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Large-scale assessment survey (LSAS) data are collected via complex sampling designs with special 
features (e.g., clustering and unequal probability of selection). Multilevel models have been utilized to 
account for clustering effects whereas the probability weighting approach (PWA) has been used to 
deal with design informativeness derived from the unequal probability selection. However, the 
difficulty of applying PWA in multilevel models (MLM) has been generally underestimated and 
practical guidance is scarce. This study utilizes an empirical as well as a Monte Carlo simulation 
investigation to examine the performance of the multilevel pseudo maximum likelihood (MPML) 
estimation based on information derived from the Early Childhood Longitudinal Study Kindergarten 
cohort of 2010-2011 (ECLS-K:2011). Variance components and fixed effects estimators across four 
estimation methods including three MPML estimators (i.e., weighted without scaling, weighted size-
scaled and weighted effective-scaled) and the unweighted estimator are provided. Practical guidance 
about the use of sampling weights in MLM analyses of LSAS data is also offered. 
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Introduction 

 Nowadays, large-scale education data have been 
regularly analyzed to provide generalizable research 
evidence that can inform education research, policy 
and practice. Such data have been collected through 
large-scale assessment surveys (LSAS) conducted by 
national agencies such as the National Center for 
Education Statistics (NCES) and international 
organizations such as the International Association for 
the Evaluation of Educational Achievement (IEA) and 
the Organization for Economic Co-operation and 
Development (OECD). LSAS typically employ multi-
stage, complex sampling designs that involve 
stratification and cluster sampling. For example, multi-
stage sampling has been used in international LSAS 

such as the Program for International Student 
Assessment (PISA), the Trends in International 
Mathematics and Science Study (TIMSS) and the 
Progress in International Reading Literacy Study 
(PIRLS) (Martin & Mullis, 2012; OECD, 2014) .  

 LSAS data are advantageous to education 
researchers. First, they provide reliable measures of 
students’ academic achievement as well as plentiful 
information about students, their family backgrounds 
and schools that allow education researchers to 
investigate various research questions. Second, LSAS 
are designed to provide information about national 
probability samples of students that represent well-
defined populations of interest (e.g., 4th graders in the 
U.S.), which facilitates researchers making explicit 
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projections of statistical inference from samples to 
populations.  

 The complex sampling designs used in LSAS 
involve some special features. One important aspect of 
complex sampling designs is unequal probability of 
selection, which can take place at different stages of the 
sampling design. For example, to ensure representation 
of minority students in the sample, American Indian 
students may be sampled with a higher probability than 
white students. Similarly, rural schools may be sampled 
with a higher probability than suburban schools to 
assure representation of schools from the countryside. 
When unequal probability of selection is utilized in 
multi-stage sampling, the ensuing sample may be 
informative at that stage. When the sample is 
informative, the distribution of a variable (e.g., the 
mean and the variance) may be different than that in 
the population. For example, because of the 
informativeness of the sampling design, the 
distribution of student achievement in mathematics in 
the sample could have a lower mean than that in the 
population. Therefore, it is important in statistical 
inference to take into account the informativeness of 
sampling designs whenever it exists (Laukaityte & 
Wiberg, 2018).  

 Another important facet of complex sampling 
designs is the nesting structure of the data (e.g., 
students nested within classrooms and schools). This 
grouping of individuals into larger units (e.g., students 
grouped into schools) creates a dependency in the data. 
As a result, the assumption about the independence of 
observations (and the residuals) which is fundamental 
in typical linear models such as multiple regression, 
becomes no longer tenable. Specifically, students in the 
same classroom or school are more alike compared to 
students in different classrooms or schools. This is 
typically known as the clustering effect and is a 
consequence of cluster sampling. LSAS in the field of 
education sample clusters such as schools or 
classrooms in which students are grouped into and the 
generated clustering effect needs to be addressed 
appropriately during data analysis. In practice, this 
translates to adjusting the standard errors of the 
regression estimates for clustering, which typically 
results in augmented standard errors.  

 To analyze data collected from LSAS that 
incorporate multi-stage sampling, appropriate 
statistical tools are needed. In particular, multi-level 

models (MLM) have been increasingly used to analyze 
LSAS data in educational research because they fit well 
with the multi-stage sampling scheme. MLM take into 
account clustering effects by design (i.e., the estimation 
naturally adjusts the standard errors of estimates), 
partition the outcome variance into components 
aligned with different levels that correspond to 
sampling stages, and define conceptually the model 
used at each level (e.g., student, classroom, school) 
(Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). 
However, conducting MLM analysis does not 
necessarily account for the informativeness of the 
sample derived from the unequal probability of 
selection of units in LSAS. To tackle this issue, 
weighted MLM estimation has been proposed and 
used.  

 Nevertheless, the difficulties and challenges 
involved in applying sampling weights to MLM 
analysis of LSAS data have been partly neglected. First, 
these LSAS datasets provide many different kinds of 
weights that may perplex the analysts. For instance, 
TIMSS 2011 provides many weights variables 
including: (1) weighting factors and weights for 
nonresponse adjustment at the school, classroom and 
student level respectively (i.e., WGTFAC1, 
WGTADJ1, WGTFAC2, WGTADJ2, WGTFAC3 
and WGTADJ3); (2) school and student overall 
weights (i.e., SCHWGT and TOTWGT); (3) senate 
weights (i.e., SENWGT) and house weights (i.e., 
HOUWGT); (4) replicate weights (i.e., Jackknife zone 
and replicate code). Subsequently, selecting the 
appropriate weights for various model-based analyses 
could be challenging. Although LSAS data user 
manuals generally recommend incorporating sampling 
weights in the data analysis, practical guidance 
regarding how to use sampling weights in MLM 
analysis is not available. Therefore, it is likely that 
analysts would encounter difficulties in selecting the 
appropriate weights for statistical analysis, such as 
which weights to use in a two-level model with 
students and schools. Second, unlike unweighted 
analysis or weighted single-level model analysis, there 
is some variation in MLM analyses that incorporate 
sampling weights. As a result, it is unclear which 
weighted estimation method would be preferred and 
under what conditions.  

 Therefore, providing research evidence and 
practical guidance to inform researchers about how to 
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incorporate sampling weights in MLM analysis of 
LSAS data is seriously needed. The purpose of the 
present study is timely. It focuses on a commonly used 
computational method, the design-based probability 
weighting approach (PWA), which typically involves 
MLM.  Specifically, this study provides empirical and 
Monte-Carlo simulation evidence of the performance 
of a broadly used estimation method, namely the 
multilevel pseudo maximum likelihood (MPML) 
(Asparouhov, 2006; Rabe-Hesketh & Skrondal, 2006). 
Data from the Early Childhood Longitudinal Study – 
Kindergarten Class of 2010-2011 (ECLS-K:2011) are 
utilized (Tourangeau et al., 2018). 

 

Literature Review 

 With regard to weighted MLM methods, three 
main approaches have been proposed and discussed. 
One proposed method is the weighted ANOVA 
method for one-way random-effects ANOVA models 
(Graubard & Korn, 1996; Jia et al., 2011; Korn & 
Graubard, 2003). Another proposed method is the 
probability-weighted iterative generalized least squares 
(PWIGLS) based on the iterative generalized least 
squares (IGLS) approach (Goldstein, 1986; 
Pfeffermann et al., 1998). The third proposed method 
is the MPML estimation method (Asparouhov, 2006; 
Rabe-Hesketh & Skrondal, 2006). MPML and 
PWIGLS are typically the preferred methods 
compared to the weighted ANOVA approach because 
of their applicability including software development. 
Specifically, based on the literature and authors’ 
investigation on software programs, the MPML has 
been used in STATA, Mplus and SAS whilst the 
PWIGLS has been implemented in LISREL, HLM and 
MLwiN (Chantala & Suchindran, 2006; West & 
Galecki, 2011).  

 Overall, there is no consensus in the literature 
about the best weighted estimation method that 
involves MLM. One simulation study suggested that 
the PWIGLS outperformed the MPML method (Cai, 
2013), whereas other studies found that the MPML 
worked better than the PWIGLS  in terms of 
computational simplicity, flexibility, and applicability 
(Asparouhov & Muthen, 2007; Kovačević & Rai, 2003; 
Leite et al., 2015). Evidence seems to suggest that the 
MPML could be easily used in more complicated 
statistical models for continuous, binary and ordinal 

outcomes (e.g., see Asparouhov, 2006; Asparouhov & 
Muthén, 2007; Grilli & Pratesi, 2004; Koziol et al., 
2017; Rabe-Hesketh & Skrondal, 2006), whereas the 
PWIGLS is mainly used to model continuous 
outcomes (e.g., Pfeffermann et al., 1998). The present 
study focuses on the MPML method because it is more 
flexible, versatile, and easy to implement with 
mainstream software programs such as STATA (the 
software program we used in this study). 

 The literature review revealed there is a lack of 
sufficient empirical evidence and guidance about 
applying sampling weights in MLM when using LSAS 
data. There are several practical, simulation, and 
methodological issues that need to be addressed 
concerning the incorporation of sampling weights in 
MLM in the context of LSAS data.  

 From a practical point of view, deciding whether 
to use weights in statistical analysis or not, especially 
with regard to incorporating complex sampling 
weights, varies across different disciplines. For 
example, in biostatistics and public health, researchers 
typically use sampling weights whereas researchers in 
economics and econometrics generally do not apply 
weights in their analyses (Bollen et al., 2016). In 
education, practices about involving sampling weights 
in data analyses have been mixed, that is, some 
researchers use sampling weights when analyzing LSAS 
data, whilst others do not (Laukaityte & Wiberg, 2018). 
Such disciplinary differences in dealing with sampling 
weights generally stem from whether a certain 
discipline adopts a model-based, a design-based or a 
combined approach to analyze data.  

 From a simulation point of view, prior findings 
obtained from simulation studies were not as 
applicable to LSAS data in education, because such 
data have special features with respect to sampling 
designs and data structures. To illustrate, in prior 
simulation research about two-level models, the small 
sample size of level-1 units and level-2 units was 
identified as a source of bias in estimation 
(Pfeffermann et al., 1998). However, in education, 
LSAS data typically have large sample sizes at both 
levels. Consider a typical two-level data structure 
where, for example, first level units (e.g., students) are 
nested within second level units (e.g., schools). In 
LSAS data, the number of level-2 units (the clusters) is 
rather large. For instance, the ECLS-K:2011 has more 
than eight hundred schools. In addition, the cluster 
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sample size is relatively large (e.g., on average between 
20 to 30 units per cluster). For example, PISA 2015 has 
about 30 students per school on average across 70 
countries and economies, and the ECLS-K:2011 has 
more than 20 students per school. As a result, potential 
estimation bias attributed to small cluster sample sizes 
(e.g., less than 10 students per school) or small number 
of clusters (e.g., less than 20) is rather unlikely when 
analyzing LSAS education data. Moreover, prior 
simulation studies showed that estimation bias is also 
linked with small intraclass correlation (ICC) values 
(see Asparouhov, 2006; Jia et al., 2011). Nevertheless, 
in LSAS education data, the average ICC value when 
student achievement is the outcome is not that small 
(e.g., less than 0.05). For example, the average ICC 
value in unconditional (intercept only) models in 
various national probability samples in the U.S. was 
0.22 when student achievement was the outcome 
(Hedges & Hedberg, 2007).  

 From a methodological point of view, the 
informativeness of the sampling design, which implies 
that the sample is different than the population, as well 
as weights scaling at lower level need to be taken into 
account in MLM. First of all, the design 
informativeness is of utmost importance for the 
current study because an informative design warrants 
weighted estimation. LSAS education data typically 
adopt a two-stage sampling design where, for example, 
clusters such as schools are selected with unequal 
probabilities in the first stage, and within these selected 
schools, students are selected with unequal 
probabilities or simple random sampling in the second 
stage. This implies the sampling design is informative 
at least at the cluster (school) level.  

 The terms informativeness and non-
informativeness have been used to describe the effect 
of the sampling design in model-based analysis. 
According to Pfeffermann (1993), a sampling design is 
non-informative when samples are drawn using simple 
random sampling. In contrast, the sampling design is 
informative when samples are selected using unequal 
probability sampling (i.e., units are selected with 
different probabilities) (Pfeffermann, 1993). Formally 
defined, the sampling design is informative when the 
distribution of sample units (e.g., small size schools) is 
different than that in the population; otherwise the 
sampling is non-informative (Binder et al., 2005). From 
a design-based perspective, design informativeness has 

been used to describe the difference in distribution 
between a sample and its population due to unequal 
probabilities of selection of units in the sample. 
However, from a model-based perspective, design 
informativeness is evident when the selection 
probabilities are contingent on the dependent variable 
even after conditioning on all other covariates included 
in the model, otherwise the sampling design is non-
informative (Grilli & Pratesi, 2004; Koziol et al., 2017).  

 Second, to ensure weights are not too large (e.g., 
due to extremely small probabilities of unit selection), 
and to reduce bias in the estimation especially when the 
cluster sample size is small, scaling sampling weights at 
the lower level has been hypothesized as a potential 
solution (Pfeffermann et al., 1998; Stapleton, 2002; 
Asparouhov, 2006). The scaling of sampling weights 
refers to some normalization operation (i.e., 
multiplying the weights by some scaling constant) such 
that “the sum of the weights is equal to some kind of 
characteristic of the sample, for example, the total 
sample size” (Asparouhov, 2006, p.442). The scaling of 
the lower level sampling weights in particular has been 
used as the primary tool for bias reduction in 
estimation methods including the MPML 
(Pfeffermann et al., 1998; Stapleton, 2002). Several 
scaling methods have been proposed and tested. 
However, there is a lack of agreement in regard to 
which scaling method is the best (Asparouhov, 2006). 
For example, Pfeffermann et al. (1998) recommended 
the use of the size scaling method in their simulation 
study to reduce bias caused by an informative sampling 
design. Stapleton (2002) reported that the effective 
scaling method provided unbiased estimates in MLM 
estimation. Asparouhov (2006) pointed out that 
different scaling methods may have different effects 
depending on the estimation techniques employed. 
Nonetheless, even with rescaled weights, survey 
weighted estimators of variance components in MLM 
could still be grossly biased (Korn & Graubard, 2003). 
Details on the main scaling methods are provided in 
the methods section. 

 

The Present Study 

 This study aims to provide empirical and 
simulation evidence as well as practical guidance about 
how to incorporate sampling weights in MLM. The 
ECLS-K:2011 is used as a typical example of LSAS 
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data. Specifically, the present study examines the 
performance of three MPML estimators: a) weighted 
and without scaling, b) weighted using size scaling, and 
c) weighted using effective scaling. These three 
estimators are then compared with an unweighted 
estimator obtained using MLM analysis of the ECLS-
K:2011 data.  

 Both empirical and simulation investigations are 
conducted to address the following two research 
questions (RQs).  

RQ (1): Would the four estimation methods (i.e., 
unweighted, weighted without scaling, weighted 
size-scaled and weighted effective-scaled) generate 
similar or different estimates using two-level 
models to analyze the ECLS-K:2011 data?  

RQ (2): Which estimation method would perform 
better in a simulation study based on the sampling 
design of ECLS-K:2011?  

 There are three main contributions of the present 
study. First, the empirical and simulation analyses are 
grounded in realistic sampling designs and parameter 
estimates values, derived from the ECLS-K:2011 data. 
The empirical and simulation evidence produced will 
be directly applicable to analyses of other LSAS 
education data (e.g., PISA, NAEP) that have a similar 
sampling design to the ECLS-K:2011. Hence, the 
results of this study should be of interest to many 
education researchers.  

 Second, this study utilizes the STATA software to 
examine the performance of MPML, instead of Mplus 
and SAS that have been used in previous work (Cai, 
2013; Koziol et al, 2017; Laukaityte & Wiberg, 2018). 
Because STATA is widely used in education, 
economics and social sciences, offering new and useful 
information about how to use STATA to conduct 
weighted MLM analysis of LSAS data should be 
valuable to many researchers.  

 Third, in the simulation component of the study, 
the quality of the parameter estimators including fixed-
effects and variance components is appraised in terms 
of relative bias (RB), root mean square error (RMSE) 
and coverage rate (CR) within the context of LSAS 
data (e.g., ECLS-K:2011). These three criteria have 
been used to evaluate estimation quality in simulation 
studies conventionally (Cai, 2013), but have not been 
fully utilized in the field of education. For example, 
prior similar simulation studies had only provided 

point estimates (i.e., the mean) of their simulation 
results (see Laukaityte & Wiberg, 2018). 

   

Methodology 

Data 

 The ECLS-K:2011 is the latest cycle of the early 
childhood longitudinal program sponsored by the 
NCES. As a large-scale longitudinal study, it followed 
a sample of kindergarten students from diverse ethnic 
and socioeconomic backgrounds through elementary 
school grades (i.e., K-5). Data were collected on 
students, classrooms and schools. The ECLS-K:2011 
provided information on children’s development in 
early grades and their early school learning experiences. 
Researchers may use ECLS-K:2011 data to examine 
how students’ cognitive, social and emotional 
development may be related to various family, 
classroom and school variables in grades K-5.  

 The ECLS-K:2011 adopted a multi-stage complex 
sampling design that involved clustering, stratification, 
and unequal probability of selection at different stages. 
Specifically, a three-stage stratified sampling strategy 
was employed in which 90 geographic regions served 
as the primary sampling units (PSUs). Then, samples 
of public and private schools with 5-year-old children 
were collected within the sampled PSUs with 
probabilities proportional to measures of population 
size (PPS). The population size refers to the total 
number of 5-year-old children in the population of 
schools in the U.S. At the third stage, on average nearly 
20 students were randomly selected within each 
sampled school using simple random sampling (SRS) 
(Tourangeau et al., 2018). The first-stage (sampled 
PSUs) weights were not provided and prior studies 
showed that ignoring this level of weights does not 
have an impact on statistical inference (Stapleton & 
Kang, 2018). Therefore, the ECLS-K:2011 could be 
regarded as a two-stage complex sampling design that 
sampled schools and then students within schools, 
given that only school- and student-level sampling 
weights were provided. In the ECLS-K:2011 public 
data file, the PSU ID was suppressed but school- and 
student-level overall weights that had been adjusted for 
nonresponse were provided. We used data from 
kindergarten. The original data included 18174 
students from 968 schools representing the student 
population of kindergarteners in the U.S. in 2010-2011.  
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 Table 1 presents the descriptive statistics of 
sampling weights in which there is only one school-
level final base weight (W2SCH0), whilst there are 11 
student-level final base weights adjusted for 
nonresponse that are associated with student 
assessments, parents, teachers, and care-giver 
questionnaires and interviews in the fall and spring of 
kindergarten. Balanced repeated replication (BRR) 
weights (i.e., “W1C1” to “W1C80”) and jackknife 
repeated replication (JRR) weights (i.e., “W1C0STR” 
and “W1C0PSU) were not considered because these 
weights were derived from the statistical estimation of 
the sampling variance and thus are not actual sampling 
weights. We focused only on sampling weights that are 
suitable for MLM analysis.  

 Based on the covariates we used, we selected the 
student base weight W12ACO because it adjusted for 
nonresponse associated with the spring kindergarten 
teacher-level questionnaire and the fall kindergarten 
child assessment. However, the student base weights 
W12AC0 could not be used as is, because it also 
included school base weights (W2SCH0). Therefore, 
the student specific weights was computed as the ratio 
of W12AC0 / W2SCH0 to get the pure student-level 
specific weights. The level-2 (school) base weights 
W2SCH0 was used as is. Notice that the mean of the 
school-level weights was 64.24 and the mean of the 
student-level weights was 3.47. The former was almost 
20 times larger than the latter, suggesting that the 
sampling selection at the school level was the driving 
force in terms of design informativeness. The analytic 
sample in MLM included 8486 students in 631 schools 
for the empirical investigation. 

Statistical Model 

 In education, a two-level model (e.g., individuals 
nested within clusters), typically means the first-level 
units are students and the second-level units are 
schools. We used two-level random intercept models 
including the null model (without covariates) and two 
conditional models with covariates, model I and model 
II. The equations (1) and (2) represent the null model 
and  conditional model respectively: 

𝑦𝑖𝑗 = 𝛽0 + 𝑢𝑗 + 𝑒𝑖𝑗                             

𝑢~𝑁(0, 𝜎𝑎
2)   𝜀~𝑁(0, 𝜎𝑒

2),                           (1) 

𝑦𝑖𝑗 = 𝛽0 + 𝑪𝑶𝑽(𝑖)𝑗𝜝 + 𝑢𝑗 + 𝑒𝑖𝑗    

𝑢~𝑁(0, 𝜎𝑎
2)   𝜀~𝑁(0, 𝜎𝑒

2),                                     (2) 

where i, j represent student and school respectively, 𝑦𝑖𝑗 

is the dependent variable, 𝛽0 is the intercept, COV 
refers to a row vector of predictors at the student and 
school level, B represents a column vector of 
regression coefficients, u is a school-level random 

effect and 𝑒 is a student-level residual. Both u and e are 
assumed to follow normal distributions with zero 

means and variances of 𝜎𝑎
2 (the between-school 

variance) and 𝜎𝑒
2 (the within-school variance) 

respectively.  

 For the empirical analysis, the outcome was math 
scores in the spring of kindergarten. Model I included 
the following level-1 (student level) variables: prior 
math scores in the fall, child age in months, gender, 
race, language spoken at home, SES (i.e., a composite 
measure of the child’s socioeconomic status that 
included information about parental education, 
occupation and income), class size (i.e., the actual 
number of students in a specific classroom), and 
teacher education, certificate and experience (i.e., years 
of teaching experience). Model II also included the 
following level-2 (school level) variables: school 
location, school sector (i.e., private or public), 
enrollment in kindergarten, and school SES (i.e., two 
variables representing the percentage of students in a 
school eligible for free lunch or reduced-price lunch).  

 The variables, prior math scores, age, SES, class 
size, teacher experience, school enrollment, and school 
SES were continuous variables. The remaining 
variables were categorical and were coded as follows: 
a) gender was coded as a dummy variable taking the 
value of 1 if the student is a female and 0 otherwise, b) 
four dummy variables were constructed for  race (i.e., 
Black, Hispanic, Asian, and Pacific Islander and 
American Indian) with Whites being the reference 
group, c) language spoken at home was coded as a 
dummy variable taking the value of 1 if English was 
spoken at home and 0 otherwise, d) teacher education 
was coded as a dummy variable taking the value of 1 if 
the teacher had a master’s or other advanced degree 
and 0 otherwise, e) teacher certificate was coded as a 
dummy taking the value of 1 if the teacher did not have 
a regular/standard state certificate and 0 otherwise, f) 
three dummy variables were created for school 
location (i.e., suburban, town, rural) with city being the 
reference group, and g) school sector was coded as a 
dummy variable taking the value of 1 if the school was 
private and zero otherwise. 
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 The empirical research question addressed with 
model I is whether teacher variables are associated with 
students’ math scores controlling for student 
covariates. The empirical question addressed with 
model II is whether school characteristics are related 
to students’ math scores controlling for student and 
teacher covariates. We compared the estimates and 
statistical inference among four MLM estimators 
produced from an unweighted model and three 
weighted models with and without scaling. The 
modified student-level weights W12AC0 / W2SCH0 
and the school-level base weights W2SCH0 were used.  

 Suppose 𝜃 represents all parameters to be 

estimated, namely, the intercept (𝛽0), the regression 

coefficients B and the variances components, 𝜎𝑎
2 and 

𝜎𝑒
2. The conditional normal likelihood for student i in 

school j can be expressed as: 

𝐿𝑖𝑗(𝜃|𝑦𝑖𝑗) =
1

√2𝜋𝜎𝑒
2

exp [−
(𝑦𝑖𝑗−𝑦̂̅𝑗 )

2

2𝜎𝑒
2 ],          (3) 

where 𝑦̂̅𝑗  is the estimated cluster or group mean for 

the jth school depending on the cluster-level variance 

𝜎𝑎
2. Thus, the marginal likelihood for school j is 

𝐿𝑗(𝜃) = ∫ ∏ 𝐿𝑖𝑗(𝜃|𝑦𝑖𝑗)𝜙(𝑢𝑗)𝑑𝑢𝑗
𝑁𝑗

𝑖=1

+∞

−∞
,                (4) 

where 𝜙(𝑢𝑗) is the density function of 𝑢𝑗 , and the 

overall marginal likelihood is 

𝐿(𝜃) = ∏ 𝐿𝑗(𝜃)𝑀
𝑗=1 .                         (5) 

For computational convenience, the log-likelihood 
form denoted by l below is used: 

 

 Population data are rarely available to analyze and 
thus typically sample data are used in empirical data 
analysis. Rather than using simple random sampling, 
large-scale data such as the ECLS-K:2011, adopt multi-
stage complex sampling designs to obtain national 
probability samples of well-specified populations in a 
cost-effective way. Sampling weights are then created 
based on probabilities of sample selection.  

 Suppose the data are collected using a two-stage 
sampling design and the probability of selection at the 

first stage is 𝑝𝑗 (e.g., probability of school selection) 

and the conditional probability of selection at the 

second stage is 𝑝𝑖|𝑗 (e.g., probability of selection of 

students within the selected schools). The 
corresponding weights at the first and second stage are 

𝑤𝑗  and 𝑤𝑖|𝑗  respectively. To account for potential 

effects arising due to unequal probabilities of selection, 
it is important to incorporate the level-specific 
sampling weights in the log-likelihood function. In a 
MLM, the log likelihood needs to take into account the 
cluster-level (e.g., school-level) variance. The MPML is 
then written in a multilevel model as 

 

The sampling weights can be computed as the inverse 

of the probability of selection at each stage: 
1

𝑝𝑗
 for jth 

unit (e.g., school) and 
1

𝑝𝑖|𝑗
  for ith unit within jth cluster 

(e.g., a student within a school). Substituting the 
weights with probabilities, equation (7) becomes 

 

 Previous studies had suggested that some scaling 
procedure is necessary for the individual-level 
sampling weights (e.g., Stapleton, 2002). Incorporating 
the scaling constants in equation (7) results in 

 
 

 In equation (9) above 𝜆1 is the scaling constant for 

the model level-1 weights and 𝜆2 is the scaling constant 
for the model level-2 weights. The scaling constant 

𝜆2 does not affect the point estimates because the log-
pseudolikelihood is multiplied by a scalar and as a 
result the log-pseudolikelihood is merely rescaled (see 
Rabe-Hesketh & Skrondal, 2006). Although there is no 
consensus about which scaling method should be the 
gold standard for the lower-level sampling weights, 
two approaches have been proposed to provide the 
least biased estimates (Asparouhov, 2006; Pfeffermann 

et al., 1998; Potthoff et al., 1992; Rabe‐Hesketh & 
Skrondal, 2006; Stapleton, 2002). They were referred 
to as size and effective scaling following the language 
used in STATA. Specifically, the size scaling constant 
is defined as 

𝜆1𝑠𝑖𝑧𝑒
=

𝑛𝑗

∑ 𝑤𝑖|𝑗

𝑛𝑗
𝑖=1

 ,           (10) 

and the effective scaling constant is defined as                    

𝜆1𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
∑ 𝑤𝑖|𝑗

𝑛𝑗
𝑖=1

∑ 𝑤𝑖|𝑗
2

𝑛𝑗
𝑖=1

.             (11) 
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 The motivation to use size scaling is to represent 
the number of elements in a cluster to reduce bias, but 
both scaling approaches are a function of the cluster 

sample size nj. When the weights variable 𝑛𝑗  is fixed, 

these two scaling methods are equal (Pfeffermann et 
al., 1998). The application of scaling varies by 
estimation method (e.g., PWIGLS or MPML) and by 
software programs (e.g., Mplus, SAS) (see Asparouhov, 
2006; Cai, 2013).  

 With regard to computational algorithms, the 
MPML estimators could be obtained via any 
optimization algorithms such as the expectation 
maximization (EM) algorithm, the accelerated EM 
algorithm or the Quasi-Newton algorithm (see 
Asparouhov, 2006). There is no closed form solution 
for the MPML estimators in a random intercept model 
without predictors when the cluster sample size is 
unbalanced. However, in balanced data (i.e., each 
cluster has the same sample size), the unweighted 
maximum likelihood estimators (MLE) are available 
(McCulloch et al., 2008). Using the Laplace 
approximation, a well-known method for 
approximating the marginal densities, Asparouhov 
(2006) derived a closed form solution for the 
parameters of a random intercept model without 
predictors when the cluster sample size is constant 
across all clusters (i.e., a balanced design). Based on the 
scaling methods illustrated in Asparouhov (2006), we 
derived the analytic expressions for both the no scaling 
and scaling cases that corresponded to some of the 
analyses of our study. These results are provided in the 
Appendix of this manuscript. 

Simulation 

 The simulation mimicked the ECLS-K:2011 
design, a commonly used sampling design for national 
probability samples (Koziol et al., 2017; Stapleton & 
Kang, 2018). First, our simulation setup used an 
informative design as in the ECLS-K:2011, in which 
the first-sampling stage (i.e., the school) used PPS and 
the second-sampling stage (i.e., the student) used SRS. 
Second, the ICC was set as 0.20 based on the data with 

𝜎𝑎
2 =0.25 and 𝜎𝑒

2=1. This is also the typical clustering 
effect in U.S. national probability samples of 
achievement data indicated in the What Works 
Clearinghouse (What Works Clearinghouse, 2020). 
Third, the simulation followed an unbalanced design 
based on the sample sizes in the ECLS-K:2011 data.  

 Following Pfeffermann et al. (2006), we first used 
the sample data including the covariates vectors to 
generate the population values, and then applied the 
sampling design in ECLS-K:2011 to select 50 schools 
and 12 students within each selected school. The 
specific simulation steps are as follows.  

 Step 1. Generate the random intercept for the jth 
school. One binary (i.e., public versus private school) 
and one continuous (i.e., school enrolment in 
kindergarten) variable were included in the model in 
the first step: 

𝛽𝑜𝑗 = 𝛾0 + 𝑟1𝑃𝑢𝑏𝑙𝑖𝑐 + 𝑟2𝑆𝑐ℎ𝑜𝑜𝑙𝐸𝑛𝑟𝑜𝑙𝑙 + 𝑢𝑗      

(𝑢𝑗~𝑁(0, 𝜎𝑎
2), 𝑗 = 1 𝑡𝑜 793).                   (12) 

 Step 2. Generate 𝑝𝑗 and 𝑤𝑗 and sample 50 schools 

among 793 schools with 𝑝𝑗 . To make the sampling 

probability 𝑝𝑗 close to the distribution of the real data, 

we first truncated the random effect 𝑢𝑗  at the lower tail 

by -1.5𝜎𝑎 and the upper tail by 1.5𝜎𝑎 (see Pfeffermann 
et al., 1998). Then the informative selection model at 
the school level was defined as 

𝑝𝑗 =
1

1+exp (4−2𝑢𝑗)
.             (13) 

 The school sampling rate was about 0.02 on 
average. Schools were sampled with selection 
probability proportional to school size. The sampling 

weights 𝑤𝑗 were computed as the inverse of the 

probability of selection 𝑝𝑗 .  

 Step 3. Generate 𝑝𝑖|𝑗 and sample 12 students with 

each school. The 𝑝𝑖|𝑗 is defined by 

𝑝𝑖|𝑗 =
12

𝑗𝑡ℎ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 .             (14) 

 The student sampling rate was about 0.65 within 

each school. Then 𝑤𝑖|𝑗 was computed as the inverse of 

𝑝𝑖|𝑗 .  

 Step 4. Generate the outcome variable 𝑦𝑖𝑗 as 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑓𝑒𝑚𝑎𝑙𝑒 + 𝛽2𝑎𝑔𝑒 + 𝜀𝑖𝑗    

(𝜀𝑖𝑗~𝑁(0, 1), 𝑖 = 1 𝑡𝑜 12, 𝑗 = 1 𝑡𝑜 50).              (15) 

 One binary (i.e., female versus male student) and 
one continuous (i.e., student age in months) variable 
were included in the model in the fourth step. 
Following Pfeffermann et al. (2006), we selected a 
sample of 50 schools from the original ECLS-K:2011 
data, which is treated as the population, and then 12 
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students were selected from each sampled school (total 
sample size n = 600) based on the finite population 
model and sampling schemes. The Monte Carlo 
simulation process was repeated 1000 times. The true 
parameters values are listed in Table 6.  

 Following Eideh and Nathan (2009) and Cai 
(2013), the quality of estimates was evaluated using 
three criteria: empirical RB, RMSE and 95% CR. The 
RB indicated the degree to which the estimate deviates 
from the true population value including direction 
(negative or positive) and magnitude. The RMSE was 
used to measure differences between values predicted 
by a model (i.e., an estimator) versus the values that 
were observed. Small values of RB and RMSE indicate 
a high degree of unbiasedness and precision of the 
estimators respectively.  The 95% CR showed the level 
of confidence in capturing the true parameter value 
based on a traditional t-test. Higher CR values indicate 
a higher degree of confidence in capturing the true 
population mean value. Muthén and Muthén (2002) 
suggested that when parameter bias is within 10% of 
the true value and coverage over 91% in the estimation 
is considered good (Muthén & Muthén, 2002).   

Specifically, the RB is defined as 

𝑅𝐵 =
1

𝜃
[

1

1000
∑ (𝜃𝑥̂ − 𝜃)1000

𝑥=1 ],                        (16) 

and the RMSE is defined as 

𝑅𝑀𝑆𝐸(𝜃) = √[
1

1000
∑ (𝜃𝑥̂−𝜃̅)21000

𝑥=1 ],       (17) 

where 𝜃̅ =
1

1000
∑ 𝜃𝑥̂

1000
𝑥=1  (here we used the empirical 

mean theta to represent the true theta) and x represents 
each of the 1000 iterations. The CR in this study was 
set at 95%, which is the percentage that a true 
parameter value falls within the t-test based 95% 
confidence region of estimates (Cai, 2013). 

 

Results 

 The design effect (DE) has been widely used to 
determine the efficiency of survey designs (see Kish, 
1965; Kish, 1992; Lohr, 2019). Therefore, it is crucial 
to consider the DE when evaluating the quality of the 
MPML estimation in the context of LSAS data. There 
are two types of design effects: a) one that captures the 
unequal probability of selection and b) one that 
captures the clustering of the multi-stage sampling and 

MLM (Gabler et al., 1999). The unequal weighting 
effect (UWE) in equation (18) below captures the DE 
due to disproportional weighting (Chatrchi & 
Brisebois, 2015), namely 

𝑈𝑊𝐸(𝑦̅) =
𝑛 ∑ 𝑤𝑖

2
𝑖

(∑ 𝑤𝑖𝑖 )2 = 1 + 𝑐𝑣𝑤𝑖

2 ,   

(i=1, 2, …, n),          (18) 

where 𝑦̅ is a sample mean, 𝑤𝑖 is the final sample 

weights for the ith individual, and 𝑐𝑣𝑤𝑖

2  is the coefficient 

of variation (CV) of the weights squared, which 
denotes the relative variance of the sample weights. 
The UWE provides information about the variability 
of the weights to better understand how the precision 
of the estimation might be affected due to the unequal 
weighting. 

 In the last column of Table 1, we provided the 
UWE information for all 12 sampling weights. For 
student base weights, the UWE values ranged from 
1.34 to 2.56. The UWE value for the weight we used 
(W12ACO) was 1.58. In our simulation study, the 
mean and the standard deviation of the UWE across 
students base weights in 1000 simulation iterations was 
1.96 and 0.31 respectively. The range of UWE was 
between 1.28 and 3.01. It appears that the UWE values 
in our simulation were qualitatively similar to the 
empirical UWE values of students base weights in the 
ECLS-K:2011 data. 

 The other DE captures the clustering effect: 

𝐷𝐸𝐹𝐹𝑐𝑙𝑢𝑠𝑡𝑒𝑟= 1 + (𝑛𝑗̅ - 1)*ICC, where 𝑛𝑗̅ is the 

average cluster sample size, and ICC is computed as 
the ratio of the between-cluster variance to the sum of 
the between- and within-cluster variance in a two-level 

model. One rule of thumb is that if 𝐷𝐸𝐹𝐹𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is 
greater than 2.00, it is necessary to take into account 
the design effect due to clustering effects in model 
analysis (Kish, 1965). In our study, the ICC was 0.19 

and the average cluster sample size 𝑛𝑗̅ was 22.87. 

Plugging in these values to the 𝐷𝐸𝐹𝐹𝑐𝑙𝑢𝑠𝑡𝑒𝑟 formula 
yields a value of about 5.15, which is much larger than 
2.00. Therefore, in this case it was necessary to 
incorporate clustering into account in the MLM 
analyses. 

 Table 2 displays the descriptive statistics of the 
variables used in the empirical analyses. Weighted and 
unweighted means were provided for all variables. The 
original unmodified student base weight (W12AC0) 
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was used in the weighted analysis. The last two 
columns of Table 2 report the difference between the 
weighted and the unweighted means and the ratio of 
the weighted to the unweighted means.  

 A difference of zero or close to zero indicates that 
the weighted and the unweighted means are equal. The 
difference between the weighted and the unweighted 
mean was large for class size and school enrollment in 
kindergarten. This implies that researchers may need to 
check the estimates of the weighted versus the 
unweighted analyses for these two variables, assuming 
they were important predictors. Also, researchers 
could include these two variables in the model to 
further control for the sampling design effect.  

 With respect to the ration index, a value of one 
indicates the two means are equal and weighting did 
not make a different. However, departures from one 
that were greater than 30% for example (i.e., a ratio 
greater than 1.30 or less than 0.70) were found in race, 
SES, and school location and sector. Researchers could 
include these variables in the model to further control 
for the sampling design effect. 

 Tables 3 to 5 report results of the null (intercept 
only) model as well as models I and II. The null 
(intercept only) model estimates displayed in Table 3 
indicated that the mean values of the intercept are 
similar across the four estimation approaches (i.e., 
unweighted, weighted without scaling, weighted size-
scaled, weighted effective-scaled). The standard error 
of the unweighted mean was slightly smaller than the 
standard errors of the three remaining weighted means. 
In addition, the weighted unscaled estimate of the 
level-2 variance was larger than the estimates from the 
remaining three estimation approaches (i.e., 
unweighted, size-scaled and effective-scaled 
estimation). On the contrary, the weighted unscaled 
estimate of the level-1 variance was the smallest 
compared with the estimates from the other three 
estimation methods. The standard errors of the 
variance estimates were overall similar, but the 
unweighted approach had the smallest standard error 
for level 1 variance and the weighted unscaled 
approach generated slightly larger standard errors for 
level 1 and level 2 variance  than the other three 
approaches. 

 The results of model I are summarized in Table 4. 
For the dichotomous variables, the effect sizes were 

standardized mean differences and for the continuous 
variables the effect sizes were standardized regression 
coefficients. The effect sizes reported in Table 5 were 
also computed the same way.  

 Results were different in statistical significance 
across four estimation methods for three variables. 
Age reached statistical significance at the 0.05 level 
when weights were used either with or without scaling, 
but the unweighted age estimate was not significant. 
The Hispanic-White achievement gap in math was 
statistically significant only in the unweighted 
estimation. The effect size estimates were all small. 
Teacher experience was statistically significant only 
when the unweighted estimation was used.  

 For the remaining variables, statistical significance 
was same across four estimation methods. The female 
estimates were consistently non-significant at the 0.05 
level across the four estimation approaches. The effect 
sizes were close to zero and were smaller in magnitude 
when scaling was used. In the same vein, the p-values 
were larger when scaling was used. The estimates for 
Black students were consistently statistically significant 
across estimation methods with small p-values. The 
effect sizes indicated a Black-White achievement gap 
in math of nearly one-sixth of a standard deviation 
favoring White students. The coefficients of Asian 
students were non-significant across all four estimation 
methods and the effect sizes were small. The estimates 
of English language were consistently non-significant 
at the 0.05 level across the four estimation approaches. 
For  Native  Islander  &  American  Indian,  although 
results were not significant, estimates of unweighted 
and weighted with and without scaling were different. 
The SES coefficient was consistently significant and 
positively related with math scores and the p-values 
were very small. The class size effects were consistently 
non-significant and the effect size estimates were close 
to zero, especially when scaling was used. The p-values 
were large when scaling was used. Teacher education 
and certification were also consistently non-significant 

. Lastly, the level-1 variance was constantly significant 
across estimation methods and the estimates   and   
standard   errors   were   similar. Nevertheless, the 
estimate obtained from the weighted unscaled 
approach was the smallest. The level-2 variance was 
also constantly significant at the 0.05 level. However, 
the variance estimate obtained from
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Table 3. Estimates of MLM analysis: Null model 

 

 

the weighted unscaled approach was the largest. By and 
large the estimates and their standard errors produced 
by the two scaling estimation methods were very 
similar. Also, when weighting was used, the standard 
errors of the estimates were typically larger than those 
obtained from the unweighted estimation approach for 
variance estimators. 

 Table 5 provides the results of model II that also 
included school variables. Generally, the estimates, 
standard errors, effect sizes and p-values of the student 
variables reported in Table 5 were similar to those 
reported in Table 4.  

 With respect to the school variables, across four 
estimation methods, two variables had different results 
whereas other remaining variables had the same results 
(i.e., rural school and private school) in statistical 
significance. The rural school estimate was statistically 
significant only when the weighted unscaled approach 
was used, and the remaining three estimates were not 
significant. The suburban or town school estimates 
were continuously non-significant. In addition, school 
enrollment in kindergarten and school SES were also 
consistently non-significant. The sector estimates 
reached statistical significance only in the two weighted 
and scaled estimation approaches. The coefficients 
indicated larger means in mathematics for students in 
public schools, compared to private schools, net of the 
effects of the other predictors in the model. The 
magnitude of the corresponding effect sizes was 
approximately one-tenth of a standard deviation 
favoring public schools. All other effect size estimates 
of school variables were small and close to zero. 

 Table 6 presents the simulation results for four 
regression coefficients, the intercept, and level-1 and 
level-2 variances. The unbiasedness of the seven 
parameter estimators was appraised using three 
commonly used criteria, namely RB, RMSE and 95% 
CR. The RB values were universally low and very close 

to zero, and the weighted and unweighted estimation 
provided similar results except for the level-2 variance 
estimator, which had negative bias especially for the 
unweighted estimator.  

 The small RMSE values for the female, age and 
school enrollment estimators as well as the first and 
second level variances estimators indicated better 
estimation compared with the large RMSE values for 
the intercept and public school estimators which 
indicated poorer estimation. The unweighted 
estimators were advantageous to the weighted 
estimators overall. Specifically, the unweighted 
estimation resulted in slightly smaller RMSE values for 
the intercept and the public school estimates compared 
to the values obtained from the three weighted 
estimation methods (with and without scaling). It 
appears that the mean estimators of the binary 
variables (i.e., female and public school) and the 
intercept had lower estimation quality than those of the 
continuous variables (i.e., age and school enrollment).  

 In regard to the 95% CR, all values were greater 
than 91%, the lower bound that suggests good 
estimation (see Muthén & Muthén, 2002), except for 
the CR values of the second level variance that were 
smaller than 91%. In particular, the CR value of the 
second level variance estimator using the unweighted 
estimation was 19% only. The CR value of the second 
level variance estimator using weighted estimation 
without scaling was much higher, namely 86%.  
Overall, the second level variance estiamtors were 
underestimated. Nevertheless, the estimation of the 
first level variance was good.  

 In summary, by and large, there were no noticeable 
differences between the weighted and the unweighted 
estimation methods with respect to bias. However, the 
level of bias with respect to the estimation of the 
second level variance was higher when the unweighted 
estimation was used and much lower when the 
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Table 6. Simulation Results 
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weighted estimation without scaling was utilized. The 
results for the second level variance showed a 
consistent pattern with that in the empirical analyses 
reported in Tables 4 and 5. In particular, the weighted 
unscaled estimates were larger than the estimates 
produced by the other three methods and the 
unweighted estimates were the smallest. In addition, 
the two scaling methods produced identical results, 
which is consistent with the empirical finding. 

 

Discussion 

 Whether and how to incorporate sampling weights 
in statistical analysis depends on many factors such as 
the convention in a discipline, the sampling design, the 
research questions and the statistical models. To 
analyze data of LSAS that have adopted a complex 
multi-stage sampling design such as the ECLS-K:2011, 
researchers may employ MLM such as random 
intercept two-level models to estimate the between- 
and within-cluster variances as well as the regression 
coefficients of the predictors in the model. 
Incorporating sampling weights in MLM analysis has 
been of research interest in the literature, and data user 
manuals of LSAS recommend the use of sampling 
weights in statistical analysis. However, how to 
incorporate weights in analyses of LSAS data remains 
unclear to many educational researchers, and, thus, 
practical guidance in this area is seriously needed. 

 This study filled in this literature gap. First, we 
demonstrated empirically how to select and apply 
sampling weights in statistical analysis of the ECLS-
K:2011 data using two-level models. Second, we 
conducted a Monte Carlo simulation to appraise the 
performance of the MPML methodology including 
two scaling options and juxtaposed the results with 
those obtained via unweighted analysis. The findings 
of this study are directly applicable to the ECLS-
K:2011 data and other data collected from LSAS with 
similar sampling designs.  

 The estimation of variance components is of 
particular interest in MLM. With respect to the second 

level variance, 𝜎𝑎
2, the unweighted estimation produced 

more negative bias compared to the weighted 
estimation with and without scaling. In terms of the 

individual-level variance, 𝜎𝑒
2, the weighted estimation 

without scaling generated slightly more negative bias 

compared to the other three estimation methods. 
These findings are in congruence with the analytic 
expressions displayed in the Appendix of this 
manuscript and with findings reported in prior studies 
(Cai, 2013; Pfeffermann et al., 1998).  

 With regard to findings on fixed effects (e.g., 
regression coefficients), the estimators obtained from 
the simulation were overall close to the corresponding 
true values. It appears the performance of the 
estimation methods was better for simulated 
continuous variables than for simulated binary 
variables. One possible explanation is that continuous 
variables have naturally more variability than binary 
variables and thus the estimation may be more precise.  

 Prior studies had suggested that applying scaling is 
essential for reducing estimation bias in weighted 
MLM. In this study, the performance of size and 
effective scaling methods is very similar in the 
empirical analysis of the ECLS-K data. The simulation 
results also indicated that size and effective scaling 
performed similarly. This finding is not consistent with 
previous findings (Pfeffermann et al., 1998, Stapleton, 
2002). Specifically, Pfeffermann et al. (1998) found that 
size scaling was preferred, whereas Stapleton (2002) 
found that effective scaling provided unbiased 
estimators of key parameters. Our results however 
indicate that the type of scaling did not affect the 
estimation in the context of LSAS at least for ECLS-
K:2011 data.  

 To summarize, the second and first level variance 

estimates of 𝜎𝑎
2 and 𝜎𝑒

2 from the empirical analyses 
showed consistent statistical significance across the 
four estimation approaches. The simulation results 
indicated that both the unweighted and the weighted 
estimators had negative RB values. However, the RB 
values were more pronounced for the second level 
variance. With respect to the fixed effects estimators, 
results from the empirical analysis demonstrated some 
variability across the estimation methods. However, 
the simulation results produced fixed effects estimators 
that were quite homogeneous across estimation 
methods, which we discussed as a limitation at the end. 

Practical Considerations 

 Education researchers may have some practical 
questions about which sampling weights to use and 
when and how to incorporate the sampling weights in 
MLM analyses when using LSAS data. This section 



Practical Assessment, Research & Evaluation, Vol 27 No 13 Page 18 
Shen & Konstantopoulos, Incorporating Complex Sampling Weights 

 

provides a brief discussion about practical 
considerations researchers could follow when 
contemplating the use of sampling weights in MLM 
analyses of LSAS data.  

 First and foremost, researchers need to read the 
data user manual carefully to attain a good 
understanding of the complex multi-stage sampling 
design used in the LSAS of interest. It is important to 
determine whether the sampling design is informative 
or non-informative (i.e., whether unequal probability 
sampling was used or not) at each sampling stage. If 
simple random sampling was used to select units in all 
sampling stages, it would not be necessary to apply any 
sampling weights in the statistical analysis. Unweighted 
analysis would be preferrable for non-informative 
designs, which has the advantage of providing efficient, 
consistent and unbiased estimators (see Cai, 2013; 
Pfeffermann et al., 1998). However, if unequal 
probability sampling is adopted in some stages, which 
indicates an informative design, using sampling 
weights in the analysis would be imperative to make 
projections of statistical inference from the sample to 
the population (Asparouhov, 2006; Pfeffermann et al., 
1998). Data user manuals of LSAS typically suggest the 
use of sampling weights in statistical analyses. 
However, it is recommended that the researcher 
examines all sampling weights variables that are 
available in the data set, and chooses  appropriate 
sampling weights variables based on their research 
questions and outcome and predictor variables used 
from different survey questionnaires. Then, it would be 
informative to compute the UWE to empirically check 
and quantify the degree of informativeness of the 
sampling design to confirm the need of applying 
sampling weights in the analysis as we have 
demonstrated in this study using the ECLS-K:2011 
data.  

 Second, it is recommended that researchers check 
the availability of sampling weights at different levels 
of the hierarchy. If, for example, only one overall 
sampling weights variable is available in the dataset, a 
weighted single-level statistical model should perhaps 
be used. However, when sampling weights are available 
at different levels, applying weights at the appropriate 
levels is recommended (Asparouhov, 2006). If 
sampling weights are missing at some levels but not at 
other levels, applying weights at one level but not at the 
other levels may produce more biased estimates 

compared to estimates obtained from unweighted 
analyses (Grilli & Pratesi, 2004). This means if weights 
are missing at certain levels, one should conduct 
unweighted MLM analysis instead of a weighted 
analysis. Sampling weights are typically provided at 
different levels in LSAS, but researchers still need to 
select the appropriate sampling weights to use based 
on their model covariates and outcomes. It is because 
there is difference in non-response adjustment for 
child assessment outcome variables in spring or fall as 
well as for predictor variables from parent, teacher, and 
before- and after-school provider questionnaires as 
showed in Table 1 for the ECLS-K: 2011.  

 In addition, it is essential to ensure that when 
conducting MLM analysis level-specific weights should 
be used at each level instead of overall sampling 
weights. This is because there might be an overlap 
between the final weights at different levels. For 
example, as we showed in the empirical analysis of the 
ECLS-K:2011 data, the student weights incorporated a 
school weights component, which needed to be purged 
from the student weights. In our case we divided the 
student-level final sampling weights by the school-level 
final sampling weights to get the non-overlapped 
student-level specific sampling weights. Researchers 
may have to do similar modifications of sampling 
weights variables as needed.  

 Third, it is manageable to implement the MPML 
estimation method in STATA and the two scaling 
options are easy to use. Specifically, researchers would 
simply need to incorporate the “pwscale (size)” or 
“pwscale (effective)” in STATA “mixed” command. 
To illustrate, one simple syntax code for a two-level 
random intercept model is: mixed Y Xs [pw=student-
level specific weights] || Cluster ID: ,  pweight 
(school-level weights) pwscale(size). The empirical 
results of the present study showed that researchers 
could use either the size or the effective scaling in 
MLM analysis of LSAS data and the generated results 
would be very similar. 

 Fourth, when the variance estimators are of key 
interest, the weighted estimation method without 
scaling performed better in estimating the second level 
variance, compared to the unweighted or the weighted 
scaling methods. However, the weighted estimation 
method without scaling did not perform as well as the 
other estimation methods in estimating the first level 
variance. When the fixed effects estimators are the 
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main focus, weighted analyses need to be conducted if 
sampling design is informative. By and large, 
unweighted estimation method generated the lowest 
standard errors in empirical models and lower RMSE 
values in simulation investigation compared with the 
three weighted estimation approaches. This is a 
disadvantage of weighted estimation methods 
(Pfeffermann et al., 2006; Shen & Konstantopoulos, 
2022). 

Limitation 

 One potential limitation of this study is that in our 
simulation, we did not include simulation evaluations 
with regard to the bias for fixed effects estimates across 
four estimation approaches. Future research may add a 
simulation component that associates the covariates 
and the error term that is due to unequal probabilities 
of selection. In that way, it would provide clear 
evidence about which estimation method would be 
preferred for fixed effects under the informative design 
in LSAS data. 
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Appendix 
 

This appendix provides analytic expressions for the intercept in a null (intercept only) two-level model using 
weighted and unweighted estimation methods. A balanced design is assumed (i.e., the cluster size is the same for all 

clusters in the sample) and the second level cluster variance 𝜎𝑎
2 is assumed to be positive (see McCulloch et al., 2008). 

 
Then, the analytic expression of the unweighted estimators: 

 

𝛽0̂ = 𝑦̅.. , 𝜎𝑒
2̂ =

∑ ∑ (𝑦𝑖𝑗−𝑦̅𝑗)2
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2̂ =
∑ (𝑦̅𝑗−𝑦̅..)

2
𝑗

𝑚
−

𝜎𝑒
2̂

𝑛
,             (A-1) 

 

where 𝑦̅.. is the grand mean, 𝑦̅𝑗 is the cluster mean, m is the number of clusters (e.g., schools), and n is the cluster size, 

which is the same for each cluster when data are balanced  and m is the number of clusters.  
 

We followed Asparouhov (2006) to derive the analytic expressions of the weighted estimators without scaling  
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the weighted estimators with size scaling  
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and the weighted estimators with effective scaling   
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