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Rudner (2001, 2005) proposed a method for evaluating classification accuracy in tests based on 
item response theory (IRT). In this paper, a latent distribution method is developed. For 
comparison, both methods are applied to a set of real data from a state test. While the latent 
distribution method relaxes several of the assumptions needed to apply Rudner’s method, both 
approaches yield extremely comparable results. A simplified approach for applying Rudner’s 
method and a short SPSS routine are presented. 

Estimating and reporting classification accuracy is 
an important practice for licensure and certification 
examinations. It has become a more common 
practice recently for large-scale state assessments, as 
more and more states report students’ proficiency 
levels in addition to standardized scores. 
Classification accuracy index is an important piece 
of evidence for the technical quality of the 
assessment instrument used for these purposes. 
Rudner (2001, 2005) proposed a method based on 
item response theory (IRT) for evaluating accuracy 
for tests used to classify examinees into one of a 
finite number of score categories. Rudner first 
developed his approach for tests with dichotomous 
items and then extended the method to tests with 
partial credit items. 

For simplification of descriptions, the author will 
change the terms used by Rudner without changing 
the concept. With Rudner’s method, the first step is 
to map the x cut score(s) on the reporting scale 
onto the θ scale in order to divide the θ scale into 
x + 1 score category ranges. Then an individual 
examinee’s θ̂  and its standard error of estimation 
are used to build a distribution of the θ̂  for this 

examinee. By summing up the density of the 
distribution within each score category range across 
all examinees, Rudner is able to calculate the 
expected proportion of examinees who fall into 
each of the score category ranges. A classification 
table comparing the expected and observed 
proportions in each score category range provides a 
basis for evaluating the classification accuracy of the 
test.  

Li and Sireci (2005) adapted this method to number 
right, or raw, score scales. A simulation study to 
evaluate the properties of Rudner’s method 
(Martineau, in press) found that his classification 
accuracy index was a useful method for evaluating 
the classification categories of 15 or more students 
in each of the categories. 

Rudner’s method assumes estimation error is 
normally distributed around each examinee’s 
estimate of θ. Based on Mislevy’s (1984) seminal 
latent distribution paper, an alternate method has 
been developed in this paper to accomplish the 
same goal without the basic assumptions. Like 
Rudner’s method, this latent distribution method 
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provides for calculating the expected number of 
examinees in each of the score category ranges and 
compares them with the observed number of 
examinees in the ranges. Both methods are applied 
to a set of real data from a state test for 
comparison. 

Point Estimation of θ vs. Latent Distribution 

Most IRT-based tests intend to find a point 
estimation of an examinee’s ability on the latent θ 
scale. Maximum likelihood method is often used for 
this purpose by calculating the likelihood function 
with an examinees’ response vector and the item 
parameters. For dichotomous items, the likelihood 
function is defined as: 
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where  i is the examinee; 

j is the item on the test; 

u is a response to item j for examinee i, 
coded as 1 for a correct answer and 0 for an 
incorrect answer; 

iu
jP  is the probability of a correct answer to 

the item j at θ; and 

iu
jQ is the probability of an incorrect answer 

to the item j at θ that can be calculated as 1-
iu

jP .  

The θ value that maximizes the likelihood function 
is the estimated θ̂  for this examinee. An estimated 
standard error of estimation (SEE) of this θ̂  can be 
calculated, based on the test information at the θ̂ . 
This SEE estimate is the standard deviation of the 
θ̂  distribution. The θ̂  converges to θ as the 
number of examinees and number of items 
increase.  

Figure 1 is a plot of an examinees’ likelihood 
function from a 35-item test; the θ̂  for the 
examinee is 0.33. Note that the likelihood function 
is not symmetrical around θ̂  and that the lower tail 
approaches 0 at a much slower rate. 

 

Mislevy (1984) discussed the estimation of latent 
distributions when point estimation of θ was poorly 
estimated as a result of too few items. He proposed 
the method for estimating the population 
parameters from the individual latent distributions, 
not the point estimates of θ. Using Bayesian 
estimation, an examinees’ latent distribution was 
defined as the posterior distribution, which was the 
likelihood function weighted by a prior distribution. 
For our purposes, a likelihood function suffices 
because the item parameters are “known” and the 
examinees’ scored responses are known. It is a 
simple “conditional maximum likelihood estimation 
of ability” described by Hambleton and 
Swaminathan (1985. p. 81). If a “non-informative” 
prior distribution is set, the posterior distribution is 
equal to the likelihood function. 

A likelihood function of an examinee can be 
interpreted as the likelihood of an examinee’s ability 
at each θ point given his/her responses and the 
characteristics of the items. The function is another 
representation of an examinee’s ability as a 
distribution across the θ scale as plotted in Figure 1 
and can be used for the purpose of calculating the 
expected proportion of examinees in each of the 
score category ranges. This is similar to Mislevy’s 
situation, where the population distribution in each 
of the score category ranges is the interest. It serves 
as an alternative method to the method proposed 
by Rudner (2001, 2005), who essentially built an 
examinee’s distribution of θ̂  with the point 
estimate of θ and its standard error of estimation.
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Figure 1: A Likelihood Function and Estimated θ = 0.33 
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Latent Distribution Method 

The latent distribution method involves seven steps. 
Each is defined and described in this section. 

1. Map the cut scores onto the θ scale. After 
setting the standards for a test, x cut scores will 
be chosen to divide the reporting scale into r 
score category ranges (r = x +1). Convert these 
cut scores to their corresponding θ values and 
add the θ values corresponding to the lowest 
and highest possible scores on the test. There 
are M  θ values (M = x + 2). If m denotes these 
θ values, then m = 1, 2, …, M. Here θ1 = the θ 
value corresponding to the lowest possible 
score and θM corresponds to the highest 
possible score on the test. 

2. Calculate likelihood. Calculate the likelihood of 
an examinee i in score category range r using his 
or her scored responses, µ

1
 to µ

n
, and the item 

parameters, a
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, of a 3-

parameter logistic IRT model, for example. 
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For the convenience of computations, the 
continuous θ scale can be made into discrete 
categories based on θ points with equal 
distances. The likelihood can be calculated as 
follows: 
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3. Normalize the likelihood. Normalize the 
likelihood so that the sum of the likelihood for 
each examinee equals to 1. This is necessary 
because the distributions must be truncated at 
the lowest and highest obtainable scores, not at 
–∞ and ∞, in order to do the calculations. After 
normalization, the sum of the likelihood across 
all examinees will be equal or very close to the 
total number of examinees. This, in turn, will 
simplify the interpretation of the results.  
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Similarly, the sum of the likelihood in the 
denominator can be calculated as the sum 
across the discrete θ values from θ1 to θM.  

4. Compute the observed number of examinees in 
a score category range s. The observed number 
of examinees in a score category range s is the 
number of examinees whose maximum 
likelihood point estimates, θ̂ , fall in that 
category range. 
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5. Compute the expected number of examinees in 
each cell N

(s,r)
 of the classification table. For the  

examinees who fall in the observed score 
category range s, their numbers in each of the 
expected score category range r can be 
calculated as follows: 
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6. Assemble the classification table. Table 1 is an 
example. Please note that decimal places will be 
encountered in the cells as a result of the 
proportional redistribution of some individual 
examinees into more than one expected score 
category.  

 

Table 1: Example of a Classification Table 

Expected N in score category range  

r1 … rM

s1 N(1,1) N(1,…) N(1,M)

… N(…,1) N(…,…) N(…,M)

Observed N in 
score category 

range 

sM N(M,1) N(M,…) N(M,M)

 

7. Calculate the accuracy index. The accuracy 
index can be calculated in the same way 
proposed by Rudner. It is simply the percentage 
of the sum of the diagonal divided by the total 
number of examinees.  
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The accuracy index indicates the percentage of 
examinees who are correctly classified. The higher 
the index, the more accurate the test is in classifying 
examinees into categories. 

Because the likelihood functions are computed 
using item parameters, an important assumption 
here is that the item parameters are “known.” That 
is, the item parameter estimates are reasonably close 
to their true values. For best results, be sure the 
item parameters are calibrated with a large number 
of examinees whose abilities cover the entire range 
of the θ scale where scores are reported. For the 
latent distribution method, some of the 
assumptions required for Rudner’s method, such as 
the normality of the SEE estimates and the 
reasonable approximation of θ̂  to θ, are no longer 
needed.  
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An Alternate Approach to  
Applying Rudner’s Method 

Instead of computing the proportion of examinees 
in each of the expected score categories, the 
number of examinees was calculated using the same 
basic steps as those for the latent distribution 
method, but with a few minor changes. This 
alternate calculation yields the same results and is 
easier to apply. The following changes were applied: 

1. The lowest and highest possible scores in Step 1 
of the latent distribution method were replaced 
by the negative and positive infinities. 

2. The likelihood function in Step 2 of the latent 
distribution method was replaced by a normal 
distribution with a mean of the θ̂  and a 
standard deviation of the standard error of 
estimation (SEE) for each examinee and can be 
computed as 

, the density 
between m and m +1. 

ˆ ˆ(  + 1, ,SEE) ( , ,SEE)ri m mφ φ θ φ θ= −

3. Step 3 of the latent distribution method is not 
needed because the area under a normal curve is 
1. 

4. in Step 5 of the latent distribution 

method was replaced with 
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The alternative computations for Rudner’s method 
need only several lines of codes in a statistical 
analysis program like SPSS or SAS. An example 
with SPSS codes is included in the Appendix. 

Comparison with an Example 

Both Rudner’s and the latent distribution methods 
were applied to real test data for comparison. The 
data used is from a state test with 32 items and 
reported scores ranging from 275 to 575. The 
reliability is 0.87 (Cronbach’s alpha). Three 
proficient categories are reported for students: Basic 
(275 to 410), Proficient (411 to 446), and Advanced 
(447 to 575). Table 2 presents the reported scores 
and their corresponding θ values used in calculating 
the number of examinees falling into each score 
category range for both methods. In Table 2, m

1
 is 

the θ corresponding to the lowest possible score for 
the latent distribution method and –∞ for Rudner’s 
method; m

2
 is the first cut score; m

3
 is the second 

cut score; and m
M
 is the θ corresponding to the 

highest achievable score for the latent distribution 
method and ∞ for Rudner’s method. 

 

Table 2: θ and Reported Scores Used in the Calculations 

 m1 m2 m3 mM

Reported Score 275 410.5 446.5 575 

θ for Latent Distribution Method –3 0.1755 1.1475 3 

θ for Rudner’s Method –∞ 0.1755 1.1475 ∞ 

 

Item parameters used for calculating examinees’ 
likelihood are the same ones from which the point 
estimates of θ̂  and the standard errors of 
estimation were derived.  

Table 3 presents the observed and expected number 
of examinees and their percentages using Rudner’s 

method, and Table 4 exhibits the same information 
calculated with the latent distribution method. The 
estimated classification accuracy indices are .858 for 
Rudner’s method and .870 for the latent 
distribution method. 
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Table 3: Classification Table Using Rudner’s Method 

Expected  

Basic Proficient Advanced 

Basic 2690 44.1% 282 4.6% 1 0.0% 

Proficient 236 3.9% 1961 32.2% 190 3.1% 

Observed 

Advanced 1 0.0% 155 2.5% 582 9.5% 

Sum 2927 48.0% 2398 39.3% 773 12.7% 

 

Table 4: Classification Table Using the Latent Distribution Method 

Expected  

Basic Proficient Advanced 

Basic 2747 45.0% 226 3.7% 0 0.0% 

Proficient 225 3.7% 1951 32.0% 212 3.5% 

Observed 

Advanced 0 0.0% 129 2.1% 608 10.0% 

Sum 2927 48.7% 2306 37.8% 820 13.4% 

 

Table 5 shows the differences between the two 
methods in the expected number of examinees in 
each of the three proficiency categories. The 
differences are calculated by subtracting Table 3 
values (Rudner’s method) from Table 4 values (the 
latent distribution method) for each cell. As shown 
in the sums, the latent distribution method tends to 
put more examinees in the Basic and Advanced 
categories and fewer examinees in the Proficient 
category than Rudner’s method.  

Table 5 also shows that, for the low ability 
examinees who fell into the observed Basic category 
(about 48% of the total), the latent distribution 

method puts more of those examinees into the 
expected Basic category than does Rudner’s 
method. For the examinees in the observed 
Proficient and Advanced categories (about 52% of 
the examinees with higher ability), the latent 
distribution methods puts more of those examinees 
into the expected Advanced category than Rudner’s 
method does. It seems that the latent distribution 
method produces an expected ability distribution 
with fatter tails than that produced by Rudner’s 
method. However, the difference is very small 
between the two methods, about 1.2%, as indicated 
by the classification accuracy indices. 
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Table 5: Differences between the Two Methods 

Expected  

Basic Proficient Advanced 

Basic 57 –56 –1 

Proficient –11 –10 22 

Observed 

Advanced –1 –26 26 

Sum 45 –92 47 

 

Conclusions and Discussion 

Today, more and more achievement tests are 
reporting both individuals’ scores and performance 
categories, such as Pass/Failure or 
Basic/Passing/Advanced. Evaluating the accuracy 
of the classification of examinees into the categories 
becomes increasingly important in educational 
settings. Rudner (2001, 2005) proposed an index for 
this purpose. An alternative was proposed in this 
paper using latent distributions. 

Both methods were applied to a set of real test data 
from a state test for comparison. The comparison 
showed that the latent distribution method tends to 
put more low ability examinees into the expected 
low ability categories and more high ability 
examinees into expected high ability categories than 
does Rudner’s method. However the difference is 
very small, about 1.2%.  

The latent distribution method uses the same 
strategy as Rudner’s method. The classification 
index is the percentage of agreement between the 
observed and the expected proportions of 
examinees in each of the categories under the IRT 
framework. The latent distribution method differs 
from Rudner’s method in calculating the expected 
number of examinees in each category with the 
posterior distributions (the normalized likelihood 
function) of the examinees. As a result, some 
assumptions for Rudner’s method are no longer 
needed. Therefore, the latent distribution method 
might be a more robust method when the 
estimation of θ is less accurate due to small number 

of items on a test or low test information at some 
ability levels. The comparison was made with a 
reliable test (α = 0.87). Further research is needed to 
see how the conclusion of small differences 
between the two methods holds when the θ 
estimation becomes poor. 

When the assumptions are met, or even 
approximated, Rudner’s method is a very easy 
method. Using the procedure and calculations 
proposed in this paper, it only takes several lines of 
code in a statistical package to calculate the 
expected number of examinees in the classification 
table. While harder to apply, the latent distribution 
method outlined in this paper has a stronger 
theoretical foundation. This method is always 
applicable. The limitation of this method is that it 
relies on sound parameter estimates as expected 
classifications are computed at every possible theta 
point.   
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Appendix 

An SPSS Example of Computing Expected Classifications with Rudner’s Method. 

Data and Data File Layout.  

The data file contains one record for each examinee with four 
variables: Examinee ID, estimated θ (ThtEst), standard error of 
estimation (ThtSEE), and observed classification (Group: coded as 
1=ObsBasic, 2=ObsProficient, and 3=ObsAdvanced). 

SPSS codes for calculating the densities in the three categories for each examinee. 
COMPUTE ExBasic = CDF.NORMAL(-3,ThtEst,ThtSEE). 
COMPUTE ExProfi = CDF.NORMAL(1.1475,ThtEst,ThtSEE) - 

CDF.NORMAL(.1755,ThtEst,ThtSEE). 
COMPUTE ExAdvan = 1 - CDF.NORMAL(1.1475,ThtEst,ThtSEE). 
EXECUTE. 

SPSS codes for calculating the expected number of examinees in each of the cells in a classification 
table. 
SPLIT FILE 
   SEPARATE BY Group. 
DESCRIPTIVES 
   VARIABLES=ExBasic ExProfi ExAdvan 
   /STATISTICS=SUM. 
EXECUTE. 
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