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Applied educational researchers may be interested in exploring random slope effects in multilevel 
models, such as when examining individual growth trajectories with longitudinal data. Random slopes 
are effects for which the slope of an individual-level coefficient varies depending on group 
membership, however these effects can be difficult to interpret. The change in variance accounted for 
is often used as an effect size measure and could be appropriate for helping to interpret a random 
slope effect. Two methods for computing variance accounted for include likelihood-based methods 
and variance partition methods. It is unclear how results from these two methods compare to each 
other when used to compute a measure of change in variance accounted for with a random slope 
effect. The present study fills this gap through a simulation study comparing these two methods under 
various conditions. Results indicate that the value of variance accounted for may differ depending on 
the type of measure used, and that applied researchers should consider reporting values for both 
measures. 

Introduction 

 The multilevel model can be used to account for 
nesting in data, such as when students are nested within 
schools.  Further, a random slope effect can be 
included in these models to allow the slope of an 
individual-level predictor to vary by group 
membership.  This model is commonly used in 
education, for example, to measure academic growth 
with longitudinal data where observations at multiple 
time points are nested within students (Wright, 2017).  
Effect size measures for the fixed and random effects 
associated with a random intercept model are available 
for applied researchers.   

 However, currently there is very little guidance 
regarding what measure of effect size can be used for 
a random slope effect.  This may be problematic for 
researchers since the random slopes model is 
commonly used in practice (Rights & Sterba, 2019) 

while at the same time professional organizations and 
journals are more often requiring effect size reporting 
in addition to or in place of null hypothesis significance 
testing (Kelley & Preacher, 2012; Peng & Chen, 2013).  
In addition, effect size measures are considered an 
important reflection of the practical significance of 
findings and therefore represent a key finding for 
applied researchers; in addition to the fact that 
generally effect size measures are necessary for future 
researchers conducting power analyses or meta-
analysis (Denson & Seltzer, 2011; Dong et al., 2020; 
Kelley & Preacher, 2012). Given these various 
potential uses, it is important for researchers to 
consider to what specific uses the effect size measure 
will contribute when choosing an appropriate effect 
size measure.   

 The random coefficient model (including a random 
slope) with a single predictor can be expressed as 
(Snijders & Bosker, 2012): 
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Yij = 0 + 1*Xij + U0j + U1j*Xij + eij 

Var(eij) = σ2 

Var(U0j) = τ0
2 

Var(U1j) = τ1
2 

Cov(U0j,U1j) =  τ01 

(1) 

Where Yij represents the continuous outcome, 0 

represents the intercept, 1 represents the slope for 
predictor Xij, Xij represents an individual-level 
predictor, U0j and U1j represent level-two residuals, eij 
represents level-one residuals, i represents individuals 
(level-one), and j represents group (level-two).  Note 
that level-two residuals represent the difference 
between overall average and group-specific values and 
are not related to a difference between observed and 
predicted values in this context.  This model can help 
answer important questions about whether and how 
the relationship between the independent and 
dependent variable vary by group membership.  Note 
that random slopes are analogous to a fixed effect 
interaction effect, with the distinction that the 
interaction is now between a fixed and a random effect 
(Lorah, 2018). 

To provide evidence of significance for random 
slopes, an analyst can conduct a mixture likelihood 
ratio test (Stram & Lee, 1994).  However, once 
evidence has been provided for retaining the random 
slope effect, it may be difficult to interpret (Goldstein, 
Browne, & Rasbash, 2002).  The random slopes are 

assumed to be normally distributed with mean 1 and 
variance τ1

2  which indicates that interpretation can 
proceed by computing specific values within this 
distribution, such as +2 standard deviations from the 
mean.  This computation would result in two slope 
values within which about 95% of the slopes exist 
(Snijders & Bosker, 2012).  Further, the covariance 
term can be standardized and reported as a correlation 
coefficient which can be interpreted according to 
standard criteria and the random slopes effect can be 
plotted, as is typical for interaction effects (Lorah, 
2018).   

For a random intercept model, the intraclass 
correlation coefficient (ICC; ratio of between-cluster 
variance to total variance) can be used as an effect size 
measure (Lorah, 2018; Snijders & Bosker, 2012) and 
this value represents the correlation between individual 
observations and cluster membership (Leckie et al., 

2020).  Alternatively, the variance partition coefficient 
(VPC) can be used to represent the proportion of 
outcome variance attributable to cluster membership.  
For the random intercepts model, the ICC and VPC 
are equal (Goldstein et al., 2002; Leckie at al., 2020). 

 However, for a model with random slopes where 
there is no longer a single source of variation at each 
level, the ICC and VPC are no longer equal, and the 
VPC becomes less useful for interpretation (Goldstein 
et al., 2002).  However, since the VPC is a function of 
the predictor variable in the model, the VPC may still 
be computed for specific values of the associated 
predictor, or plotted across several values of the 
predictor to aid interpretation of the model.  Goldstein 
et al. (2002) provide detailed instructions for doing so 
for the random slopes model, as well as several 
additional generalizations including discrete response 
multilevel models.  More recently, researchers have 
extended these variance partition methods to various 
multilevel models, such as logistic models with 
overdispersion (Brown et al., 2005); and models 
examining count data (Leckie et al., 2020).   

 Although the VPC can be helpful for interpreting 
the proportion of variance attributable to cluster 
membership, methods for interpreting the random 
slope effect in particular are still needed.  To do so, the 
researcher may choose to directly interpret the 
standard deviation of the random slopes (i.e. square 
root of τ1

2; Lorah, 2018), or to compute a change in 
variance accounted for measure based on an 
appropriate variance accounted for value (Rights & 
Sterba, 2020).  Variance accounted for could be 
computed based on a measure using the likelihood 
value or a measure based on variance partitioning; 
however, it is not clear how these two types of 
measures compare to each other and which one to 
report. 

 

Literature Review 

 Effect size measures for random slopes models are 
made more complicated by the fact that partitioning 
variance is less straight-forward compared with the 
random intercepts model.  This is clarified by 
examining the variance of Yij, which depends on the 
predictor, Xij (Snijders & Bosker, 2012): 

Var(Yij|Xij) = τ0
2 + 2 τ01 Xij + τ1

2X2
ij + σ2 (2) 
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 Note also that the value of τ0
2  will vary depending 

on how the predictor X is centered (Snijders & Bosker, 
2012)  

 Although the literature provides various variance 
accounted for measures specifically for random slopes 
models (Johnson, 2014; Rights & Sterba, 2019), some 
methodologists argue that when evaluating a random 
slopes model, the variance accounted for value for the 
analogous random intercepts model with the same 
fixed effect should be used (Nakagawa & Schielzeth, 
2013; Snijders & Bosker, 1994).  This recommendation 
is supported by the claim that computation of variance 
accounted for within the random slopes model may be 
tedious (Nakagawa & Schielzeth, 2013); that the values 
should be quite similar (Nakagawa & Schielzeth, 2013; 
Snijders & Bosker, 1994); that since the level-2 
residuals (U0j terms) are unknown, they do not help 
predict the outcome Yij (Snijders & Bosker, 1994); and 
because the contribution of the random slopes to 
predicting outcome variance is typically small (LaHuis 
et al., 2014).   

 Based on a simulation study, LaHuis et al. (2014) 
find that the values for variance accounted for in the 
random intercepts model are similar to those for the 
random slopes model when the slope variance is small, 
but do not provide a good approximation when the 
slope variance is large.  Johnson (2014) suggests that 
the correspondence between the two measures 
depends on how accurately the random intercepts 
model estimates the slope coefficient as well as 
whether the number of observations within groups is 
relatively similar or not.  Therefore, depending on the 
nature of the data, the difference in variance accounted 
for between the random intercept and random slopes 
model has the potential to be considerable (Johnson, 
2014). 

 In order to measure the unique contribution of an 
effect, the change in R2 value can be computed based 
on models with and without the given effect 
(Darlington & Hayes, 2017) which is used in the 
present study.  Note that the present study considers 
R2 measures derived from variance, as in OLS models, 
as well as R2 measures derived from the value of 
deviance, which is distinct from those used for OLS 
models.   

 

 

Likelihood-based Measures 

 The first measure considered is (McFadden, 1974): 

𝑅𝑀𝐹
2 = 1 −  

ln (𝐿𝑀)

ln (𝐿0)
 (3) 

where ln indicates the natural log; LM is the value of the 
model’s likelihood function and L0 is the value of the 
baseline model’s likelihood function.   

 This measure can be considered to be based on 
“deviance decomposition” analogous to the variance 
decomposition achieved by the OLS measure (Veall & 
Zimmerman, 1996). This measure also represents 
proportional reduction in error (Menard, 2000) and has 
been examined in the context of logistic regression 
(Menard, 2000) and limited dependent models (Veall & 
Zimmerman, 1996) although no instance of examining 
this measure for use with multilevel models was found.  
Menard (2000) recommends this measure due to its 
intuitive interpretation.  Further, Menard (2000) 
compared this measure with the OLS measure (based 
on variance) and based on seven empirical analyses 
found the average value for the McFadden measure 
was about .23 whereas for the OLS measure it was 
about .19 based on a logistic regression model. 

Variance Partition Measures 

 The next measure considered is based on a 
partition of variance appropriate for the random slopes 
model (Johnson, 2014).  The total variance is 
comprised of variance due to fixed effect, random 
effects, and residual variance.  Based on the variance 
partition (VP), the conditional measure of variance 
accounted for can be defined as: 

𝑅𝑉𝑃
2 =

𝜎𝑓
2  + 𝛴𝜎𝑙

2

𝜎𝑓
2 +  𝛴𝜎𝑙

2 + 𝜎𝑒
2  

 (4) 

where σ2
f is the variance of the fixed effects, σ2

l is the 
variance of the lth random effect, and σ2

e is the residual 
variance.  Within the random slopes model, the value 

for 𝛴𝜎𝑙
2 is dependent on the value of the predictor, Xij.  

Therefore, in order to compute this value when 
random slopes are included, the following provides the 
mean random effect variance across all observations Xij 
(Johnson, 2014): 

𝛴𝜎𝑙
2 = 𝑇𝑟 (𝑍𝛴𝑍′)/𝑛 (5) 
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where Z represents the design matrix for the random 

effects, 𝛴 represents the covariance matrix of random 
effects, Tr represents the matrix trace operation, Z’ 
represents the transpose of Z, and n represents the 
number of observations.  The design matrix, Z, would 
be represented by a column of the value one (for the 
random intercept) and a second column of the values 
of Xij for the basic random slopes model with a single 
predictor described by equation 1.  Note that equation 
5 is needed with the random slopes model due to the 
dependence of the random effect variance component 
on Xij (Johnson, 2014). 

 This method for computing variance accounted for 
has been described for the generalized linear multilevel 
model with random intercepts only (Nakagawa & 
Schielzeth, 2013), and within a random intercepts and 
random slopes multilevel model for both the linear and 
the generalized linear models (Johnson, 2014) and 
evaluated empirically through simulation study based 
on the linear random intercepts and random slopes 
multilevel model (LaHuis et al., 2014).  Further, Rights 
and Sterba (2019) generalize this framework to provide 
measures that can, for example, differentiate among 
variance accounted for from level-one fixed effects 
versus level-two fixed effects and explore R2 difference 
measures appropriate for various effects (Rights & 
Sterba, 2020).  Note that Rights and Sterba (2019) 
show that their measure is a generalization of the 
Johnson (2014) measure (see Rights and Sterba (2019), 
Appendix Section B3).  Although this generalization 
allows the researcher a bit more flexibility, the Johnson 
(2014) measure was chosen for the present study as it 
does not require group-mean centering of variables for 
any variation of the measure, the associated software 
option is a bit more user-friendly, and it is specifically 
derived and offered just for random slopes effect, the 
focus of the present study. 

 This measure can be computed automatically from 
the r.squaredGLMM function from the MuMIn 
package (Barton, 2019) which is available in R (R Core 
Team, 2021), and was the method used in the present 
study. 

Marginal versus Conditional Measures 

 Measures of variance accounted for in a multilevel 
model are often classified as either conditional or 
marginal measures.  Note that this distinction refers to  

the measures themselves, not the difference measures.  
Conditional measures represent variance accounted for 
by both the fixed and random effects of the model, 
while marginal measures represent variance accounted 
for by fixed effects only (Nakagawa & Schielzeth, 2013; 
Orlien & Edwards, 2008).  Given that the present study 
examines random effects specifically, conditional 
measures must be used so that variance accounted for 
by the random slope effect is included in the measure.  
This implies that the baseline model for the McFadden 
measure should be the OLS intercept-only model, in 
order for the measure to include variance explained 
due to both the fixed and random effects. 

Evaluation Criteria 

 The change in R2 values between a model with and 
without a random slope effect are evaluated based on 
the following criteria: 

1. The values should not be related to sample 
size.  Specifically, Kelley and Preacher (2012, 
pg. 147, property number 3) indicate that a 
good effect size measure should be 
independent of sample size. 

2. The values should be highly related to the true 
value of the effect, τ1

2.  In order for the 
measure to have “utility as a measure of 
goodness of fit and an intuitively reasonable 
interpretation” (Kvalseth, 1985, pg. 281, 
criteria 1), the measure should clearly be related 
to the effect which it is describing.   

3. The values should not be negative.  A negative 
change value would indicate that the variance 
accounted for has decreased when a random 
slopes effect was added.  However, criteria for 
measures of variance accounted for indicate 
that these values should not decrease whenever 
effects are added (Cameron & Windmeijer, 
1996, criteria 2).   

4. The values upon repeated replication should 
not vary widely.  Low variability among 
replications indicates an efficient estimator and 
this can be measured through the standard 
deviation of repeated replications, which 
approximates the standard error (LaHuis et al., 
2014).   

 

 



Practical Assessment, Research & Evaluation, Vol 27 No 9 Page 5 
Lorah, Random Slopes Effect Size 

 

Present Study 

 The present study compares two potential 
measures of effect size for a random slopes effect.  
Both measures are computed as the difference in 
variance accounted for between a model with a single 
random slope effect (equation 1) and an identical 
model with the random slope effect removed.  The 
measures of variance accounted for used are: 

1. McFadden. Computed as specified in 
equation 3 with the baseline represented by 
the OLS intercept-only model. 

2. Variance partition. Computed as specified 
in equation 4 with random effect variance 
as specified in equation 5. 

The following research question is investigated: When 
estimating a random slopes model,  how does a 
likelihood-based measures of variance accounted for 
compare with a variance partition measure for 
computing a measure of change in variance accounted 
for as an effect size measure of a random slope effect? 

 

Methods 

 To evaluate these possibilities for effect size, 
Monte Carlo simulation was used in R (R Core Team, 
2021) and code for the simulations is provided in the 
appendix.  The parameter values for the simulation 
study were chosen based on the literature and specific 
goals of this study.  Specifically, the present study uses 
2000 simulations per conditions, slightly more than 
previous simulation work examining variance 
accounted for with multilevel models which used 500 
(Rights & Sterba, 2019).  Previous multilevel modeling 
simulation work examining variance accounted for has 
used a sample size of 200 groups with 50 observations 
per group (Rights & Sterba, 2019) and 40, 70, and 160 
groups with average group size of 4, 8, and 21 (LaHuis 
et al., 2014).  Additionally, this simulation work has 
used a value of 17 for residual variance (σ2) and values 
of 1, 1.5, 2, and 10 for the variance for random effects 
(Rights & Sterba, 2019) as well as τ00=.176 or .429 and 
τ01 value of  0.1 (LaHuis et al., 2014) and ICC of .15 
and .30 (LaHuis et al., 2014).   

 Based on these conditions just summarized from 
the literature, four parameters were varied and fully 
crossed in the present study including group size 

(values of 10, 40, and 50); number of groups (values of 
20, 50, and 70); τ0

2 (values of 6.25, 9, and 12.25); and 
τ1

2 (values of 1, 2.25, 4, and 6.25) resulting in a total of 
108 conditions.  Number of groups represents the 
sample size at level two while the group size represents 
the sample size within each level-two group.  The 
conditions in the present study resulted in an observed 
ICC that varied by condition and ranges from about 
0.18 to about 0.33 based on the simulated datasets.  
Note that additional analyses were run varying τ01 (with 
values of 0, 0.3, and 0.6), but no relationship between 
this covariance and either of the measures of variance 
accounted for was found (all correlations around 0.02 
or lower) and so for the sake of clarity, τ01 was held 
constant for the final analyses.  For each condition, 
2000 simulations were run.  Data was generated 

according to equation 1 and 0 was held constant at 

five; 1 was held constant at two; and τ01 was held 
constant at zero. The individual-level predictor Xij was 
generated as a standardized random normal variable 
with mean of zero and standard deviation of one.  The 
individual-level residual, eij was generated as a random 
normal variable with mean of zero and variance of 16.   

 The following two models were estimated (all 
notation consistent with equation 1): 

Empty OLS model: Yij = 0 + eij (6) 

Random intercept model:  

Yij = 0 + 1*Xij + U0j + eij 

 

(7) 

along with the random slopes model (equation 1) for a 
total of three models.  All data was generated and 
analyzed using R (R Core Team, 2021). 

 To analyze the simulated data, both of the 
measures described above were computed for the 
random intercepts model (equation 7) and for the 
random slopes model (equation 1) for each replication.  
The difference between these two values was used as 
an effect size measure for the random slope effect.  To 
assess these measures, correlations between the two 
measures, as well as among the measures and 
parameters were computed.  In addition, the minimum 
value, maximum value, mean, and standard deviation 
for the values for each measure were computed.  Note 
that although it would be informative to compare these 
measures to their true, population value through 
metrics such as bias and RMSE, this is not possible in 
the present study  because  the  model  parameters  are  
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Table 1. Results for Both Change Accounted for Measures 

    McFadden 

Variance 

Partition 

Correlations 
  

 
1. Group size 0.293 0.010 

 
2. # of groups 0.013 0.025 

 
3. Total N 0.223 0.021 

 
4. Intercept variance -0.016 -0.110 

  5. Slope variance 0.808 0.844 

Min 
 

0.000 -0.012 

Max 
 

0.104 0.526 

Mean 
 

0.018 0.098 

SD   0.014 0.062 

Note.  Both measures computed based on change in variance accounted for between a model with and without the 

random slope effect.  Results based on 2000 simulations for each of 108 conditions.  The first five rows represent the 

correlations between change in variance accounted for values and the simulated parameter conditions. 

 

specified within the simulation but not the variance 
accounted for measures.  

Results 

 Table 1 provides correlations among measures of 
change in variance accounted for and parameters as 
well as the minimum value, maximum value, mean, and 
standard deviation for each measure.   

Sample Size 

 Rows 1-3 of Table 1 show the correlations between 
each of the measures and three aspects of sample size 
(Group size, # of groups, and Total N).  The 
McFadden measure is moderately positively correlated 
with group size and overall sample size, while the 
variance partition measure shows negligible correlation 
with sample size.  Generally speaking, one advantage 
of effect size reporting compared with hypothesis 

testing is that effect size measures are not influenced 
by sample size (Kelley & Preacher, 2012).  In this case, 
the fact that the McFadden measure shows small 
positive correlations with group size may be 
considered problematic.  Based on this metric, and 
consistent with evaluation criteria 1 specified above, 
the variance partition measure would be preferred.   

Intercept Variance 

 The correlations between both measures and the 
intercept variance value can be found in Table 1, row 
4.  Both measures show small negative correlation with 
the intercept variance, with the variance partition 
measure indicating a slightly stronger correlation.  This 
is expected.  As intercept variance (τ0

2) increases, this 
causes the total variance to increase.  With slope 
variance (τ1

2) held constant and total variance 
increasing, the proportion of variance attributable to 
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slope variance decreases.  This is demonstrated with 
the negative correlation between intercept variance and 
variance accounted for by the random slope. 

Slope Variance 

 The correlations between both measures and the 
slope variance value can be found in Table 1, row 5.  
Slope variance is strongly positively correlated with 
both measures, which is expected since this is the 
parameter manipulating the effect size of the random 
slopes.  Thus, according to evaluation criteria 2, which 
specifies that the value should be highly related to the 
true effect, both measures may be used. 

Comparison Among Measures 

 These two measures are correlated at 0.909, 
indicating a high degree of overlap with each other. 

 According to Table 1, the minimum value for the 
McFadden measure is zero indicating that the inclusion 
of the random slopes effect didn’t cause a decrease in 
the variance accounted for value for any simulation 
replications in this study.  For the variance partition 
measure, the minimum value is -0.012, indicating that 
in some simulations, including the random slopes 
effect caused a small decrease in the variance 
accounted for value.  Ideally, the change in variance 
accounted for when adding an effect won’t be negative 
(Cameron & Windmeijer, 1996), indicating that based 
on this outcome and according to evaluation criteria 3 
specified above, the McFadden measure is preferred. 

 The average value for change in variance 
accounted for differs for the different measures.  The 
McFadden measure shows a much lower average value 
of 0.018 compared with the average value for the 
variance partition measure of 0.098.  

 The results and interpretation based on these 
different measures varies widely.  For example, 
depending on the measure selected, this could indicate 
anywhere from about 2% to about 10% of variance in 
the outcome is accounted for by the random slope 
effect.  This result calls into question the 
reasonableness of reporting a single measure of change 
in variance accounted for with a random slope effect 
based on evaluation criteria 2 which indicates the 
measure should have an intuitively reasonable 
interpretation (Kvalseth, 1985). 

 The standard deviation of these change measures 
across replications can be considered as a standard 

error and represent a measure of efficiency for the 
estimators (LaHuis et al., 2014).  The standard 
deviation for the McFadden measure is 0.014, while for 
the variance partition measure it is 0.062.  A smaller 
standard deviation value represents a more efficient 
estimator, which is preferable.  In the present study, 
the McFadden measure displayed the smallest standard 
deviation value and may be preferred due to the higher 
efficiency. 

 

Discussion & Conclusions 

Both types of measures examined demonstrated 
desirable properties.  The McFadden measure was not 
highly correlated to intercept variance, highly 
correlated to slope variance, did not take any negative 
values, and demonstrated high efficiency.  On the 
other hand, the variance partition measure was not 
highly correlated to sample size, demonstrated slightly 
higher correlation with intercept variance, and was 
highly correlated with slope variance.  Although the 
correlation between the two measures was 0.909, they 
demonstrated somewhat different average values at 
around 0.018 for McFadden and 0.098 for the variance 
partition measure.  It’s not clear why these average 
differences emerged, but this could be related to the 
fact that the random effect variance component 
depends on the predictor, X (Johnson, 2014) or 
possibly due to the fact that the level-2 residual (u0j 
terms) are unknown (Snijders & Bosker, 1994).  
Menard (2000) did not find that the McFadden 
measure produced consistently lower values than a 
measure based on variance for a different model, 
indicating that the direction of this difference may be 
depend on the specific models and data examined.  
Consistent with results related to the logistic regression 
model (Menard, 2000), this study finds that there is no 
clear reason to choose one of these two types of 
measures over the other.  Therefore, in order to give a 
fuller picture of the results, it is recommended that 
both measures be reported for applied studies.   

The present study is not without limitations.  The 
conclusions based on any simulation study are limited 
to the specific conditions examined.  Although efforts 
were made to ensure realistic conditions, future 
research may want to expand beyond these conditions 
and specifically include models with additional fixed 
effects including interaction and cross-level interaction 
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effects, additional random effects, and non-zero 
intercept slope covariance values.  Future research 
should additionally propose alternative measures for 
effect size for random slope effects based on statistics 
other than change in variance accounted for.  Further, 
future research should consider level-specific measures 
for assessing variance accounted for by random slopes.   

This study fills a gap in the literature by offering a 
comparison through Monte Carlo simulation of 
likelihood-based versus variance partition methods of 
computing a value for variance accounted for, in order 
to compute an effect size measure for a random slopes 
effect.  Results indicate that both measures perform 
well and that it is worthwhile for applied researchers to 
compute and report both types of measures in 
empirical studies. 
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Appendix A. R Code 
 
 

##################### 

####GENERATE DATA#### 

 

library(lme4)    #for the lmer function 

library(MuMIn)     #for the r.squaredGLMM function 

nsim<-2000   #number of simulations per condition 

numColumns_result<-27 #number of results quantities to store 

 

#values for varying conditions 

values_NL1<-c(10,40,50)  #values for L1 N (group size)  

values_L2SD<-c(2.5,3,3.5)  #values for tau (SD of U0j)  

values_NL2<-c(20,50,70)  #values for L2 N (# of groups)  

values_SlopeSD<-c(1,1.5,2,2.5) #values for the SD of U1j  

 

#values for constants 

b0<-5 

b1<-2 

 

#number of conditions for each parameter varied 

ncond_NL1<-length(values_NL1)  

ncond_L2SD<-length(values_L2SD)  

ncond_NL2<-length(values_NL2)   

ncond_SlopeSD<-length(values_SlopeSD) 

 

#total number of conditions 

ncond<-ncond_NL1*ncond_L2SD*ncond_NL2*ncond_SlopeSD 

#total number of rows for result matrix 

numRows<-nsim*ncond 

 

#create matrix of conditions  

numColumns_conditions<-4 #number of conditions that vary 

conditions<-matrix(ncol=numColumns_conditions,nrow=numRows) 

colnames(conditions)<-c("NL1","L2SD","NL2","SlopeSD") #condition names  

conditions[,1]<-rep(values_NL1,length.out=numRows) 

conditions[,2]<-rep(values_L2SD,each=ncond_NL1,length.out=numRows) 

conditions[,3]<-

rep(values_NL2,each=ncond_NL1*ncond_L2SD,length.out=numRows) 

conditions[,4]<-

rep(values_SlopeSD,each=ncond_NL1*ncond_L2SD*ncond_NL2,length.out=num

Rows) 

 

#create matrix to store simulation results 

result<-matrix(ncol=numColumns_result,nrow=numRows) 
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#run nsim simulations 

for(i in 1:(numRows)){ 

NL1<-conditions[i,1] 

L2SD<-conditions[i,2] 

NL2<-conditions[i,3] 

SlopeSD<-conditions[i,4] 

N<-NL1*NL2 

 

#generate variables 

X1<-rnorm(N) 

ID<-rep(seq(from=1,to=NL2,by=1),times=NL1) 

U0j<-rep(rnorm(NL2,mean=0,sd=L2SD),times=NL1) 

U1j<-rep(rnorm(NL2,mean=0,sd=SlopeSD),times=NL1) 

eij<-rnorm(N,sd=4) 

 

#generate Y 

Y<-b0+b1*X1+U0j+U1j*X1+eij 

 

#estimate models 

M0<-lm(Y~1) 

M1<-lmer(Y~(1|ID),REML=F,control=lmerControl(optCtrl=list(xtol_abs=1e-8, 

ftol_abs=1e-8))) 

M2<-lmer(Y~X1+(1|ID),REML=F,control=lmerControl(optCtrl=list(xtol_abs=1e-

8, ftol_abs=1e-8))) 

M3<-lmer(Y~X1+(X1|ID),REML=F,control=lmerControl(optCtrl=list(xtol_abs=1e-

8, ftol_abs=1e-8))) 

 

#save relevant quantities in "temp"  

temp<-c( 

mean(Y),  #Ybar  

logLik(M0),  #loglik_M0 

logLik(M1),  #loglik_M1 

logLik(M2),  #loglik_M2 

logLik(M3),  #loglik_M3 

sum((Y-Ybar)^2),  #SSR 

sum((Y-Ypred1)^2),  #SSM1 

sum((Y-Ypred2)^2),  #SSM2 

sum((Y-Ypred3)^2),  #SSM3 

var(predict(M1,type="response")),  #varYhat1 

var(predict(M2,type="response")), 

var(predict(M3,type="response")), 

as.data.frame(VarCorr(M1))$vcov[1],  #tau-squared, M1 

as.data.frame(VarCorr(M1))$vcov[2],  #sigma-squared, M1 

as.data.frame(VarCorr(M2))$vcov[1],  #tau-squared, M2 

as.data.frame(VarCorr(M2))$vcov[2],  #sigma-squared, M2 
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as.data.frame(VarCorr(M3))$vcov[1],  #tau-squared, M3 

as.data.frame(VarCorr(M3))$vcov[2],  #slope var, M3 

as.data.frame(VarCorr(M3))$sdcor[3],  #int/slope corr, M3 

as.data.frame(VarCorr(M3))$vcov[4],  #sigma-squared, M3 

cor(Y,Ypred1)^2,    #correlation between observed & pred. Y, 

squared 

cor(Y,Ypred2)^2, 

cor(Y,Ypred3)^2, 

r.squaredGLMM(M2)[1], #R2 marginal 

r.squaredGLMM(M2)[2], #R2 conditional 

r.squaredGLMM(M3)[1], 

r.squaredGLMM(M3)[2] 

) 

#add values in temp to full table of results  

result[i,]<-temp 

} 

 

#assign names to the columns of "result" 

colnames(result)<-

c("Ybar","loglik_M0","loglik_M1","loglik_M2","loglik_M3", 

 "SSR","SSM1","SSM2","SSM3", 

 "varYhat1","varYhat2","varYhat3", 

 "tau2M1","sigma2M1","tau2M2","sigma2M2", 

 "tau2M3","slopeM3","corrM3","sigma2M3", 

 "Cor1","Cor2","Cor3", 

 "R2_M2_Mar","R2_M2_Cond","R2_M3_Mar","R2_M3_Cond") 

 

#combine conditions and result  

mydata<-as.data.frame(cbind(conditions,result)) 

 

 

######################## 

####COMPUTE MEASURES#### 

 

# McFadden  

mydata$McFadden<-(1-(mydata$loglik_M3/mydata$loglik_M0)) - (1-

(mydata$loglik_M2/mydata$loglik_M0)) 

 

# Variance partition  

mydata$Variance.Partition<-mydata$R2_M3_Cond-mydata$R2_M2_Cond 
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