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Correct specifications of hierarchical attribute structures in analyses using diagnostic classification models 
(DCMs) are pivotal because misspecifications can lead to biased parameter estimations and inaccurate 
classification profiles. This research is aimed to demonstrate DCM analyses with various hierarchical 
attribute structures via Bayesian estimation using freely available R packages, including CDM and R2jags. 
We illustrated a step-by-step procedure in R with an eighth-grade mathematics test from the 2007 Trends 
in International Mathematics and Science Study (TIMSS). 
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Introduction 
 Diagnostic classification models (DCMs; Rupp et 
al., 2010) have received considerable attention in the 
field of education over the past two decades. DCMs 
are used to evaluate a respondent’s mastery status on a 
set of fine-grained discrete latent skills (also known as 
attributes) to derive tailored information on his/her 
learning. Such a personalized diagnosis yields more 
insights on students’ learning, which in turn can be 
used by teachers to customize instruction and 
accordingly optimize learning outcomes (e.g., 
Birenbaum et al., 2004; Chen, 2012; Dogan & 
Tatsuoka, 2008; Lee et al., 2011; Tatsuoka et al., 2004). 

 The DCM literature indicates that 
misspecifications of skill structures lead to detrimental 
effects on the recovery of parameters and the accuracy 
of examinee classifications (e.g., Liu, 2018; Liu et al., 
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2017; Templin & Bradshaw, 2014; Templin et al., 
2008). In other words, DCM analyses with 
misspecifications of attribute structures are expected to 
result in inaccurate examinations of model and item fit 
and the classification mastery statuses of examinees. 
For DCM parameter estimation, maximum likelihood 
estimation (MLE) and Bayesian estimation are two 
most widely used methods. Yet, DCM analyses with 
MLE have been suggested to be insensitive to capture 
differences across various attribute structures. Liu’s 
study (2018), for example, showed that the differences 
of fit results between the true and misspecified 
hierarchical attribute structures were very small. Thus, 
this study is aimed at providing a DCM tutorial that 
uses Bayesian estimation with R packages for 
researchers and practitioners. Because Bayesian 
computation is more complex than MLE, most 
statistical software does not provide Bayesian results. 
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For example, The R package CDM for DCM analyses 
can only yield MLE results. In other words, if 
researchers would like to conduct DCM analyses with 
Bayesian estimation, they have to utilize specialized 
software (e.g., JAGS; Plummer, 2003). Meanwhile, the 
analytical codes for Bayesian estimation may not be 
transparent. Thus, we will illustrate the procedures 
using the open-source software R in this paper (R Core 
Team, 2012), so that researchers may refer to the 
procedures and produce the analytical codes on their 
own.  

 Hence, the present paper was intended to describe 
how two packages, CDM (Robitzsch et al., 2019) and 
R2jags (Su & Yajima, 2015), can be combined to 
conduct a DCM analysis with different attribute 
hierarchies by means of Bayesian estimation.  Given 
that the R software and the concept of Bayesian 
estimation are complicated for practitioners, this study 
is highly beneficial to researchers and practitioners in 
education and psychology. Before providing a step-by-
step walk-through of the analysis, we begin with a short 
overview of DCMs. 

 

Diagnostic Classification Models 

 There are two essential prerequisites for 
conducting DCM analyses: one is a Q-matrix, which is 
an item-to-attribute matrix that represents the 
relationship between items and attributes, and the 
other is an attribute profile, which is intended to 
portray each examinee’s mastery status. The Q-matrix 

is a J × K matrix, where J (j = 1, 2, …, J) represents 
items, and K (k = 1, 2, …, K) denotes attributes. The 
Q-matrix is specified by content experts to identify 
which attributes are measured by which items 
(Tatsuoka, 1983). In the Q-matrix, entry qjk is 1 if the 
correct response to item j requires attribute k, and it is 

0 otherwise. The attribute profile is defined as 𝛼𝑖 =
(𝛼𝑖1, 𝛼𝑖2, … 𝛼𝑖𝐾)′  to represent the mastery status of 

examinee i; 𝛼𝑖𝑘 = 1   indicates that examinee i has 

mastered attribute k, and 𝛼𝑖𝑘 = 0 indicates otherwise. 

 DCMs can generally be divided into compensatory, 
non-compensatory, and general models. In 
compensatory models, a lack of non-mastery in one 
attribute can be compensated by mastery of another 
attribute; examples of these models are the deterministic 
input noisy output “OR” gate (DINO) model (Templin & 
Henson, 2006) and the compensatory reparametrized unified 

model (Hartz, 2002). In non-compensatory models, the 
compensatory feature is infeasible, and thus, all 
required attributes are necessary to solve an item; 
examples of these models include the deterministic input 
noisy output “AND” gate (DINA) model (Junker & 
Sijtsma, 2001) and the non-compensatory reparametrized 
unified model (NC-RUM) (DiBello et al., 1995; Hartz, 
2002). General models allow for both compensatory 
and non-compensatory relationships within a single 
test. Such flexibility renders general models more 
practical for real data analysis than their compensatory 
and non-compensatory counterparts. General DCMs 
include the generalized DINA model (de la Torre, 2011), 
the general diagnostic model (von Davier, 2005), and the 
log-linear cognitive diagnostic model (LCDM) (Henson et al., 
2009). In this study, we used the LCDM to 
demonstrate attribute hierarchy analyses in R for two 
reasons: (1) The LCDM encompasses many popular 
DCMs (e.g., the DINA, DINO, and NC-RUM 
models), and (2) it offers flexibility in modeling 
attribute structures by setting redundant parameters to 
0 when different attribute hierarchies are represented 
(Henson et al., 2009; Templin & Bradshaw, 2014). 

 

Structures of Attribute Hierarchy 

 A general assumption in the learning process is that 
if a person is to master high-level skills, he/she should 
first attain proficiency in low-level skills (Darling-
Hammond et al., 2015; Entwistle & Ramsden, 2015). 
In geometry learning, for instance, before a student can 
analyze the features of a square, he/she has to learn the 
skill to recognize this shape. On this basis, the 
acquisition of attributes is a hierarchical learning 
process, with the mastery of certain attributes being a 
prerequisite to the mastery of others. 

 Leighton et al. (2004) introduced four types of 
attribute hierarchy: linear, convergent, divergent, and 
unstructured hierarchies (Figure 1). Let us consider the 
case of a linear hierarchy with five attributes that are 
sequentially ordered; that is, Attribute 1 is a 
prerequisite to Attribute 2, Attributes 1 and 2 are 
prerequisites to Attribute 3, and so on. Accordingly, an 
examinee who has mastered Attribute 5 is anticipated 
to have mastered Attributes 1 to 4. Put differently, 
mastery of a higher-order attribute assumes mastery of 
all lower-order attributes. In a convergent hierarchy, 
different branches converge to a common attribute. As 
shown in Figure 1, two paths can be traced from 
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Attributes 1 to 5, wherein an examinee who has 
become proficient in Attribute 5 is expected to have 
acquired one or more of the preceding attributes (e.g., 
Attributes 1–3 or Attributes 1, 2, and 4). Similar to a 
linear hierarchy, this kind of hierarchy ends at a single 
point. In a divergent hierarchy, multiple branches diverge 
from a common attribute. Hence, an examinee who 
has possessed Attribute 5 is anticipated to have 
thoroughly grasped all the preceding attributes on a 
specific path (e.g., Attributes 1 and 3). In an unstructured 
hierarchy, Attribute 1 is a prerequisite to Attributes 2 to 
5, but the relationship among Attributes 2 to 5 is 
unknown. Correspondingly, an examinee who 
possesses Attribute 5 is anticipated to have mastered 
only Attribute 1. 

 

LCDM with Different Hierarchical 
Attribute Structures 

 Equation (1) shows how parameters are 
established to represent different structures of attribute 
hierarchy. In the LCDM, the probability of answering 

item j correctly under an attribute profile 𝛼𝑖 =
(𝛼𝑖1, 𝛼𝑖2, … 𝛼𝑖𝐾)′ for examinee i is as follows: 

𝑃(𝑋𝑖𝑗 = 1|𝜶𝒊) =
exp [𝜆𝑗,0+𝝀𝑗

𝑇𝐡(𝜶𝑖,𝐪𝑗)]

1+exp [𝜆𝑗,0+𝝀𝑗
𝑇𝐡(𝜶𝑖,𝐪𝑗)]

        (1) 

where 𝑋𝑖𝑗  is the response of examinee i to item j, 𝜆𝑗,0  

denotes the intercept parameter that represents the 
log-odds of a correct response from an examinee who 

has not mastered any of the attributes under item j, 𝝀𝑗
𝑇  

represents a vector of main and interaction effect 

parameters for item j, and 𝐡(𝜶𝑖, 𝐪𝑗) is a mapping 

function that describes how latent attribute profile 𝜶𝑖  
is combined with the main and interaction effect 
parameters in the model. 

 Let us take two attributes as examples. The 
assumption is that an item measures two attributes, 
resulting in entries qj1 and qj2 being equal to 1 in the Q-
matrix. On the basis of Equation (1), therefore, the 
probability of correctly answering item j is expressed as 

𝑃(𝑋𝑖𝑗 = 1|𝛼𝑖) =
exp (𝜆𝑗,0+𝜆𝑗,1,(1)𝛼𝑖1+𝜆𝑗,1(2)𝛼𝑖2+𝜆𝑗,2,(1,2)𝛼𝑖1𝛼𝑖2

1+exp (𝜆𝑗,0+𝜆𝑗,1,(1)𝛼𝑖1+𝜆𝑗,1(2)𝛼𝑖2+𝜆𝑗,2,(1,2)𝛼𝑖1𝛼𝑖2
         (2) 

where 𝜆𝑗,1,(1)  and 𝜆𝑗,1,(2)  are the parameters for the 

two main effects associated with α1 and α2, respectively, 

and 𝜆𝑗,2,(1,2)  is the parameter for the two-way 

 

Figure 1. Four types of hierarchical attribute structures featuring five attributes 
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interaction effect between α1 and α2. If mastering α1 is a 
prerequisite for mastering α2, a linear attribute hierarchy 
can be used to model such a sequential structure, with 
the main effect directly eliminated for nested attribute 
α2. Therefore, the item response function can be re-
written thus: 

𝑃(𝑋𝑖𝑗 = 1|𝛼𝑖) =
exp [𝜆𝑗,0+𝜆𝑗,1,(1)𝛼𝑖1+𝜆𝑗,2,(2(1))𝛼𝑖1𝛼𝑖2]

1+exp [𝜆𝑗,0+𝜆𝑗,1,(1)𝛼𝑖1+𝜆𝑗,2,(2(1))𝛼𝑖1𝛼𝑖2]
    (3) 

where 𝜆𝑗,2,(2(1)) is the parameter for the two-way 

interaction effect between α1 and α2 when α1 is a 
prerequisite of α2. Likewise, if mastering α2 is a 
prerequisite for mastering α1, the parameter for the 

main effect of α2 (𝜆𝑗,1,(2)) is retained. Then, Equation 

(2) can be re-written into 

(𝑋𝑖𝑗 = 1|𝛼𝑖) =
exp[𝜆𝑗,0+𝜆𝑗,1,(2)𝛼𝑖2+𝜆𝑗,2,(1(2))𝛼𝑖1𝛼𝑖2]

1+exp[𝜆𝑗,0+𝜆𝑗,1,(2)𝛼𝑖2+𝜆𝑗,2,(1(2))𝛼𝑖1𝛼𝑖2]
         (4) 

where 𝜆𝑗,2,(1(2)) is the parameter for the two-way 

interaction effect between α1 and α2 when α2 is a 
prerequisite of α1. 

 

A Demonstration with a Mathematics 
Test 

 A dataset of American eighth-grade mathematics 
achievement was extracted from the 2007 Trends in 
International Mathematics and Science Study (TIMSS). 
The mathematics test items were taken from Booklet 
1, which measures three attributes (Lee et al., 2013; Ma, 
2019; Zhang & Wang, 2020): (a) whole numbers and 
integers (Attribute 1); (b) fractions, decimals, and 
percentages (Attribute 2); and (c) data analysis and  

probability (Attribute 3). From Zhang and Wang’s 
(2020) dataset, we adopted 12 items that were 
dichotomously scored and to which 544 students 
responded in our work. Table 1 presents the Q-matrix 
that describes the relationships between the three 
attributes and the 12 items. In the matrix, each item 
measures only one attribute; that is, three items 
measure Attribute 1, six items measure Attribute 2, and 
three items measure Attribute 3. 

 To demonstrate how implementing DCM analyses 
with different structures of attribute hierarchy in R via 
Bayesian estimation, we elaborate on the following 
steps: (1) installing/loading R packages, (2) retrieving 
datasets, (3) specifying attribute structures, (4) 
conducting DCM analyses via Bayesian estimation, and 
(5) interpreting DCM results.  

Step 1: Installing/loading R Packages 

  In this tutorial, the packages xlsx, CDM, and R2jags 
are required to load datasets, conduct DCM analyses, 
and implement Bayesian analyses, respectively. The R 
commands for installing (install.packages) and loading 
the packages are as follows:  

install.packages(c ("xlsx", "CDM", 

"R2jags")) 

lapply(c("xlsx", "CDM", "R2jags"), 

require, character.only = TRUE) 

Step 2: Retrieving datasets 

 The R codes used to retrieve the datasets, Q-matrix 
and responses, in Excel are as follows: 

 dat_r <- read_excel("Data.xlsx") 

 dat_q <- read_excel("Q_matrix.xlsx") 

Table 1. The Q-matrix 

Item Attribute 1 Attribute 2 Attribute 3 

1 0 1 0 
2 0 1 0 
3 0 1 0 
4 0 0 1 
5 0 1 0 
6 1 0 0 
7 1 0 0 
8 1 0 0 
9 0 1 0 
10 0 1 0 
11 0 0 1 
12 0 0 1 
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Step 3: Specifying hierarchical attribute 
structures 

 Four attribute structures with three attributes were 
examined in this demonstration; that is, one 
independent attribute structure served as the baseline 
model, and three were hierarchical attribute structures 
(i.e., linear, convergent, and divergent hierarchies). The 
independent attribute structure indicated no 
relationships among the three attributes. Figure 2 
presents three hierarchical attribute structures among 
Attributes 1, 2 and 3, which correspond to linear, 
convergent, and divergent hierarchies, respectively. 

 When the attributes are in the hierarchical 
structure, possible attribute profiles are constrained, 
thereby reducing the number of possible attribute 
profiles and affecting the probability of classifying 
examinees into possible attribute profiles. The 
function skillspace.hierarchy, which is accompanied with 
two arguments (i.e., B and skill.names) in the CDM 
package, was used to define reduced attribute profiles 
for hierarchical structures among attributes. Argument 
B presents a string containing restrictions on the 
hierarchy, and skill.names defines attribute names. The 
following commands were used to generate the linear, 
convergent, and divergent attribute hierarchies, with 
the three attributes denoted as A1, A2, and A3, 
respectively (Figure 2).  

linear <- skillspace.hierarchy (B = 

"A1>A2>A3", skill.names = 

paste0("A",1:3)) 

convergent <- skillspace.hierarchy (B 

= "A1>A3 \n A2>A3", skill.names = 

paste0("A",1:3)) 

divergent<- skillspace.hierarchy (B = 

"A1>A2 \n A1>A3", skill.names = 

paste0("A",1:3)) 

Step 4: Conducting DCM analyses via Bayesian 
estimation 

 Before using R2jas to implement a Bayesian 
analysis for a DCM, we need to specify the DCM to be 
used. As mentioned earlier, we adopted the LCDM for 
the demonstration. Other DCMs (e.g., the DINA and 
DINO models) can also be applied with our tutorial to 
conduct a DCM analysis involving a hierarchical 
structure. Employing Bayesian estimation requires 
iterative simulations based on data to acquire 
parameter estimates.  

 To conduct a DCM analysis using the LCDM, we 
created a function called LCDM_AH_Bayes, which 
contains all calculations and estimations, as well as two 
components: the first component is related to the 
LCDM estimation and the settings of prior 
information for item parameters, and the second 
component is associated with the Bayesian analysis. 
The following commands were used to present the first 
component of LCDM_AH_Bayes with the three 
attributes (i.e., whole numbers and integers; fractions, 
decimals, and percentages; and data analysis and 
probability)

 

Figure 2. The investigated hierarchical attribute structures
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1. LCDM_AH_Bayes <- function(){  

2. for(i in 1:N){  

3.         for(j in 1:J){  

4.                 for (k in 

1:K){w[i, j, k] <- alpha[i, k] * 

Q[j, k]}  

5.                 lamda1_1[i, j] <- 

lamda1[j]*w[i, j, 1] + 

lamda2[j]*w[i, j, 2] + 

lamda3[j]*w[i,j, 3] 

6.         logit(p[i, j]) <- 

lamda0[j] + lamda1_1[i, j] 

7.         Y[i, j] ~ dbern(p[i, j])}  

8.         for(k in 1:K) {alpha[i, j] 

<- profile[c[i], j]}  

9.         c[n] ~ dcat(pai[1:C])}  

10.         pai[1:C] ~ 
ddirch(delta[1:C]) 

11. for(j in 1:J) {  

12.         lamda0[j] ~ dnorm(-1.096, 
0.25)  

13.         xlamda1[j] ~ dnorm(0, 
0.25)%_% T(0,) 

14.         xlamda2[j] ~ dnorm(0, 
0.25)%_%T(0,)  

15.         xlamda3[j] ~ dnorm(0, 
0.25)%_%T(0,)  

16.         lamda1[j] <- 
xlamda1[j]*Q[j, 1]  

17.         lamda2[j] <- 
xlamda2[j]*Q[j, 2]  

18.         lamda3[j] <- 
xlamda3[j]*Q[j, 3]} 

 Here, examinees, items, and attributes are denoted 
by i (i = 1, 2, …, N), j (j = 1, 2, …, J), and k (k = 1, 2, 
…, K), respectively. On the basis of Equation (1) of the 
LCDM, w[i, j, k] on Line 4 generates all parameters and 

indicators (i.e., 𝐡(𝜶𝑖, 𝐪𝑖)) except for the intercept and 
lamdak[j] on Line 5, which represents the parameter 
for the main effect of attribute k on item j. The Q-
matrix used in this study was a simple structure, 
indicating that each item measures a single attribute 
(Table 1), the number of the main effect parameters 

for each item was 1 (i.e., ∑ q𝑗𝑘 = 1𝐾
𝑘=1 ), and no 

interaction effect parameters were used. The command 
on Line 6 is intended to create the probability of a 

response to item j of examinee i, as shown in Equation 
(1), which includes the intercept (i.e., lamda0[j]) and the 
main effect (i.e., lamda1_1[i, j]) parameters. 

 The command on Line 7 is the procedure for 
generating item responses. The commands on Lines 8 
to 10 are the processes for generating attribute profiles. 
The commands on Lines 11 to 18 specify prior 
information for estimated parameters. Using the 
“%_%” prior to T(0,) on Lines 13 to 15 is meant to 
deal with the incompatibility issue that arises when 
Bayesian analysis is performed via the software JAGS 
(Plummer, 2017) in R.  

 For the second component of LCDM_AH_Bayes, 
Bayesian analysis was conducted, and the posterior 
predictive probability (ppp) value was calculated to 
evaluate the Bayesian estimation. A ppp close to .5 
indicates that there are no systematic differences 
between a model and data, whereas a value close to 0 
or 1 reflects inadequate model–data fit (Gelman et al., 
2014). When researchers use other DCMs, there is no 
need to revise this part.  

1. for (i in 1:N){ 

2.         for (j in 1:J){ 

3.                 stat[i,j] <- 

pow(Y[i, j] - p[i, j], 2)/(p[i, 

j]*(1 - p[i, j])) 

4.                 Y_rep[i,j] ~ 

dbern(p[i,j]) 

5.                 stat_rep[i,j]<- 

pow(Y_rep[i, j] - p[i, j],2)/(p[i, 

j]*(1 - p[i, j]))}} 

6.         sum_stat <- sum(stat[1:N, 

1:J]) 

7.         sum_statrep <- 

sum(stat_rep[1:N, 1:J]) 

8.         ppp <- step(sum_statrep-

sum_stat)} 

 Before a Bayesian analysis is conducted, 
information on the data and estimated parameters of 
interest should be specified. The following commands 
were used for this purpose: 

1. N <- nrow(dat_r)  

2. J <- nrow(dat_q)  

3. K <- ncol(dat_q)  

4. C <- nrow(linear) 
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5. delta <- rep(1, C) 

6. jags.data <- list("N", "J", "K", 

"Y", "Q", "C", "profile", "delta")   

 The command on Lines 1 to 4 represents the 
sample size (N), number of items (J), number of 
attributes (K), and number of attribute profiles (C), 
respectively, and the command on Line 5 is used for 
the first component of LCDM_AH_Bayes. Finally, the 
command on Line 6 represents data information. In 
Bayesian analysis, a preliminary study is required to 
examine the convergence of parameter estimations. 
The command for a convergence check is listed below. 
The parameters we were interested in included the 
intercept (lamda0), three parameters for the main 
effects of the three attributes (lamda1, lamda2, and 
lamda3), and the proportion of attribute profiles (pai). 

pre.jags.parameters <- 

c("lamda0","lamda1", "lamda2", 

"lamda3", "pai")  

 The commands below were used to perform the 
Bayesian analysis using R2jags.  

1. jags.inits <- NULL 

2. pre.sim_Model1 <- 

jags(data=jags.data, 

inits=jags.inits, 

parameters.to.save=pre.jags.parame

ters, model.file=LCDM_AH_Bayes, 

n.chains=2, n.iter=2000, 

n.burnin=1000,n.thin=1,DIC=TRUE) 

 The command on Line 1 indicates that we did not 
set initial values for parameter estimation. Establishing 
appropriate initial values can save time on convergence 
during parameter estimation. The command on Line 2 
was executed to activate the Bayesian analytical 
procedure. In the function of jags, we used two chains 
(n.chains = 2), 2,000 iterations per chain (n.iter = 
2000), and the first 1,000 as burn-in (n.burnin = 1000). 
This means that after 2,000 iterations were completed, 
the first 1,000 iterations in each chain were excluded so 
that later 1,000 iterations could be used to calculate the 
estimates of the parameters.  

 After 2,000 iterations, we examined convergence 

using 𝑅̂ (Gelman & Rubin, 1992), executed as the 
following command: 

1. R_convergence <- 

sum(pre.sim_Model1$BUGSoutput$summ

ary[ , 8]>= 1.2)== 0 

2. if(R_convergence==1){pre.sim_Model

1$n.iter} 

3. if(R_convergence==0){pre.sim_Model

1.c <- autojags(sim_Model1, 

Rhat=1.2,n.update=30) 

pre.sim_Model1.c$n.iter} 

 If all 𝑅̂ values were fulfilled in accordance with the 

requirement of 𝑅̂ ≤ 1.2, then all parameter 
estimations converged (Line 2); otherwise, the 
estimated parameters were automatically updated until 

all 𝑅̂ values were less than 1.2 (Line 3). The results of 
the four attribute hierarchy models showed that this 
criterion was satisfied for all the parameter estimates, 
indicating that all such estimations converged. In this 
study, 2,000 iterations were needed to address the 

criterion of 𝑅̂ ≤ 1.2 for all the estimated parameters 
across all the attribute hierarchy models. 

 The following commands were used to perform a 
Bayesian analysis with the linear attribute hierarchy. 
Similar settings were implemented, but we changed the 
number of iterations to 10,000 and the burn-in to 5,000 
for a more stable estimation.  

1. fin.jags.parameters <- 

c("lamda0","lamda1", "lamda2", 

"lamda3", "pai","c","ppp")  

2. fin.sim_Model1 <- 

jags(data=jags.data, 

inits=jags.inits, 

parameters.to.save=fin.jags.parame

ters, model.file=LCDM_AH_Bayes, 

n.chains=2,n.iter=10000, 

n.burnin=5000,n.thin=1, DIC=TRUE) 

Step 5: Interpreting DCM analysis results 

 The following command was used to obtain the 
Bayesian analysis results of the linear hierarchy model, 
including the deviance information criterion (DIC), the 
ppp, the proportion of attribute profiles, and the item 
parameter of the model. 

sim_Model1.result <- 

sim_Model1$BUGSoutput 

 To choose the best-fit attribute hierarchy for the 
2007 TIMSS mathematics achievement data, the fit 
indices of the DIC and ppp were used for model 
comparisons. Table 2 shows the model fit with respect 
to the relative (e.g., DIC) and absolute (e.g., ppp) fit 
indices and the number of attribute profiles across the 
four hierarchies. Note that the numbers of item 
parameters were identical (i.e., 12 intercepts and 12 
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main effect parameters) across the four hierarchies 
because the same DCM (i.e., the LCDM) was 
conducted. However, the numbers of attribute profiles 
differed across the models because they were 
characterized by varying structures of attribute 
hierarchy. As shown in Table 2, the linear attribute 
hierarchy had the smallest DIC (7742) and the 
minimum number of attribute profiles (four attribute 
profiles, i.e., 000, 100, 110, and 111). The absolute 
model fit of ppp for the linear, convergent, and for 
divergent hierarchies was approximately .38, which was 
slightly higher than that for the independent model 
(.37). These ppp values were not close enough to the 
expected value of .5. 

 Table 3 presents the classification proportion of 
examinees for each attribute profile. Most of the 
examinees were consistently classified into the (000) 
and (111) attribute profiles across the four attribute 
hierarchies, indicating that approximately 85% or more 
of the students were likely to have mastered no 
attributes (i.e., 000) or all attributes (i.e., 111), 
regardless of attribute hierarchy. The standard errors 
of estimation were sufficiently close (i.e., 
approximately .03) across the four attribute hierarchies. 
The proportions of attribute profiles with standard 
errors did not provide statistically significant evidence 
for choosing the best-fitting hierarchy in this study. 

 Table 4 displays the estimates of item parameters 
and corresponding standard errors of the linear 
attribute hierarchy. The tables that illustrate these 
parameter estimates for the other three attribute 
hierarchies can be found in the Appendix. On average, 
the linear attribute hierarchy yielded slightly smaller 
standard errors of item parameter estimates than those 
generated by the other three attribute hierarchies. 
These findings, including the smallest DIC, similar ppp 
values, smallest number of attribute profiles, and 
smallest standard errors, consistently indicate that the 
linear attribute hierarchy would be the best-fitting 
model to describe the attribute hierarchy structure of 
the 2007 TIMSS mathematics test. 

 

Discussion 

 DCMs have been extensively employed in 
education assessments because cognitive profiles that 
are generated via DCM analyses can provide teachers 
or stakeholders with more diagnostic feedback with 
respect to a set of fine-grained latent student attributes, 
thereby enabling them to develop the tailored or 
remedial training or curricula that are necessary to 
improve  teaching    and    learning.    An    important  

Table 2. Model fit indices across various models of attribute hierarchy 

Hierarchy DIC ppp Number of Attribute Profiles 

Independent 8749 0.374 8 
Linear 7742 0.378 4 
Convergent 8131 0.385 5 
Divergent 7963 0.381 5 

Note: DIC = deviance information criterion, ppp = posterior predictive probability 
 
Table 3. Proportions of attribute profiles across various models of attribute hierarchy  

Attribute 
Profile 

Independent Linear Convergent Divergent 

(0,0,0) 0.457 (0.044) 0.513 (0.040) 0.495 (0.041) 0.509 (0.040) 
(1,0,0) 0.022 (0.017) 0.030 (0.024) 0.027 (0.020) 0.028 (0.021) 
(0,1,0) 0.022 (0.017) - 0.026 (0.019) - 
(1,1,0) 0.027 (0.020) 0.036 (0.025) 0.038 (0.027) 0.039 (0.026) 
(0,0,1) 0.032 (0.023) - - - 
(1,0,1) 0.011 (0.010) - - 0.014 (0.012) 
(0,1,1) 0.033 (0.023) - - - 
(1,1,1) 0.397 (0.040) 0.421 (0.039) 0.414 (0.041) 0.411 (0.041) 

Note: The values in parentheses are standard errors of estimation. The dash (-) indicates that an attribute profile is 
inapplicable to a given model. 
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Table 4. Item parameter estimates and standard errors of the linear hierarchy model 

Item λ0 λ 1,(1) λ 1,(2) λ 1,(3) 

1 1.039 (0.143) - 1.260 (0.298) - 
2 0.547 (0.133) - 1.724 (0.312) - 
3 0.735 (0.131) - 0.592 (0.236) - 
4 –1.103 (0.178) - - 3.221 (0.496) 
5 –1.272 (0.183) - 2.805 (0.292) - 
6 0.728 (0.141) 1.791 (0.34) - - 
7 0.710 (0.148) 1.822 (0.325) - - 
8 –1.656 (0.254) 3.020 (0.33) - - 
9 –0.310 (0.128) - 0.796 (0.202) - 
10 –0.558 (0.144) - 1.451 (0.221) - 
11 1.237 (0.149) - - 1.462 (0.495) 
12 0.751 (0.139) - - 1.944 (0.488) 

Note: 𝜆0 = intercept parameter; 𝜆1,(𝑘) = main effect parameter associated with attribute k. The values in parentheses 

are standard errors of estimation. The dash (-) indicates that an attribute profile is inapplicable to a given model. 
 

consideration, however, is that misspecified attribute 
structures may result in harmful effects on parameter 
estimation and classification accuracy (e.g., Liu, 2018; 
Liu et al., 2017; Templin & Bradshaw, 2014; Templin 
et al., 2008), ultimately causing inappropriate decision 
making. Hence, with a rise in the analysis of 
educational or psychological data via DCMs with 
various attribute structures, a walk-through 
demonstration can help applied researchers easily 
understand how such an analysis is carried out. The 
present study performed Bayesian estimation because 
it offers better differentiation when conducting DCM 
analyses with different attribute structures and 
increases parameterization flexibility (e.g., addressing 
the issue of small sample, integrating a trustworthy 
prior to enhance parameter estimation, and eliminating 
the need for specialized analytical software for 
Bayesian estimation). Furthermore, the employed R 
software is freely available, affording everyone 
convenient use and practice with their own data. We 
demonstrated how R can be used to implement a DCM 
analysis with various hierarchical attribute structures 
and how to select an appropriate attribute structure to 
describe data using the DIC, ppp, proportion of 
attribute profiles, and estimated parameters.  

 This tutorial is aimed at increasing researchers’ 
studying and/or applying in the fields of CDM and/or 
Bayesian estimation by using R, especially for those 
who are interested and unfamiliar with these three 
fields. Thus, we recommend that researchers and 
practitioners can use our codes directly, and they need 
only to specify their attribute structure and LCDM in 

the code. Regarding the LCDM, they should pay 
attention to whether the Q-matrix is a simple structure. 
If the Q-matrix is a simple structure like our 
demonstration, there is no need to specify the 
interaction terms between attributes. However, if one 
item measures two or more attributes, they should 
include all possible interaction terms in LCDM. 
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Appendix 

 
Table A1. Item parameter estimates and standard errors for the independent attribute model 

Item λ0 λ 1,(1) λ 1,(2) λ 1,(3) 

1 1.017 (0.147)  1.256 (0.293)  
2 0.503 (0.139)  1.752 (0.311)  
3 0.724 (0.138)  0.588 (0.246)  
4 -1.352 (0.256)   3.282 (0.508) 
5 -1.443 (0.250)  2.998 (0.342)  
6 0.773 (0.142) 1.820 (0.358)   
7 0.743 (0.143) 1.903 (0.364)   
8 -1.633 (0.246) 3.258 (0.421)   
9 -0.318 (0.136)  0.774 (0.217)  
10 -0.595 (0.152)  1.462 (0.228)  
11 1.149 (0.162)   1.578 (0.471) 
12 0.638 (0.158)   2.06 (0.455) 

Note: λ0 = intercept parameter; λ 1,(k) = main effect parameter associated with attribute k. The values in parentheses 
are standard errors of estimation. The dash (-) indicates that an attribute profile is inapplicable to a given model. 
 
 
Table A2. Item parameter estimates and standard errors for the convergent attribute hierarchy model 

Item λ0 λ 1,(1) λ 1,(2) λ 1,(3) 

1 1.016 (0.147)  1.258 (0.295)  
2 0.512 (0.134)  1.728 (0.309)  
3 0.729 (0.136)  0.579 (0.236)  
4 -1.079 (0.182)   3.226 (0.509) 
5 -1.387 (0.232)  2.893 (0.323)  
6 0.740 (0.141) 1.798 (0.338)   
7 0.723 (0.144) 1.816 (0.335)   
8 -1.641 (0.249) 3.056 (0.344)   
9 -0.328 (0.132)  0.797 (0.207)  
10 -0.597 (0.15)  1.468 (0.225)  
11 1.230 (0.152)   1.572 (0.538) 
12 0.748 (0.134)   2.057 (0.556) 

Note: λ0 = intercept parameter; λ 1,(k) = main effect parameter associated with attribute k. The values in parentheses 
are standard errors of estimation. The dash (-) indicates that an attribute profile is inapplicable to a given model. 
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Table A3. Item parameter estimates and standard errors for the divergent attribute hierarchy model 

Item λ0 λ 1,(1) λ 1,(2) λ 1,(3) 

1 1.047 (0.145)  1.265 (0.303)  
2 0.552 (0.132)  1.743 (0.326)  
3 0.739 (0.134)  0.599 (0.246)  
4 -1.107 (0.184)   3.220 (0.530) 
5 -1.270 (0.190)  2.871 (0.303)  
6 0.722 (0.145) 1.796 (0.334)   
7 0.709 (0.143) 1.799 (0.321)   
8 -1.653 (0.240) 3.002 (0.333)   
9 -0.306 (0.128)  0.800 (0.210)  
10 -0.546 (0.143)  1.453 (0.223)  
11 1.227 (0.150)   1.537 (0.515) 
12 0.736 (0.140)   2.031 (0.559) 

Note: λ0 = intercept parameter; λ 1,(k) = main effect parameter associated with attribute k. The values  
in parentheses are standard errors of estimation. The dash (-) indicates that an attribute profile is  
inapplicable to a given model.  
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