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This paper examines four ways in which Rasch modeling may be used to improve 
standard setting.  The first three methods are applied to the Angoff procedure and the 
fourth is an example of bookmarking.  Using an actual data set taken from the New South 
Wales School Certificate test in Mathematics, worked examples are provided that show 
how informative data may be provided to the judges, both before and after they Angoff-
rate the test items.  In addition, an example of bookmarking is given, along with a variant 
of the latter known as item mapping.  The application of non Rasch IRT procedures to 
standard setting is also discussed. 
 

Standard setting is now a fundamental goal for 
reporting educational outcomes in many education 
systems around the world. It is in widespread use 
across the US in state testing systems and is used in 
the UK.   In Australia, it is used in all the Year 10 
and Year 12 examinations in the New South Wales 
(NSW) education system (Board of Studies NSW, 
2003).  The two most popular procedures for 
standard setting are the Angoff method (Angoff, 
1971) and a newer procedure, the Bookmark 
method (Mitzel, Lewis, Patz and Green, 2001). 

 
Standard setting involves a systematic set of 

procedures that identifies a common judgement as 
to the cut score required for a given level of 
proficiency.  It would be naïve to think that such 
procedures identify a “true” standard which 
separates proficiency from non-proficiency.  
Standards are in an obvious sense arbitrary, being 
influenced by the perceived characteristics of the 
examinees, the educational experiences and values 
of the particular judges and the expectations of the 
society from which the judges are drawn.  The 
arbitrary nature of standards, however, does not 

mean they are capricious, and does not negate the 
educational benefits that may flow from their 
establishment. The most important requirement of 
such standard-setting procedures is that of 
consistency—once consensus among the judges is 
reached, the procedures should classify the same 
type of students as being proficient across different 
occasions, test instruments, judging panels and so 
on.      

 
While the Angoff method was originally 

conceived as a one-stage test-centered process, it 
has now typically developed into a multi-stage 
procedure in which the judges make independent 
judgements and then discuss their initial decisions.  
This group discussion process has been advocated 
by several researchers (for example, Jaeger, 1982; 
Norcini, Lipner, Langdon and Strecker, 1987; 
Morrison, Busch and D’Arcy, 1994; Berk, 1996).  In 
the discussion phase it is customary to provide the 
judges with data on the accuracy of their initial 
decisions.  Providing the judges with such data has 
been suggested by Popham (1978), Linn (1978), 
Cross, Impara, Frary and Jaeger (1984), and 
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Norcini, Shea and Kanya (1988).  There is a natural 
affinity between IRT models and many standard-
setting procedures, with a shared view of a 
continuum of achievement and a probabilistic 
definition of mastery on an item.  Both van der 
Linden (1982) and Kane (1987) have discussed the 
similarities between IRT models and Angoff 
standard-setting procedures.  

 
Given that standard setting in certification has 

high stakes for individuals, there is considerable 
interest in understanding the process and in finding 
ways to reduce variability in standard setting from 
occasion to occasion (MacCann and Stanley, 2004). 
Using a data set taken from a state-wide standard-
setting operation, this paper will illustrate some 
ways in which Item Response Theory (IRT) can be 
used to provide feedback to help judges in both the 
Angoff and Bookmarking procedures. 

 
 

THE SCHOOL CERTIFICATE 
MATHEMATICS PROGRAM 

 
To show the ways in which Rasch modeling can 

be used to improve standard setting, data based on 
a multi-stage Angoff procedure will be analysed.  
The test comprised 50 short items, which were 
dichotomously scored—0 for a wrong answer, 1 for 
the correct answer.  The test items came from the 
School Certificate Mathematics external test 
program, which tests the fundamental knowledge 
and skills of students in Year 10 in New South 
Wales (generally of age 15-16 years).  Approximately 
78,000 students attempt this compulsory test, but 
the analyses below were based on a simple random 
sample of 10,000 students.  This program uses a 
three-stage Angoff procedure with six experienced 
teacher-judges to allocate each student to one of six 
performance bands.  The highest band, Band 6, which 
generally corresponds to the top 3-10% of students, 
will be used for the purposes of illustration in this 
paper. 

 
 

ITEM RESPONSE THEORY 
 
IRT developed from the initial work of Lord 

(1952, 1953) on latent trait models and the 
independent development by Rasch of the one-

parameter model (Rasch, 1960, 1966).  In contrast 
to Classical Test Theory (CTT), IRT uses relatively 
strong assumptions but produces a measurement 
scale that has a number of advantages over CTT 
and now holds a central place in educational 
measurement theory.  For expositions of IRT and 
the various models that have been developed see 
Lord (1980),  Hambleton, Swaminathan and Rogers 
(1991), van der Linden and Hambleton (1997), 
Embretson and Reise (2000). 

 
In the NSW education system, the one-

parameter Rasch model is widely used to analyse 
tests.  The Rasch model software package employed 
in this paper is RUMM—Rasch Unidimensional 
Measurement Models (Andrich, Sheridan, Lyne and 
Luo, 2000).  The Rasch model is the simplest of the 
IRT models, having only one parameter to describe 
an item—its difficulty.  In addition, each person has 
one parameter to describe their performance—their 
ability.   

 
The RUMM software accepts the usual type of 

data file where the student records are in rows and 
the test items are in columns.  Applying the 
appropriate mathematical modeling to this data 
matrix, the software produces a person ability 
estimate for each student, and an item difficulty 
estimate for a test item.  These estimates are on the 
logit scale (log odds units), a scale arbitrarily centred 
on zero for the difficulty of the test items, and 
theoretically ranging from minus infinity to plus 
infinity.  (In practice most estimates fall in the –4 to 
+4 range.) 

 
 

The relationship between total score and ability 
in logits 

 
For the case of all items being compulsory (as 

they are in School Certificate Mathematics), and for 
the one parameter logistic model, the total score is a 
sufficient statistic for estimating a student’s ability 
level (Andersen, 1973).  This implies that every 
examinee on the same total score will receive the 
same ability estimate.  The relationship between the 
total score and the ability estimate is shown below 
in Figure 1. 
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  Figure 1: Conversion from total score to ability in logits 

 
 

A conversion table like this should be 
obtainable from all reputable Rasch software 
packages.  Note that the conversion is relatively 
linear for a large part of the mark range, but 
increases sharply in the upper mark range.  A few 
marks total score difference in the upper mark 
range results in a larger ability difference than would 
occur for the same total score difference near the 
middle of the distribution.  Similarly, the conversion 
decreases sharply at the bottom of the mark range.  
For students scoring full marks (50), or zero marks, 
ability estimates are hard to justify, although some 
software packages give such estimates. 

 
This conversion between total score and ability 

(and vice versa) is frequently used in the procedures 
to follow. 

 
ANGOFF PROCEDURES 

 
In the Angoff method, a panel of judges is 

assembled which is representative of the community 
that works with and interprets the standards.  In the 
NSW system, this comprises six experienced 
teachers.  For the traditional Angoff method, each 
judge works through the test items independently, 
estimating the probability of success on each item 
for the candidates under consideration.  In practice, 
rather than express the task in terms of 

probabilities, the judges are usually asked to 
envisage a group of such candidates and to estimate 
the proportion of the group who would succeed on 
the item.  This results in a series of Angoff-ratings 
for each judge.  When these ratings are regarded as 
final, they are summed over all the items in the test to 
produce a total cut score for the judge. A final total cut 
score is obtained by averaging across the judges’ 
total cut scores.  This is the Angoff method in its 
basic state. 

 
This basic procedure has typically evolved into a 

multi-staged process in most systems.  Whereas the 
judges work independently in the first stage 
described above, in the later stages the judges 
usually collaborate and receive some form of 
feedback on the accuracy of their judgements.  
Thus, the judges usually get to modify their 
judgements before they become final and are 
summed over items and averaged across judges.  In 
addition, material is often provided to help the 
judges formulate an image of the desired candidates 
who are proficient at the given level.  For example, 
if the system has been in operation for some years, 
“Standards Packages” on CD-Rom may be made 
available for the judges to study.  These typically 
contain test items from previous years showing the 
success rates obtained by candidates near the total 
cut score. 
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In the sections below, it will be shown how 

Rasch modeling can assist the judges in forming and 
modifying their Angoff-ratings. 

 
 

Data which assists the judges to make item 
probability estimates  

 
This section deals with the Angoff procedures 

and illustrates the type of information that could be 
given to the judges before they give Angoff 
probability ratings to each item.  Firstly, the test is 
analysed via IRT to produce item difficulty 
estimates and person ability estimates.  The 
relationship between a total score on the 50 items 
and person ability is given in Figure 1.  From this 
figure, given a total score, an ability can be 
determined.  Then given the person ability and the 
difficulty of the item, the probability of success on 
item j by person i is given by 

 

)(1

1
jie

Pij βθ −−+
=  .    (1) 

 
where iθ  is the ability of person i, and jβ  is the 

difficulty of item j. 
 
(Note that there are other forms of this 

equation.  For example, it is sometimes written 
 

  
)(1

1
jiaDij

e
P
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where D is a scaling constant, a is a common 

level of discrimination for all items and their 
product may be termed the scaling factor.  By letting 

ii aD θθ ′=  and jj aD ββ ′= , the scaling factor is 
absorbed into the ability and difficulty scale to 
create the simpler form of Equation 1.) 

 
From Equation 1 a table can be generated 

which shows how students on a particular total 
score would be expected to perform on each item, 
as in Table 1 below.  This table could be provided 

to the judges before they attempt their Angoff 
ratings.  To save space, it is shown here for a range 
of total scores surrounding the expected cut score 
and only for the first four items in the test.  It gives 
the probability that students at a given score level 
would correctly answer the item.   No probability 
estimates are given for a perfect score of 50 as this 
represents a ceiling that may distort the value of any 
attempted estimate.  

 
For example, according to the IRT model, of 

the students scoring 45 (/50) on the total test, about 
95% would be expected to be correct on Item 1, 
but only 72% would be expected to be correct on 
Item 2.  In addition to providing information of 
students’ expected performance on an item, this 
also provides a means of comparing the difficulty of 
the items at different ability levels.  Clearly Item 2 is 
generally a much more difficult item than Item 1. 

 
Comparing Item 1 with Item 3 gives little 

difference in the probability levels for students on a 
score of 47 (97% versus 94%), but this difference 
increases at lower ability levels.  For example, for 
students on a score of 42, 92% are predicted to be 
correct on Item 1 but only 82% on Item 3. 

 
In the approach considered here, Table 1 would 

be presented “upfront” to the judges.  They would 
scan the Item 1 probability column and encircle the 
probability that best matched their Angoff-rating for 
Item 1.  They would repeat this process for several 
items. If the encircled probabilities tended to fall on 
the same row, then they could stop when they were 
satisfied that the row reflected the standard of 
which they are thinking.  Some judges may need 
only a small number of comparisons before settling 
on a row, while others may need to cover most of 
the items before then choosing the row that best 
fits the pattern of encircled probabilities.  Once a 
row is tentatively chosen, the remaining items can 
be dealt with more quickly, as a confirmatory check, 
rather than performing Angoff ratings in isolation. 
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Table 1: IRT probability estimates for students at a given mark (ability) level for 
the first four items 

  IRT probability estimates 
Mark (/50)  Percentile I1 I2 I3 I4 

      
50 100.0 . . . . 
49 99.8 0.99 0.94 0.98 0.99 
48 99.5 0.98 0.88 0.96 0.98 
47 99.1 0.97 0.83 0.94 0.97 
46 98.3 0.97 0.77 0.92 0.96 
45 97.1 0.95 0.72 0.90 0.95 
44 95.7 0.94 0.67 0.87 0.93 
43 94.1 0.93 0.62 0.85 0.92 
42 92.3 0.92 0.57 0.82 0.90 
41 90.2 0.90 0.53 0.79 0.89 
40 88.1 0.89 0.49 0.77 0.87 
39 85.9 0.87 0.45 0.74 0.85 
38 83.5 0.85 0.41 0.71 0.83 
37 81.0 0.83 0.38 0.68 0.81 
36 78.2 0.82 0.35 0.65 0.79 
35 75.3 0.80 0.32 0.62 0.77 
34 72.8 0.78 0.30 0.59 0.75 
33 70.0 0.75 0.27 0.56 0.72 
32 67.4 0.73 0.25 0.53 0.70 
31 64.0 0.71 0.23 0.50 0.68 
30 61.2 0.69 0.21 0.48 0.65 

 
For example, the actual (average) judges’ ratings 

for the first four items are shaded in Table 1.  It 
appears that even from this small amount of data, 
the standard desired is around a score of 42-43.  
Moreover, it is obvious which Angoff-ratings are 
aberrant, as in Item 2.  This is a relatively difficult 
item, for which the judges have under-estimated the 
difficulty experienced by the Band 6 students.  It is 
easy for the judges to see these discrepancies and to 
amend them.  In this procedure, important data is 
presented “upfront” to the judges who can scan 
across a range of items to see the probabilities IRT 
has assigned and compare these probabilities with 
the estimates that they would have awarded.  The 
item data is considered simultaneously and the 
judges can “home-in” on a row of the table, rather 
than the usual process of sequential item 
judgements, which can take much longer.  The 
advantages of this process are a saving in time spent 
by the judges, the ease with which aberrant 
judgements may be spotted, and the fact that a 

clearly stated model underlies the probability 
estimates in each row. 

 
The item judgements can be selected in two 

ways.  One would be for the judges to simply select 
the appropriate row of the table and to use the 
exact probabilities assigned by IRT.  The second 
would be for the judges to select the appropriate 
row and to use the row to inform their probability 
estimates, but to enter their own probabilities that 
could differ from the IRT ones.  The rationale for 
this would be that the IRT analysis is based on a 
model that is an approximation to reality and that 
the judges may prefer to rely on their experience of 
the past performance of similar students. 

 
In addition to the IRT probabilities, normative 

data could be given—the percentile rank 
corresponding to each score level.  For example 
students scoring 45 are at percentile 97.1 in the 
student population and about 95% of them would 
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be expected to be correct on Q1 but only 72% on 
Q2, according to the IRT model.  Such a table 
could be presented without the column giving the 
percentile rank.  Reid (1991) has argued that the use 
of normative data in standards-setting needs to be 
carefully handled.  Once the judges see the 
normative data, it may prove to be a dominant 
factor that biases the item judgements.  On the 
other hand, Wiliam (1996) points out the danger 
that test-centered standards-setting procedures may 
lose touch with what students can actually do, 
resulting in set standards that are quite difficult to 
achieve. 
 
The total cut score equivalents of each item 
judgement 

 
In this section, the judges have Angoff-rated 

each item but have not yet summed the items to get 
a total cut score.  Here feedback is given on the 
equivalent total cut score for each item.  When the  
judges estimate a probability of success for an item, 
they are, in effect, setting an ability level.  The item 
has a known difficulty level obtained from the IRT 
analysis and the judges are estimating a probability 
of success for cut score level type students.  The 
estimated ability of the students at this cut score 
level is obtained by rearranging Equation 1 so that 
the person ability is a function of the probability of 
success on the item, giving: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

ij

ij
ji P

P1
lnβθ .   (2) 

where ln is the natural logarithm (logarithm to 
the base e). 

 

The person ability is then converted to an 
equivalent total score on the test by using a 
conversion table similar to that graphed in Figure 1.  
For example, an ability of 2 logits translates to an 
expected total score of 41.4.  This allows the 
generation of Table 2 below, which shows the 
expected total cut scores for the first 25 items. 

 
Table 2 gives an item-by-item estimate of the 

total cut score.  Instead of a single total cut score 
estimate based on an Angoff summing of item cut 
scores, there is a total cut score based on every item 
rating.  Figure 2 below gives a boxplot of the 
estimated total cut scores from all 50 items.  It 
shows that there is a wide range of estimates from 
49 to 37 (/50), but the middle 50% of estimates lie 
between 45.5 and 40.5 approximately.   

 
The data in Figure 2 may be instructive to the 

judges in several ways.  Firstly, it indicates that an 
Angoff rating on a single item may give a wildly 
inappropriate result.  Secondly, it gives a vivid way 
of indicating item estimates that seem to be 
anomalous.  Thirdly, it indicates that there is a 
distribution of total cut score estimates and this 
suggests that there may be alternative methods of 
obtaining a final total cut score other than using the 
standard Angoff procedure of summing the item 
cut scores.  The judges may reflect on this 
distribution of estimated total cut scores and choose 
an appropriate statistic.  For example, in principle 
they could select the median of this set of scores, or 
some other measure, such as the 25th percentile, as 
reflecting the desired standard. 
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Table 2: A total cut score estimate based on each item 
Item Judges’ Angoff 

rating 
IRT ability 
matching 

Angoff rating 

Corresponding 
total cut score 

1 0.91 2.005 41.4 
2 0.82 3.315 46.8 
3 0.83 2.133 42.1 
4 0.92 2.329 43.1 
5 0.98 2.731 44.9 
6 0.64 2.863 45.4 
7 0.76 1.902 40.8 
8 0.87 1.523 38.4 
9 0.83 2.750 45.0 

10 0.99 4.268 48.6 
11 0.73 3.243 46.6 
12 0.85 3.437 47.1 
13 0.85 2.742 45.0 
14 0.91 1.606 38.9 
15 0.87 2.644 44.6 
16 0.90 4.639 49.0 
17 0.73 2.573 44.3 
18 0.78 3.351 46.9 
19 0.99 3.490 47.3 
20 0.98 3.340 46.9 
21 0.94 1.593 38.9 
22 0.99 1.963 41.2 
23 0.96 2.278 42.9 
24 0.98 3.342 46.9 
25 0.97 2.182 42.4 
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Figure 2:  Boxplot of the estimated Total Cut Scores – 
each item providing a Cut Score 
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Feedback to the judges on the accuracy of their 
probability ratings 

 
In the standard Angoff procedure, the item cut 

scores are summed to give a total cut score.  This 
total cut score can be converted into a person ability 
measure via a conversion table, as shown in Figure 
1.  In addition, an item difficulty estimate in logits is 
available for each item from the IRT analysis.   

 
Then Equation 1 can be used to estimate the 

probability of success on each item and compare it 
with the judges’ estimated probability of success 
(the Angoff rating).  This is shown in Table 3 below 
for the first 30 items. 

 
Such a table can be presented in item order (as 

shown) above or sorted in order of the discrepancy 
between the IRT probability and the judges’ 
probability.  The latter would clearly show the 
judges the items where their judgements were most 
discrepant from the results of the IRT model.  Most 
Angoff procedures in recent times are multi-stage.  
This statistical feedback would give the judges a 
chance to rethink some of their ratings in the 
second stage.  For example, Item 16 (shaded in the 
table) is a very difficult item according to the IRT 
analysis, with a difficulty rating of 2.44 logits.  The 
predicted IRT probability of success was only 0.55 
for the Band 6 marginal students on this item.  
However, the judges expected the high-level Band 6 
students to perform well on the item, with an 
average probability of success rating of 0.90.  This 
discrepancy is an indicator to the judges to closely 
re-examine this item and attempt to determine why 
it proved to be so difficult in general, and to the 
high ability Band 6 group, and to adjust their ratings 
accordingly.   
 
 

BOOKMARKING PROCEDURES 
 
A newer method of standard setting which does 

not involve item by item judgements is the 
Bookmark method (Mitzel et al, 2001).  In this 
procedure the test is analysed by IRT to produce 
item difficulty estimates and person ability  

estimates.  A criterion probability is then set such 
that, for students conceived to be at the marginal cut score 
level, two-thirds of the group would be expected to 
succeed on the item.  The task of the judges is to 
search through the test for this item—the one with 
a probability of success of 0.667 for students at the 
cut score.  This probability is termed the response 
probability (RP) and is commonly set at two-thirds 
(Reckase, 2000; Mitzel et al., 2001; Buckendahl, 
Smith, Impara and Plake, 2002). 

 
A second important concept is the bookmark 

difficulty location (BDL). Given the difficulty of an 
item in logits and the response probability, one can 
determine the ability level required for a probability 
of success on an item equal to the response probability.  
This ability level is the BDL.  Note that although 
this measure is called a difficulty location, it is 
defined as an ability level (the ability and difficulty 
being measured on the same scale).  
 
The BDL is calculated for each item, and is used to 
rank the items in order in a booklet starting from 
the lowest BDL (corresponding to easy items) to 
the highest BDL (corresponding to difficult items).   
 

To calculate the BDL for the Rasch model, 
Equation 2 is used. Substituting the response 
probability (RP) gives the BDL for a particular item: 

   

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−=
RP

RPBDL jj
1lnβ .  (3) 

 
That is jjBDL β=  + constant.     
 
For example, for a response probability of two-

thirds, putting RP = 2/3 in Equation 3 gives 
   

 69315.0+= jjBDL β . 
 
However, other response probabilities can be 

used.  Wang (2003) advocates a response probability 
of 0.5 which (substituting RP = 0.5 into Equation 3) 
gives 

 
  jjBDL β= ,   (4) 
with a constant of zero. 
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Table 3: Comparison of Judges’ and IRT probability estimates 

   
Probability of being correct for ability at the 

cut score 
Item IRT item 

difficulty 
Judges’ 
estimate 

IRT estimate Difference 

     
1 -0.288 0.91 0.95 -0.040 
2 1.821 0.82 0.69 0.125 
3 0.582 0.83 0.89 -0.061 
4 -0.136 0.92 0.94 -0.019 
5 -1.161 0.98 0.98 0.002 
6 2.280 0.64 0.59 0.055 
7 0.758 0.76 0.87 -0.108 
8 -0.349 0.87 0.95 -0.085 
9 1.141 0.83 0.82 0.018 

10 -0.327 0.99 0.95 0.039 
11 2.231 0.73 0.60 0.135 
12 1.702 0.85 0.72 0.134 
13 1.007 0.85 0.84 0.015 
14 -0.687 0.91 0.96 -0.057 
15 0.772 0.87 0.86 0.002 
16 2.442 0.90 0.55 0.353 
17 1.561 0.73 0.74 -0.011 
18 2.066 0.78 0.64 0.146 
19 -1.105 0.99 0.98 0.013 
20 -0.324 0.98 0.95 0.025 
21 -1.188 0.94 0.98 -0.037 
22 -2.632 0.99 0.99 -0.005 
23 -0.857 0.96 0.97 -0.012 
24 -0.468 0.98 0.96 0.022 
25 -1.185 0.97 0.98 -0.012 
26 1.630 0.85 0.73 0.119 
27 -0.338 0.87 0.95 -0.084 
28 -0.178 0.88 0.94 -0.060 
29 -0.537 0.93 0.96 -0.026 
30 -0.861 0.92 0.97 -0.054 

 
In the one parameter (Rasch) model, as the 

BDL is equal to the item difficulty plus a constant, it 
will rank the items in the same order as the item difficulty. 
(With a response probability of 0.5, the BDL is 
exactly equal to the item difficulty.)  For other IRT 
models, the BDL will not necessarily rank the items 
in the same order as the item difficulty.   

 

To see why this is the case, consider a 2-
parameter IRT model where differing levels of item 
discrimination are modeled.  Consider the item 
characteristic curves of  two items with the same 
difficulty value but with different discrimination 
values.  Suppose that a two-thirds probability of 
success on the item with the higher discrimination 
(steeper slope) is reached at an ability to the right of 
where the two curves cross.  Then on the item with 
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the relatively shallow slope (lower discrimination), 
one must move further to the right along the ability 
scale before a two-thirds probability of success is 
obtained.  Thus, this item would have a higher BDL 
than the more discriminating item, even though the 
two items had equal difficulty values.  

 
High ability students would tend to find the less 

discriminating item more difficult than the other 
item, while low ability students would tend to find 
the less discriminating item easier than the other 
item. 

 
Booklet of sorted items 

 
A BDL value is calculated for every item and 

the items are sorted in ascending order by this 
measure and printed in a booklet.  Judges work 
through the booklet until they come to an item in 
which they consider the marginal candidates would 
have a two-thirds probability of success.  An 
example of part of such a booklet is shown below 
in Figure 3.  In addition to the sorted items, other 
information could also be provided to the judges, 
depending on the philosophies of the standard-
setting organisation.   

 
For example, the judges could be supplied with 

the proportion correct of the total candidature on the 
item as an easily understood indicator of the item’s 
easiness.  This norm-referenced data is often useful 
to the judges.  However, although there is usually a 
close inverse relationship between an item’s 
proportion correct and the BDL they will not 
necessarily arrange the items in the same order.  In 
addition, one could supply the estimated total cut score 
that would correspond to the marginal candidate 
ability.  Systems which stress the criterion-
referenced nature of the standards-setting may wish 
to omit the proportion correct and the estimated 
total cut score so that the judges’ decisions are 
based solely on their mental image of the marginal 
candidates and their experience of how such 
students would typically perform on such an item. 

 
In Figure 3, a judge has placed the bookmark 

between Item 9 and Item 17.  This reflects the 
judgement that on Item 9, the target marginal 
students would be expected to succeed with greater 
than two-thirds probability.  However on Item 17, 

the marginal students would be expected to succeed 
with two-thirds or less probability. 

 
Table 4 shows a subset of the items in 

ascending order of BDL, based on the response 
probability of two-thirds. As noted before, there are 
some minor inconsistencies between the proportion 
correct and the BDL (the latter giving the same 
order as the IRT difficulty)—for example, Item 2 is 
slightly more difficult than Item 49 according to the 
IRT difficulties, but 23% of the candidature were 
correct on Item 2 compared to 22% on Item 49.  
The corresponding total cut score is obtained from 
the BDL by using the conversion table shown in 
Figure 1. 

 
In practice, each judge would place a bookmark 

independently in the first stage of the standard setting.  
Then usually there would be consultation between 
judges and an opportunity to change the bookmark 
position for each judge.  To obtain a single 
bookmark position and total cut score, the BDLs 
just above each judge’s bookmark are averaged 
across judges, and this average (in logits) is then 
converted to a total cut score by the Figure 1 
conversion table. 
 
Item Mapping 

 
A variant of the bookmarking procedure is 

called item mapping, in which a histogram visual 
display is used to present the data in a more 
compact format.  As presented by Wang (2003), this 
technique uses the one parameter (Rasch) model, 
using the item difficulties to order the items, with a 
response probability of 0.5.  This use of the Rasch 
model with an RP of 0.5 simplifies matters 
conceptually as it removes any need for the concept 
of the BDL.  In this case the BDLs are equal to the 
item difficulties (see Equation 4), so the whole 
process can be explained to the judges in terms of 
the item difficulties. 
 
This procedure uses the item difficulty data from 
Table 4, but instead of presenting it as a table, it is 
presented as a histogram. A linear transformation is 
applied to the item difficulties to transform them 
into an arbitrary scale, but one that seems more 
meaningful to the judges than the logit scale.  At the 
same time this transformation is used to coarsen the 
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scale by clumping some adjacent item difficulties 
into the one value, so that the histogram fits onto a 
single page.  For example, the item difficulties 
presented in Table 4 were first multiplied by 4, and 
then 40 was added to this product.  The resulting 
transformed difficulties were then rounded to the 
nearest integer.  They are then plotted as a 
histogram as shown in Figure 4, with the height of 
the columns being the number of test items on the 
rounded difficulty value, and with the item ID 
numbers being shown in each column. 
 

The judges are able to scan the columns of the 
histogram, noting the items in each column, and 
determine the column where the marginal band candidates are 
considered to have a 50:50 chance of being correct on such 
items (RP=0.5).  Once a judge has tentatively placed 
a bookmark, this sets an ability level.  Given this 
ability level, the probability of success of the 
marginal band candidates on nearby items can be 
found from Equation 1 and given to the judge as 
additional information to help confirm the 
judgement. 

 
This procedure requires that the judges be 

familiar with the items, so that a booklet that sorted 
the items in IRT difficulty order, as in Figure 3, 
would still seem a desirable requirement.  With 
items of similar difficulty printed next to each other 
in the booklet, the judges would not have to turn 
pages of the test to locate items that appear together 
in the one histogram column.   

 
Can the item mapping procedure be used with 

response probabilities other than 0.5?  It can, but 
the explanation of the process to the judges is more 
complicated with BDLs being used instead of item 
difficulties.  Instead of linearly transforming the 
item difficulties, it is the BDLs that are transformed.  
For example in Table 4, a BDL column 
corresponding to a response probability of two-
thirds is given, immediately to the right of the item 
difficulties column.  These BDL values can be 
linearly transformed and presented as a histogram 
similar to that in Figure 4.  The judges then attempt 
to find the column where the probability of success 
on the items in the column is two-thirds for the 
marginal band candidates. 

 

CONCLUSIONS 
 
This paper has indicated four ways in which 

IRT could be used to improve standard setting.  
The first three methods are consistent with an 
Angoff multi-staged approach while the last method 
and a variant use the bookmarking technique.  In 
each case, some useful norm-referenced data has 
been added to the IRT data. Whether or not this 
additional data is acceptable in some educational 
systems may depend on the extent to which 
standards are emphasised independently of 
performance.  Such educational systems may wish 
to suppress this norm-referenced data, or to 
introduce it at a different stage.  For these methods 
to be of use, it is important that a representative 
sample of student data is available at the time when 
judging is taking place.  In systems where time 
pressure in reporting results is an issue, these 
procedures may not be practicable. 

 
The first method is used to provide data before 

the judges make (or endorse) Angoff item 
probability estimates.   Before a single judgement 
has been made, the judges are supplied with a table 
showing all the total scores and, for each score, the 
probability of success on every item for the 
candidates gaining that score.  In this technique, the 
judges are forming a mental image of the marginal 
candidates and are focusing on rows of data, which 
seem to reflect the item probability estimates that 
such a group would be expected to obtain.  This has 
several appealing features.  It is probably quicker 
than the normal item by item Angoff ratings.  It 
demonstrates the differences in item difficulty (as 
shown by the differences in probability of success) 
at different points of the scale.  It provides IRT 
probabilities of success based on a clearly stated 
model, rather than judges estimates, which can be 
quite fallible.  For evidence of the possible 
inaccuracy of such estimates see Bejar, 1983; Mills 
and Mellican, 1988; Shepard, 1995; Goodwin, 1999.  
At the same time, if the educational system is such 
that it prefers to leave the final decision on the 
probability estimates to the judges, the data 
provided may be used to inform the judges’ 
decisions rather that dictate it.  The judges would 
then use the data as a guide in submitting their own 
probability estimates. 
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Q9 Proportion correct = 0.32       Estimated cut score = 40.4  
 

Evaluate  
2

2
12 ⎟
⎠
⎞

⎜
⎝
⎛ . 

………………………………………………………………………………………………………..
 

JUDGES SET BOOKMARK HERE 
 

Q17 Proportion correct = 0.26       Estimated cut score = 42.8 
 
Susan is paid an allowance of 25 cents per kilometre (km) to drive to and from work.  She lives 17 km 
from work and works 4 days a week.  Calculate her allowance for one week. 
………………………………………………………………………………………………………..
 

Q26 Proportion correct = 0.25       Estimated cut score = 43.1 
 

131222 =+X .  Find the value of X. 
……………………………………………………………………………………………………… 
 

Q12 Proportion correct = 0.25       Estimated cut score = 43.5 
 
Peter’s grandmother was 42 years old when Peter was born.  His grandmother was three times his age 
when she retired. 
 
How old was Peter when his grandmother retired? 
………………………………………………………………………………………………………. 

 
Figure 3 :Example layout of items arranged in order of ability at which P=0.667 and the selection 
of a bookmark 
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Table 4: A subset of the items arranged in BDL order (RP=0.667) and showing 
estimated Total Cut Scores 

Item Proportion 
correct 

IRT item 
difficulty 

BDL value 
(RP = 0.667) 

Corresponding 
Total Cut Score 

30 0.70 -0.861 -0.168 23.8 
23 0.70 -0.857 -0.164 23.8 
38 0.68 -0.767 -0.074 24.7 
14 0.67 -0.687 0.006 25.5 
29 0.65 -0.537 0.156 26.9 
45 0.63 -0.494 0.199 27.3 
24 0.63 -0.468 0.225 27.5 
8 0.61 -0.349 0.344 28.7 

27 0.60 -0.338 0.355 28.8 
10 0.60 -0.327 0.366 28.9 
20 0.60 -0.324 0.369 28.9 
1 0.59 -0.288 0.405 29.2 

43 0.58 -0.244 0.449 29.6 
28 0.57 -0.178 0.515 30.2 
4 0.57 -0.136 0.557 30.6 

35 0.56 -0.114 0.579 30.8 
48 0.55 -0.064 0.629 31.2 
37 0.54 0.008 0.701 31.9 
40 0.53 0.043 0.736 32.2 
46 0.47 0.323 1.016 34.5 
44 0.46 0.384 1.077 35.0 
3 0.43 0.582 1.275 36.6 
7 0.40 0.758 1.451 37.9 

15 0.39 0.772 1.465 38.0 
39 0.36 0.897 1.590 38.8 
13 0.34 1.007 1.700 39.6 
33 0.34 1.029 1.722 39.7 
9 0.32 1.141 1.834 40.4 

17 0.26 1.561 2.254 42.8 
26 0.25 1.630 2.323 43.1 
12 0.25 1.702 2.395 43.5 
49 0.22 1.803 2.496 43.9 
2 0.23 1.821 2.514 44.0 

18 0.19 2.066 2.759 45.0 
11 0.19 2.231 2.924 45.6 
6 0.16 2.280 2.973 45.8 

16 0.17 2.442 3.135 46.3 
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      X43            
      X28        Bookmark   
      X27           
   X41   X20            
  X32 X36 X38  X10 X48       X49    
  X25 X34 X30 X45 X8 X40    X39   X26    
X42 X50 X21 X31 X23 X29 X4 X37  X44 X15 X33   X12  X11  
X22 X47 X5 X19 X14 X24 X1 X35 X46 X3 X7 X13 X9 X17 X2 X18 X6 X16 
                  
<34 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

Item Difficulty Score 

Figure 4: Example of an Item Map 
 

         
 The second method shows the impact of each 
item probability estimate by converting it to an 
equivalent total cut score.  This gives a vivid way of 
showing which estimates deviate markedly from the 
majority.  It also suggests the possibility of 
determining a final total cut score by referring to 
this distribution of total cut scores and choosing an 
appropriate statistic.  For example, the judges may 
wish to choose the cut score at the 25th percentile, 
rather than the median, on the grounds that the 
latter is too severe a level for identifying the 
marginal candidates—using the median would be 
discarding half their cut score estimates for 
competency as being too low.  This type of decision 
is arbitrary but defensible, just as other elements of 
standard setting are arbitrary (for example, the 
setting of the response probability). 

 
The third method is well suited to traditional 

multi-staged Angoff procedures.  The item 
probabilities are estimated by the judges and then 
summed to get a total cut score.  IRT then converts 
that total cut score into an ability estimate and then 
determines the probability of success on each item 
for persons of that ability.  These probabilities are 
then compared to those of the judges to see if there 
are any major discrepancies.   The judges are then 
free to modify their probability estimates at the next 
stage. 

 
The Bookmark procedure relies on IRT to 

order the items.  They are ordered in terms of the 
ability required to have a probability of success on 
an item equal to the response probability (set 
commonly at two-thirds) – that is, the BDL order.  

So the easy items appear first in a booklet, getting 
progressively more difficult as one goes through the 
booklet.   For example, on the very easy items, the 
judges may estimate the probability of success for 
the marginal candidates at 0.90 or higher.  But as 
the items get harder, this probability would steadily 
decrease until a stage is reached where the judges 
think the candidates they have in mind would have 
only a two-thirds probability of success.  At this 
point they place a bookmark.  The ability at this 
point can then be converted into a total cut score 
on the raw mark scale if desired, as this scale is 
most easily interpretable by the judges.  The ordered 
question booklet may also be presented with norm-
referenced data next to the items, for example, the 
proportion correct in the population and/or the 
equivalent total cut score if the bookmark were to 
be placed at that point.  Some systems may consider 
that the latter could bias the decisions of the judges. 

 
This paper has used the one-parameter logistic 

(Rasch) model to illustrate the way standard setting 
could be assisted by IRT.  However, other systems 
may prefer to use more complex IRT models such 
as the three-parameter logistic model.  Such 
applications differ from Rasch models in that there 
is not a unique one-to-one relationship between 
total score and ability.  Under Rasch modeling, 
there is a line of relationship between ability and total 
score—for a given ability there is one associated 
total score (as in Figure 1).  In non Rasch models, 
for a given ability there is a distribution of total 
scores, and vice versa.  For these models the curve 
in Figure 1 would tend to follow the same shape but 
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would resemble a scatterplot, with multiple abilities 
for each total score.   

 
In such cases, the total score scale can be often 

replaced by the ability scale for the methods 
presented in this paper.  For example, the 
probability data in Table 1 could be generated using 
a non Rasch model, but the far left column would 
be replaced by an ability scale.  The judges could still 
encircle the appropriate probability estimates and 
find the row that best expressed the desired 
standard of achievement.  This would then define a 
standard in terms of the ability scale.  If desired, this 
scale could be linearly transformed to a scale more 
closely resembling the raw mark scale.  Similarly for 
the Table 2 method, the corresponding total cut 
score could be removed and replaced by a linearly 
transformed ability scale.   

 
The procedure based on the Table 3 data, 

however, is incompatible with non Rasch models.  
After summing the Angoff ratings, a total cut score 
on the raw mark scale is obtained.  There is no one-
to-one relationship between this cut score and 
ability—this cut score could be associated with 
many ability scores, depending on the particular 
items on which a student was correct.   Having said 
this, a conversion between the raw mark scale and 
the ability scale can always be obtained through 
approximate methods (e.g. equating percentiles in 
the ability and raw score distributions).   As the 
judges generally understand and prefer a raw mark 
scale, some systems may wish to convert to the raw 
mark scale, even though it is against the spirit of 
non Rasch models. 

 
A second issue concerns Angoff standard 

setting with constructed response items.  There are 
Rasch models that accommodate constructed 
response items (for example, Andrich’s extended 
logistic model in the RUMM software package; 
Master’s (1982) partial credit model).   These 
models give a one-to-one relationship between total 
score and ability, as shown in Figure 1.  On a 
constructed response item the Angoff judges 
estimate a cut score as a mark, rather than as a 
probability.  Despite this difference, useful IRT data 
can be provided to the judges from such packages.  
For example, a table similar to Table 1 can be 
constructed with the total mark and percentile 

columns, but with the probabilities for each item 
replaced by expected scores (which are obtained from 
the software).   Suppose for example that Item 1 
had a maximum possible score of 10.  Then the 
table might show that students gaining a total score 
on the test of 85 (/100) had an expected score of 
7.8 (/10) on Item 1.   The judges could encircle the 
expected score for Item 1 that is closest to their cut 
score, and then repeat the process for Item 2 etc 
until they were confident of selecting the 
appropriate row that best reflected the pattern of 
encircled cut scores.  This row then gives the total 
cut score.  

 
The bookmarking method may also be 

performed with constructed response items, with 
Rasch or non Rasch models.  Whereas multiple 
choice or dichotomously scored items appear only 
once in the ordered test booklet, constructed 
response items appear several times depending on 
the number of score points available.  Associated 
with each score point is a BDL—such an item with 
score points of 0, 1, 2, 3 would appear three times 
in the booklet, once for each non zero score point.  
The BDL for 1 would appear first in the booklet, 
the BDL for 2 would appear at a more difficult 
location, and the BDL for 3 would appear at the 
most difficult location of the three points.  Suppose 
the response probability is two-thirds.  Then the 
BDL for a score point in a polychotomous item is 
the ability level required to have a two-thirds 
probability of gaining that score or above. 

 
The Bookmark procedure has an advantage 

over the Angoff method in that it avoids the item 
by item judgements that can be tedious and difficult 
for the judges.  However there are some technical 
issues to consider in this procedure, relating to the 
choice of the response probability and the choice of 
IRT model.  As the Bookmark procedure involves 
an ordering of the items, Beretvas (2004) has shown 
how the choice of IRT model and response 
probability may affect the rank order in which the 
items would be presented (the BDL).  In Beretvas’ 
data set, Spearman correlations between bookmark 
difficulty locations were computed for various 
combinations of IRT model and response 
probability.  These were generally above 0.90 but 
did not give perfect agreement.  Given that there is 
often considerable variation in where judges set 
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their bookmarks, with the final cut score being the 
average of the logit values, it is likely that the effect 
of slightly differing rank orders of the items would 
not have a great effect on the cut score.  However, 
this would be a useful area for future research. 
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