011 data.

The other DE captures the clustering effect:
DEFF pyster= 1 + (1, - 1)*ICC, where 7, is the
average cluster sample size, and ICC is computed as
the ratio of the between-cluster variance to the sum of
the between- and within-cluster variance in a two-level
model. One rule of thumb is that if DEFF jgter 1S
greater than 2.00, it is necessary to take into account
the design effect due to clustering effects in model
analysis (Kish, 1965). In our study, the ICC was 0.19
and the average cluster sample size 7, was 22.87.
Plugging in these values to the DEFF js¢er formula
yields a value of about 5.15, which is much larger than
2.00. Therefore, in this case it was necessary to
incorporate clustering into account in the MLM
analyses.

Table 2 displays the descriptive statistics of the
variables used in the empirical analyses. Weighted and

unweighted means were provided for all variables. The
original unmodified student base weight (W12ACO)
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was used in the weighted analysis. The last two
columns of Table 2 report the difference between the
weighted and the unweighted means and the ratio of
the weighted to the unweighted means.

A difference of zero or close to zero indicates that
the weighted and the unweighted means are equal. The
difference between the weighted and the unweighted
mean was large for class size and school enrollment in
kindergarten. This implies that researchers may need to
check the estimates of the weighted versus the
unweighted analyses for these two variables, assuming
they were important predictors. Also, researchers
could include these two variables in the model to
further control for the sampling design effect.

With respect to the ration index, a value of one
indicates the two means are equal and weighting did
not make a different. However, departures from one
that were greater than 30% for example (i.e., a ratio
greater than 1.30 or less than 0.70) were found in race,
SES, and school location and sector. Researchers could
include these variables in the model to further control
for the sampling design effect.

Tables 3 to 5 report results of the null (intercept
only) model as well as models I and II. The null
(intercept only) model estimates displayed in Table 3
indicated that the mean values of the intercept are
similar across the four estimation approaches (i.e.,
unweighted, weighted without scaling, weighted size-
scaled, weighted effective-scaled). The standard error
of the unweighted mean was slightly smaller than the
standard errors of the three remaining weighted means.
In addition, the weighted unscaled estimate of the
level-2 variance was larger than the estimates from the
remaining three estimation approaches (e,
unweighted, size-scaled and effective-scaled
estimation). On the contrary, the weighted unscaled
estimate of the level-1 variance was the smallest
compared with the estimates from the other three
estimation methods. The standard errors of the
variance estimates were overall similar, but the
unweighted approach had the smallest standard error
for level 1 wvariance and the weighted unscaled
approach generated slightly larger standard errors for
level 1 and level 2 variance than the other three
approaches.

The results of model I are summarized in Table 4.
For the dichotomous variables, the effect sizes were

standardized mean differences and for the continuous
variables the effect sizes were standardized regression
coefficients. The effect sizes reported in Table 5 were
also computed the same way.

Results were different in statistical significance
across four estimation methods for three variables.
Age reached statistical significance at the 0.05 level
when weights were used either with or without scaling,
but the unweighted age estimate was not significant.
The Hispanic-White achievement gap in math was
statistically ~ significant only in the unweighted
estimation. The effect size estimates were all small.
Teacher experience was statistically significant only
when the unweighted estimation was used.

For the remaining variables, statistical significance
was same across four estimation methods. The female
estimates were consistently non-significant at the 0.05
level across the four estimation approaches. The effect
sizes were close to zero and were smaller in magnitude
when scaling was used. In the same vein, the p-values
were larger when scaling was used. The estimates for
Black students were consistently statistically significant
across estimation methods with small p-values. The
effect sizes indicated a Black-White achievement gap
in math of nearly one-sixth of a standard deviation
favoring White students. The coefficients of Asian
students were non-significant across all four estimation
methods and the effect sizes were small. The estimates
of English language were consistently non-significant
at the 0.05 level across the four estimation approaches.
For Native Islander & American Indian, although
results were not significant, estimates of unweighted
and weighted with and without scaling were different.
The SES coefficient was consistently significant and
positively related with math scores and the p-values
were very small. The class size effects were consistently
non-significant and the effect size estimates were close
to zero, especially when scaling was used. The p-values
were large when scaling was used. Teacher education
and certification were also consistently non-significant

. Lastly, the level-1 variance was constantly significant
across estimation methods and the estimates  and
standard errors were similar. Nevertheless, the
estimate obtained from the weighted unscaled
approach was the smallest. The level-2 variance was
also constantly significant at the 0.05 level. However,
the variance estimate obtained from
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Table 3. Estimates of MLLM analysis: Null model

Unweighted Weighted unscaled Weighted (size scaling) Weighted (effective scaling)

Est. SE Est. Est. SE Est. SE
Intercept 48.82* 0.26 48.93 * 49.02*  0.30 49.02 * 0.30
Variance of school residual 3253 % 244 39.66 * 3227 % 242 32.07 * 2.42
Variance of student residual  124.42 * 1.98 118.89 * 121.62* 244 121.56 * 2.44

Note: Number of students = 8486, number of schools = 631, Est. = estimate, SE = standard error, *p < 0.05

the weighted unscaled approach was the largest. By and
large the estimates and their standard errors produced
by the two scaling estimation methods were very
similar. Also, when weighting was used, the standard
errors of the estimates were typically larger than those
obtained from the unweighted estimation approach for
variance estimators.

Table 5 provides the results of model II that also
included school variables. Generally, the estimates,
standard errors, effect sizes and p-values of the student
variables reported in Table 5 were similar to those
reported in Table 4.

With respect to the school variables, across four
estimation methods, two variables had different results
whereas other remaining variables had the same results
(i.e., rural school and private school) in statistical
significance. The rural school estimate was statistically
significant only when the weighted unscaled approach
was used, and the remaining three estimates were not
significant. The suburban or town school estimates
were continuously non-significant. In addition, school
enrollment in kindergarten and school SES were also
consistently non-significant. The sector estimates
reached statistical significance only in the two weighted
and scaled estimation approaches. The coefficients
indicated larger means in mathematics for students in
public schools, compared to private schools, net of the
effects of the other predictors in the model. The
magnitude of the corresponding effect sizes was
approximately one-tenth of a standard deviation
favoring public schools. All other effect size estimates
of school variables were small and close to zero.

Table 6 presents the simulation results for four
regression coefficients, the intercept, and level-1 and
level-2 variances. The unbiasedness of the seven
parameter estimators was appraised using three
commonly used criteria, namely RB, RMSE and 95%
CR. The RB values were universally low and very close

to zero, and the weighted and unweighted estimation
provided similar results except for the level-2 variance
estimator, which had negative bias especially for the
unweighted estimator.

The small RMSE values for the female, age and
school enrollment estimators as well as the first and
second level variances estimators indicated better
estimation compared with the large RMSE values for
the intercept and public school estimators which
indicated poorer estimation. The unweighted
estimators were advantageous to the weighted
estimators overall. Specifically, the unweighted
estimation resulted in slightly smaller RMSE values for
the intercept and the public school estimates compared
to the values obtained from the three weighted
estimation methods (with and without scaling). It
appears that the mean estimators of the binary
variables (i.e., female and public school) and the
intercept had lower estimation quality than those of the
continuous variables (i.e., age and school enrollment).

In regard to the 95% CR, all values were greater
than 91%, the lower bound that suggests good
estimation (see Muthén & Muthén, 2002), except for
the CR values of the second level variance that were
smaller than 91%. In particular, the CR value of the
second level variance estimator using the unweighted
estimation was 19% only. The CR value of the second
level variance estimator using weighted estimation
without scaling was much higher, namely 86%.
Overall, the second level variance estiamtors were
underestimated. Nevertheless, the estimation of the
first level variance was good.

In summary, by and large, there were no noticeable
differences between the weighted and the unweighted
estimation methods with respect to bias. However, the
level of bias with respect to the estimation of the
second level variance was higher when the unweighted
estimation was used and much lower when the
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Table 6. Simulation Results

Page 16

True Value Mean RB RMSE 95%CR

Female 0.16

UNW 0.16 -0.02 0.08 95%
WNS 0.15 -0.04 0.12 96%
WSZ 0.15 -0.04 0.11 96%
WEF 0.15 -0.04 0.11 96%
Age 0.50

UNW 0.50 0.00 0.01 95%
WNS 0.50 0.00 0.01 94%
WSZ 0.50 0.00 0.01 94%
WEF 0.50 0.00 0.01 94%
Public school 4.46

UNW 447 0.00 0.27 97%
WNS 437 -0.02 0.39 96%
WSZ 437 -0.02 0.39 96%
WEF 437 -0.02 0.39 96%
School enrollment 0.01

UNW 0.01 0.00 0.00 95%
WNS 0.01 0.03 0.00 94%
WSZ 0.01 0.03 0.00 95%
WEF 0.01 0.03 0.00 95%
Intercept 10.02

UNW 10.36 0.03 0.70 92%
WNS 10.15 0.01 0.98 93%
WSZ 10.14 0.01 0.97 94%
WEF 10.14 0.01 0.97 94%
Second level variance 0.25

UNW 0.13 -0.49 0.04 19%
WNS 0.19 -0.25 0.07 86%
WSZ 0.16 -0.38 0.07 68%
WEF 0.16 -0.38 0.07 68%
First level variance 1.00

UNW 0.99 -0.01 0.06 95%
WNS 0.96 -0.04 0.08 93%
WSZ 0.99 -0.01 0.08 95%
WEF 0.99 -0.01 0.08 95%

Note: UNW=Non-weighted, WNS=Weighted no scaling, WSZ=Weighted size scaling,

WEF=Weighted effective scaling
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weighted estimation without scaling was utilized. The
results for the second level wvariance showed a
consistent pattern with that in the empirical analyses
reported in Tables 4 and 5. In particular, the weighted
unscaled estimates were larger than the estimates
produced by the other three methods and the
unweighted estimates were the smallest. In addition,
the two scaling methods produced identical results,
which is consistent with the empirical finding.

Discussion

Whether and how to incorporate sampling weights
in statistical analysis depends on many factors such as
the convention in a discipline, the sampling design, the
research questions and the statistical models. To
analyze data of LSAS that have adopted a complex
multi-stage sampling design such as the ECLS-K:2011,
researchers may employ MLM such as random
intercept two-level models to estimate the between-
and within-cluster variances as well as the regression
coefficients of the predictors in the model.
Incorporating sampling weights in MLLM analysis has
been of research interest in the literature, and data user
manuals of LSAS recommend the use of sampling
weights in statistical analysis. However, how to
incorporate weights in analyses of LSAS data remains
unclear to many educational researchers, and, thus,
practical guidance in this area is seriously needed.

This study filled in this literature gap. First, we
demonstrated empirically how to select and apply
sampling weights in statistical analysis of the ECLS-
K:2011 data using two-level models. Second, we
conducted a Monte Catlo simulation to appraise the
performance of the MPML methodology including
two scaling options and juxtaposed the results with
those obtained via unweighted analysis. The findings
of this study are directly applicable to the ECLS-
K:2011 data and other data collected from LSAS with
similar sampling designs.

The estimation of variance components is of
particular interest in MLLM. With respect to the second
level variance, 02, the unweighted estimation produced
more negative bias compared to the weighted
estimation with and without scaling. In terms of the
individual-level variance, 62, the weighted estimation
without scaling generated slightly more negative bias

compared to the other three estimation methods.
These findings are in congruence with the analytic
expressions displayed in the Appendix of this
manuscript and with findings reported in prior studies
(Cai, 2013; Pfeffermann et al., 1998).

With regard to findings on fixed effects (e.g.,
regression coefficients), the estimators obtained from
the simulation were overall close to the corresponding
true values. It appears the performance of the
estimation methods was better for simulated
continuous variables than for simulated binary
variables. One possible explanation is that continuous
variables have naturally more variability than binary
variables and thus the estimation may be more precise.

Prior studies had suggested that applying scaling is
essential for reducing estimation bias in weighted
MLM. In this study, the performance of size and
effective scaling methods is very similar in the
empirical analysis of the ECLS-K data. The simulation
results also indicated that size and effective scaling
performed similarly. This finding is not consistent with
previous findings (Pfeffermann et al., 1998, Stapleton,
2002). Specifically, Pfeffermann et al. (1998) found that
size scaling was preferred, whereas Stapleton (2002)
found that effective scaling provided unbiased
estimators of key parameters. Our results however
indicate that the type of scaling did not affect the
estimation in the context of LSAS at least for ECLS-
K:2011 data.

To summarize, the second and first level variance
estimates of 62 and 62 from the empirical analyses
showed consistent statistical significance across the
four estimation approaches. The simulation results
indicated that both the unweighted and the weighted
estimators had negative RB values. However, the RB
values were more pronounced for the second level
variance. With respect to the fixed effects estimators,
results from the empirical analysis demonstrated some
variability across the estimation methods. However,
the simulation results produced fixed effects estimators
that were quite homogeneous across estimation
methods, which we discussed as a limitation at the end.

Practical Considerations

Education researchers may have some practical
questions about which sampling weights to use and
when and how to incorporate the sampling weights in
MLM analyses when using LSAS data. This section
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provides a brief discussion about practical
considerations  researchers could follow when
contemplating the use of sampling weights in MLLM
analyses of LSAS data.

First and foremost, researchers need to read the
data user manual carefully to attain a good
understanding of the complex multi-stage sampling
design used in the LSAS of interest. It is important to
determine whether the sampling design is informative
or non-informative (i.e., whether unequal probability
sampling was used or not) at each sampling stage. If
simple random sampling was used to select units in all
sampling stages, it would not be necessary to apply any
sampling weights in the statistical analysis. Unweighted
analysis would be preferrable for non-informative
designs, which has the advantage of providing efficient,
consistent and unbiased estimators (see Cai, 2013;
Pfeffermann et al, 1998). However, if unequal
probability sampling is adopted in some stages, which
indicates an informative design, using sampling
weights in the analysis would be imperative to make
projections of statistical inference from the sample to
the population (Asparouhov, 2006; Pfeffermann et al.,
1998). Data user manuals of LSAS typically suggest the
use of sampling weights in statistical analyses.
However, it is recommended that the researcher
examines all sampling weights variables that are
available in the data set, and chooses appropriate
sampling weights variables based on their research
questions and outcome and predictor variables used
from different survey questionnaires. Then, it would be
informative to compute the UWE to empirically check
and quantify the degree of informativeness of the
sampling design to confirm the need of applying
sampling weights in the analysis as we have
demonstrated in this study using the ECLS-K:2011
data.

Second, it is recommended that researchers check
the availability of sampling weights at different levels
of the hierarchy. If, for example, only one overall
sampling weights variable is available in the dataset, a
weighted single-level statistical model should perhaps
be used. However, when sampling weights are available
at different levels, applying weights at the appropriate
levels is recommended (Asparouhov, 20006). If
sampling weights are missing at some levels but not at
other levels, applying weights at one level but not at the
other levels may produce more biased estimates

compared to estimates obtained from unweighted
analyses (Grilli & Pratesi, 2004). This means if weights
are missing at certain levels, one should conduct
unweighted MLM analysis instead of a weighted
analysis. Sampling weights are typically provided at
different levels in LSAS, but researchers still need to
select the appropriate sampling weights to use based
on their model covariates and outcomes. It is because
there is difference in non-response adjustment for
child assessment outcome variables in spring or fall as
well as for predictor variables from parent, teacher, and
before- and after-school provider questionnaires as
showed in Table 1 for the ECLS-K: 2011.

In addition, it is essential to ensure that when
conducting MLLM analysis level-specific weights should
be used at each level instead of overall sampling
weights. This is because there might be an overlap
between the final weights at different levels. For
example, as we showed in the empirical analysis of the
ECLS-K:2011 data, the student weights incorporated a
school weights component, which needed to be purged
from the student weights. In our case we divided the
student-level final sampling weights by the school-level
final sampling weights to get the non-overlapped
student-level specific sampling weights. Researchers
may have to do similar modifications of sampling
weights variables as needed.

Third, it is manageable to implement the MPML
estimation method in STATA and the two scaling
options are easy to use. Specifically, researchers would
simply need to incorporate the “pwscale (size)” or
“pwscale (effective)” in STATA “mixed” command.
To illustrate, one simple syntax code for a two-level
random intercept model is: mixed Y Xs [pw=student-
level specific weights] || Cluster ID: , pweight
(school-level weights) pwscale(size). The empirical
results of the present study showed that researchers
could use either the size or the effective scaling in
MLM analysis of LSAS data and the generated results
would be very similar.

Fourth, when the variance estimators are of key
interest, the weighted estimation method without
scaling performed better in estimating the second level
variance, compared to the unweighted or the weighted
scaling methods. However, the weighted estimation
method without scaling did not perform as well as the
other estimation methods in estimating the first level
variance. When the fixed effects estimators are the
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main focus, weighted analyses need to be conducted if
sampling design is informative. By and large,
unweighted estimation method generated the lowest
standard errors in empirical models and lower RMSE
values in simulation investigation compared with the
three weighted estimation approaches. This is a
disadvantage of weighted estimation methods
(Pfeffermann et al., 2006; Shen & Konstantopoulos,
2022).

Limitation

One potential limitation of this study is that in our
simulation, we did not include simulation evaluations
with regard to the bias for fixed effects estimates across
four estimation approaches. Future research may add a
simulation component that associates the covariates
and the error term that is due to unequal probabilities
of selection. In that way, it would provide clear
evidence about which estimation method would be
preferred for fixed effects under the informative design
in LSAS data.
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Appendix

This appendix provides analytic expressions for the intercept in a null (intercept only) two-level model using
weighted and unweighted estimation methods. A balanced design is assumed (i.e., the cluster size is the same for all
clusters in the sample) and the second level cluster variance 0 is assumed to be positive (see McCulloch et al., 2008).

Then, the analytic expression of the unweighted estimators:
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where y_is the grand mean, y; is the cluster mean, » is the number of clusters (e.g., schools), and 7 is the cluster size,
which is the same for each cluster when data are balanced and 7 is the number of clusters.

We followed Asparouhov (2000) to derive the analytic expressions of the weighted estimators without scaling
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the weighted estimators with size scaling
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and the weighted estimators with effective scaling
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