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Traditional estimators of reliability such as coefficients alpha, theta, omega, and rho (maximal reliability) 
are prone to give radical underestimates of reliability for the tests common when testing educational 
achievement. These tests are often structured by widely deviating item difficulties. This is a typical pattern 
where the traditional Pearson correlation between items and score (Rit) may be radically deflated. Because 
Rit is embedded in the traditional estimators of reliability, this causes deflation in the estimates of reliability, 
and the magnitude of deflation may be remarkable. Within achievement testing, deflation-corrected 
estimators of reliability (DCER) would be better options. Instead of Rit, DCERs use other estimators of 
correlation as the linking factor between the item and the score variable that are less prone to deflation. 
Selecting wisely the linking coefficient, DCERs may give significant advance in estimating the true 
reliability and true standard error related to the test score. 
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Introduction 
 Psychometric testing—including achievement 
testing in educational settings—has a long history that 
can be traced to Wilhelm Wundt (1862) in German, 
Francis Galton (1869) in Great Britain, and J. McKeen 
Cattell (1886, 1893) in USA (see the history in Gregory, 
2004). From early on, three concepts have been of 
specific interest within test theory—the same are the 
interest in this article: coefficients of correlation, 
coefficients of reliability, and the standard error of the 
measurement (S.E.m).   

 The concept of correlation and, specifically, the 
product-moment correlation coefficient (PMC) was 
studied by Karl Pearson (1896 onwards) based on 
Auguste Bravais’ (1844) and Galton’s (1889) earlier 
innovations. Later, Pearson (1903) and Spearman 

(1904) were the first to point the inaccuracy in PMC 
and offered the first solutions to the problem of 
attenuation (see the history in Sackett & Yang, 2000, 
see also Sackett et. al., 2007; Schmidt & Hunter, 2015). 
Recently, Metsämuuronen (e.g., 2021a, 2022f) have 
pointed out that the estimates of correlation by PMC 
embed not only attenuation caused by errors in the 
measurement modelling but also radical deflation due to 
artificial systemic errors during the estimation (of the 
concepts, see, Gadermann, Guhn, & Zumbo, 2012; 
Metsämuuronen, 2022f; Revelle & Condon, 2018; 
Silver, 2008). When the scales of two variables differ 
radically from each other, as is always the case with a 
test item and the score variable, PMC cannot reach the 
latent correlation but, instead, the deflation 
approximates 100% when the variance in either 
variable approximates zero (see examples in 
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Metsämuuronen, 2022f). In testing settings, radical 
deflation happens always with items of extreme 
difficulty level; the estimates of item–total correlation 
of very easy or very difficult test items are always 
radically deflated.  This issue is discussed later. 

 The concept of reliability of the test score was first 
discussed, and the first formulae were derived, by 
William Brown (before 1910 in his thesis and later in 
1910; see Cho & Chun, 2018) and Charles Spearman 
(1910); the aim was to correct the attenuation in PMC 
caused by “faulty data”. In special cases related to 
strictly parallel tests, this coefficient of reliability, 
Brown–Spearman prophecy formula (see the rationale 
for the non-traditional order of the developers in Cho 
& Chun, 2018), is still in use, and it is the ancestor of 
the most widely used estimator of reliability, coefficient 
alpha (chronologically, Kuder & Richardson, 1937; 
Jackson & Ferguson, 1941; Cronbach, 1951). Other 
options for coefficients of reliability within the classical 
test theory, generalizability theory, and IRT modelling 
are collected and discussed recently by 
Metsämuuronen (2022d). Later, reliability turned to be 
the main concept and tool to quantify the amount of 
random measurement error that exists in a score 
variable generated by a compilation of multiple test 
items as well as to assess the (overall) quality of the 
measurement (e.g., Gulliksen, 1950). An estimate of 
reliability serves also in correcting the attenuation in 
correlations in validity studies and meta-analyses (e.g., 
Schmidt & Hunter, 2015) and in the estimates of 
regression or path models (e.g., Cole & Preacher, 
2014).  

 Recently, Metsämuuronen (e.g., 2022a, 2022c, 
2022d, 2022e) has discussed a hidden challenge in the 
estimators of the reliability: the estimates by such 
traditional estimators as coefficients alpha, theta, 
omega, and rho (maximal reliability) may be radically 
deflated because they embed PMC in the form of 

item–score correlation (Rit =𝜌𝑖𝑋). Rit is explicit in the 
coefficient alpha (see later Eq. (2))—as well as in such 
preceding estimators as Brown–Spearman prophecy 
formula (Brown, 1910, Spearman, 1910), Flanagan–
Rulon prophecy formula (Rulon, 1939), Kuder–
Richardson formulae KR20 and KR21 (Kuder & 
Richardson, 1937), and Guttman’s lambda family 
(Guttman, 1945)—because the variance of the test 

score (𝜎𝑋
2) is visible in the formula.  𝜎𝑋

2  on its behalf is 
inherited from the basic definition of reliability  

𝑅𝐸𝐿 = 𝜎𝑇
2/𝜎𝑋

2 = 1 − 𝜎𝐸
2/𝜎𝑋

2   (1) 

e.g., Gulliksen, 1950) where 𝜎𝑇
2, 𝜎𝑋

2,  and 𝜎𝐸
2 refer to 

the variances of the observed score (X) and 
unobserved true score (T) and error element (E) 
familiar from their profound relation in testing theory, 

X = T + E. It is known that 𝜎𝑋
2 can be expressed by 

item variances 𝜎𝑖
2 and 𝜌𝑖𝑋:   

 

 

 

(Lord, Novick, & Birnbaum 1968), where k refers to 
the number items in the compilation. Then, the 

coefficient alpha (𝜌𝛼), as an example, can be expressed 
as 

 
 

(2) 

 

(Lord et al., 1968) where PMC is explicit. Also, in the 

form of principal component and factor loading (𝜆𝑖), 
Rit is embedded in such advanced estimators based on 
“optimal linear combination” (see Li, 1997) as 

coefficient theta (𝜌𝑇𝐻 ; Armor, 1974; see also Kaiser & 
Caffrey, 1965, based on Lord, 1958) based on principal 
component loadings  

 

 

,        ,         (3) 

 
 

coefficient omega (𝜌𝜔; Heise & Bohrnstedt, 1970; 
McDonald, 1970) known also as McDonald’s omega 
total (McDonald, 1999):  

  
 

     ,         (4) 

 

 

and coefficient rho or maximal reliability (𝜌𝑀𝐴𝑋; e.g., 
Raykov, 1997, 2004 onwards) known also as composite 
reliability (e.g., Raykov, 1997), Raykov’s Rho (e.g., 
Cleff, 2019), and Hancock’s H (Hancock & Mueller, 
2001): 
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(5) 

 

 

based on factor loadings. Both principal component 
and factor loadings are, essentially, PMCs between an 
item and a score variable θ (see Cramer & Howitt, 

2004; Kim & Mueller, 1978; Yang, 2010), that is, 𝜆𝑖 =
𝜆𝑖𝜃= PMC.  

 Because the estimates of item–score correlations 
are deflated, also the estimates of reliability are 
deflated.1 In empirical settings with items with extreme 
difficulty levels, deflation in the estimates of reliability 
have been noted to be up to 0.60–0.70 units of 
reliability (see examples in, for instance, Gadermann et 
al., 2012; Metsämuuronen, 2022a, 2022c, 2022d; 
Metsämuuronen & Ukkola, 2019; Zumbo, 
Gadermann, & Zeisser, 2007). Hence, Zumbo and 
colleagues (2007; Gadermann et al., 2012) and 
Metsämuuronen (2022c, 2022d, 2022e) have offered 
different alternatives for the challenge of deflation. 
These options are called deflation-corrected estimators 
of reliability (DCER) and they are discussed later. 

 In the early days of test theory, the third concept, 
standard error of the measurement, was more 
important than the concept of reliability (see Gulliksen, 
1950). However, by 1950, the concept on reliability 
superseded the concept of standard error when it 
comes to the interest in academic writings (see 
Gulliksen, 1950). However, these two concepts are 
closely linked because S.E.m is defined through 
reliability (see Eq. 1):  

(6) 

 

 
1 Notably, the underestimation in the estimates of reliability have been discussed widely in literature starting from Guttman 
(1945). Guttman showed that all his six estimators of reliability give underestimates. This generalizes to many other estimators 
such as coefficient alpha (see discussion and literature in Metsämuuronen, 2022d). The underestimation related to coefficient 
alpha has been discussed widely, and challenges related to alpha are well known although not necessarily well understood by 
general users (see discussions in, e.g., Cho & Kim, 2015; Hoekstra et al., 2019; Sijtsma, 2009). Therefore, there is an ongoing 
debate whether we should remove coefficient alpha from use (see the discussion in, e.g., Dunn, Baguley & Brunsden, 2013; 
McNeish, 2017; Sijtsma, 2009; Trizano-Hermosilla & Alvarado, 2016; Yang & Green, 2011) or not (see, e.g., Bentler, 2009; Falk 
& Savalei, 2011; Metsämuuronen, 2017; Raykov & Marcoulides, 2017; Raykov, West, & Traynor, 2014). This article does not 
discuss the traditional underestimation in estimators connected to modelling errors such as violations in tau-equivalency, 
unidimensionality, and uncorrelated errors. Deflation is a more profound source of underestimation, and it concerns not only 
coefficient alpha but also coefficients theta, omega, and rho even if the latter has often been suggested to replace alpha (see 
literature above). 

 

(e.g., Gulliksen, 1950). It seems, however, that 
pendulum has swung back when it comes to weight of 
reliability and standard errors: in the large-scale testing 
settings  such  as  PISA (Programme of International  
Student Assessment) and TIMSS (Trends in 
International Mathematics and Science Study), instead 
of general reliability of the score, the interest is mainly 
in the standard errors in different parts of the ability 
scale (see, e.g., Foy & LaRoche, 2019; Schult & 
Sparfeldt, 2016). This has been motivated by two facts. 
First, reliability is usually a kind of average statistic 
related to the score and, hence, it seems not applicable 
in reflecting standard error in different parts of the 
ability scale (see discussion in, e.g., Metsämuuronen, 
2022a, 2022b). Second, the testing settings related to 
several booklets with linked items, as is a standard 
procedure in the international settings and sometimes 
in the national level achievement testing, do not 
support using reliability in assessing the discrimination 
power of the combined score; we seem not have such 
estimator of reliability that would be generally accepted 
for these kinds of settings (see the discussion and 
possible options in Metsämuuronen, 2022b). 

 Deflation in the estimates of reliability binds 
together the concepts of correlation, reliability, and 
standard error of the measurement. On the one hand, 
primarily, the reason for the radical deflation in 

reliability is in the radical deflation in the 𝜌𝑖𝑋 or 𝜌𝑖𝜃 
embedded to most of the classical estimators of 
reliability of which magnitude is illustrated later. On 
the other hand, because of the deflation in the 
estimates of reliability, the estimates of standard error 
may be radically inflated. Metsämuuronen (2022a) 
gives examples of extreme real-life datasets where the 
standard errors are almost 20 times higher when using 
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traditional estimators of reliability in comparison with 
deflation-corrected estimators of reliability. In non-
extreme datasets with widely deviating item difficulties, 
the standard errors based on traditional estimators of 
reliability may be two or three times higher in 
comparison with DCERs depending on which 
estimator of correlation and which estimator of 
reliability are in use (see Metsämuuronen, 2022b)—
some examples of this phenomenon are given in the 
empirical section. 

 To condense the discussion above, traditional 
estimators of reliability such as coefficients alpha, 
theta, omega, and rho are prone to give deflated 
estimates of reliability for the test score when 
individual test items have extreme difficulty level in the 
target population. This is a typical pattern where the 
Pearson’s point–biserial and point–polyserial 
coefficient of correlation between items and score (Rit) 
may be radically deflated causing radical deflation in 
the estimates of reliability and inflation in standard 
errors. The magnitude of deflation may be remarkable; 
0.40–0.60 units of reliability have been reported in 
extreme cases.  

 These kinds of tests prone to produce deflated 
estimates of reliability are common in educational 
settings because tests are often structured to include 
both easy, medium, and demanding tasks. Exceptions 
of this logic may be tests that are aimed to measure a 
certain standard level, such as criterion-referenced 
licensure and certification examinations as is usual, 
among others, in language testing.  Metsämuuronen 
(2018) discusses the matter and notes that the issues 
related to reliability are usually more highlighted in the 
norm-referenced testing than in the standards- or 
criterion-referenced testing. Reaching a certain 
standard level, that is, passing a test aimed to measure 
a certain level, does not depend on the great variability 
within the test takers or test items; even if all the test 
takers would pass the certain standard level, and the 
reliability would be zero because of technical reasons, 
the result may be acceptable. Then, the point made by 
Popham and Husek (1969, p. 3) makes sense; they 
noted that reliability indices based on variability in the 
dataset, as the traditional estimators of reliability 
usually are, “are not only irrelevant to criterion-referenced uses 
but are actually injurious to their proper development and use”. 
However, Metsämuuronen (2018) points that, 
whenever the score or sub-scores are used as a basis 
for the standard setting, the reliability issues are relevant; 

if a score is used in the process, but the reliability of 
the score is very low, we cannot trust the score. Kane 
(1986, p. 221) suggests that “the test-based procedure 
[related to standard setting] is found to improve the accuracy 
of universe score estimates only if the test reliability is above 
0.50”. If a test used in the criterion- or standard-
referenced testing includes wide variety of item 
difficulties, the issue of deflation in reliability is 
apparent. 

 With tests with wide variety of item difficulty, the 
deflation-corrected estimators (Metsämuuronen, 
2022a, 2022c, 2022d, 2022e, 2022f) could be 
reasonable options; instead of Rit, they use better-
behaving estimators of correlation as the linking factor 
between the item and the score variable; this matter is 
discussed further in Section "Conceptual differences 
between the traditional and deflation-corrected 
measurement models". Selecting wisely the linking 
coefficient, deflation-corrected estimators of reliability 
may produce significant advance in assessing the true 
reliability and true standard error related to the score, 
specifically, in the testing settings familiar in 
achievement testing. 

 

Research Questions 

 This article discusses the effect of deflation in 
reliability from the viewpoint of achievement testing 
focusing, especially, on the characteristic form of tests 
in educational settings of including wide variety of item 
difficulties in the test. It is asked (and answered), first, 
why the estimates of reliability by the traditional 
estimators are, practically always, deflated with tests 
with wide variety of item difficulties and, hence, why 
standard errors of measurement are inflated when 
using the traditional estimators of reliability. Second, 
why the deflation-corrected estimators would be better 
estimators in achievement testing?  

 The traditional estimators are compared with 
selected deflation-corrected estimators of reliability. It 
is shown empirically that deflation-corrected 
estimators give estimates closer to the population value 
than the traditional estimators do. Hence, it is argued 
that the deflation-corrected estimators of reliability are 
reasonable alternatives for the traditional estimators, 
specifically, in the settings related achievement testing 
with tests with wide variety of item difficulties. 
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 The course of the study starts with a brief 
conceptual discussion of the traditional and deflation-
corrected measurement models after which empirical 
examples are given for the magnitude of deflation by 
the traditional estimators.  

 

Conceptual differences between the 
traditional and deflation-corrected 
measurement models 

Reason for the deflation in reliability: item–score 
correlation 

 The root reason for the deflation in the estimates 
of reliability is in item–score correlation as discussed 
above. Metsämuuronen (2021a, 2022f) discusses in-
depth the sources of deflation in item–score 
correlation. Based on simulations, seven sources of 
mechanical error in the estimates of correlation have 
been detected which all cause cumulative negative bias 
in PMC in general and in Rit specifically. According to 
simulations, PMC tends to underestimate the true 
association the more 1) the wider the number of 
categories in the variables differ from each other, 2) the 
more extreme is the item difficulty, 3) the further the 
distribution of the score is from the uniform 
distribution, 4) the less categories there are in the item, 
5) the less categories there are in the score, 6) the less 
there are items forming the score because this has a 
strict connection to the number of categories in the 
scale of the score, and 7) the more tied cases (with non- 

uniform distribution) there are in the score. Although 
some of these sources are intertwined, they tend to be 
cumulative.  

 From the deflation viewpoint, the most challenging 
items are those that have extreme difficulty levels. On 
the one hand, it is good to include some very easy items 
in a test to give the lowest-performing test takers 
possibilities to show some achievement in the test. On 
the other hand, it is good to give possibilities also for 
the highest-performing test takers to show how far 
they can reach in their achievement and, hence, to 
include some demanding items in a test. This is the 
technical reason why achievement tests differ from the 
attitude tests; the achievement tests are often 
constructed by using items with widely deviating 
difficulty levels. Unfortunately, Rit is the most 
vulnerable with these extreme items. A simple example 
may illustrate the challenge. 

 Assume two identical (latent) variables with an 
obvious perfect correlation (R = 1).  In practice, let us 
take a variable of n = 1000 normally distributed cases 
and double it. Of these identical variables with 
(obvious) perfect correlation, one (item g) is 
dichotomized into two categories (0–1) with difficulty 
level p(g) = 0.90 and the other (score X) is divided into 
31 categories (0–30) with average difficulty level of 
p(X) = 0.50). The difference between the latent 
correlation and the observed correlation indicates 
strictly the magnitude of deflation in the estimates. 
Notably, such known estimators of correlation as tau-b 

 

Figure 1. Deflation in selected estimators of reliability 
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(Kendall, 1948), Spearman rank-order correlation (RS; 
Spearman, 1904), Rit, and coefficient eta (Pearson, 
1903, 1905) cannot reach the latent perfect correlation 
but, instead, they include a remarkable magnitude of 
deflation (> 0.70 units of correlation) caused by 
technical and mechanical errors in the calculating 
process (Figure 1). On the contrary, such estimators as 
polychoric correlation coefficient (RPC; Pearson, 1900, 
1913), r-bireg and r-polyreg correlation (RREG; 
Livingstone & Dorans, 2004, Moses, 2017, delta (D; 
Somers, 1962), gamma (G; Goodman & Kruskal, 
1954), dimension-corrected D (D2; Metsämuuronen, 
2020b, 2021a), dimension-corrected G (G2; 
Metsämuuronen, 2021a), attenuation-corrected Rit 
(RAC; Metsämuuronen, 2022e, 2022g), and attenuation-
corrected eta (EAC; Metsämuuronen, 2022g) can detect 
the perfect correlation. Of the latter coefficients, D, D2, 
and RREG have minor defects in this matter; D and D2 
because of being affected by the tied cases and RREG 
because of being affected by short tests (see 
Metsämuuronen, 2022f). The consequence of the 
deflation in Rit to the measurement model, reliability, 
and standard errors is discussed in what follows. 

Measurement model including the element of 
deflation 

 The traditional measurement models do not 
include elements related to deflation; they assume that 
the measurement is deflation-free which is a too 
optimistic assumption. Metsämuuronen (e.g., 2022a, 
2022d, 2022f) uses the term “mechanical error in the 
estimates of correlation” (MEC) to conceptualize the 
phenomenon. The general, simplified, one-latent 
variable measurement model combining the latent 
variable (θ), the observed values of an item gi (xi), and 

a weight factor 𝑤𝑖 that links θ with xi can be expressed 
as follows:  

𝑥𝑖 = 𝑤𝑖𝜃 + 𝑒𝑖,              (7) 

(e.g., Metsämuuronen, 2022a, 2022c) generalized from 
the traditional model (e.g., Cheng et al., 2012; 
McDonald, 1999) where ei refers to the measurement 
error. The latent variable θ may be manifested in 
different forms as a compilation of the test items: raw 
score, principal component score, factor score, IRT-
score, or various non-linear combinations of the items. 
Also, in the general model, the weight factor may vary 
although usually it is item–score correlation in some 
form including the estimators discussed above (Rit, 

RPC, RREG, D, D2, G, G2, RAC and EAC, or principal 
component or factor loading λi).  

 While knowing that a certain part of the 
measurement error is strictly technical or mechanical in 
nature (see Figure 1), but its magnitude could be 
reduced by selecting wisely the weight factor, 
Metsämuuronen (2022c, 2022d, 2022e) suggests to 

reconceptualize the classic relation of 𝑋 = 𝑇 + 𝐸 as 

𝑋 = 𝑇 + (𝐸𝑅𝑎𝑛𝑑𝑜𝑚 + 𝐸𝑀𝐸𝐶), where the new element 

related to deflation, 𝐸𝑀𝐸𝐶 , is visible. Consequently, the 
measurement model in Eq. (7) can be reconceptualized 
as  

𝑥𝑖 = 𝑤𝑖 × 𝜃 + (𝑒𝑖_𝑅𝑎𝑛𝑑𝑜𝑚 + 𝑒𝑤𝑖𝜃_𝑀𝐸𝐶),        (8) 
 

where the element 𝑒𝑤𝑖𝜃_𝑀𝐸𝐶 refers to the fact that the 

magnitude of the mechanical error in the model 
depends on the weighting factor w, characteristics of 
the item i, and the manifestation of the score variable 
θ. Notably, the magnitude of the error in the models 

Eq. (7) and Eq. (8), that is, 𝑒𝑖 and (𝑒𝑖_𝑅𝑎𝑛𝑑𝑜𝑚 +

𝑒𝑤𝑖𝜃_𝑀𝐸𝐶) respectively, is equal but the element related 

to deflation is visible in the latter form. If we select the 
weight element wisely so that the deflation is zero or 
near-zero, the element related to the technical or 
mechanical error approximates zero, that is, 
𝑒𝑤𝑖𝜃_𝑀𝐸𝐶 ≈ 0. Then, if we use estimators of 

correlation that are deflation-free or close, we get 
MEC- or deflation-corrected (DC) measurement 
model: 

    

             .         (9) 
 

 

Because the coefficient of correlation gives identical 
results with original variables and standardized 
versions of the variables, we can assume that both the 
items and score are standardized with the mean of 0 
and variance 1. Then, this conceptualization leads to 

item-wise deflation-corrected error variance (Ψ𝑖_𝐷𝐶
2 ): 

( ) 2 2

_ _ _ψ 1i DC i DC i DCVar e w= = −
,         (10) 

 
 
 

Assuming that the errors do not correlate, this 
measurement model generalizes to the compilation of 
items as follows: 
 
 
  
 
 

         ,        (11) 
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where 𝑒𝑖_𝐷𝐶~𝑁(0,Ψ𝑖𝐷𝐶
2 ). The deflation-corrected 

error variance related to the test score can be written 
as 

       .       (12) 
 

This conceptualization leads to short-cuts to deflation-
corrected estimators of reliability. 

Deflation-corrected estimators of reliability 

 The traditional estimators of reliability in Eqs. (2) 
to (5) assume that the measurement is deflation-free as 
noted above. A small modification gives the possibility 
to use them as bases for the deflation-corrected 
estimators. Theoretical bases for different families of 
DCERs discussed by Metsämuuronen (e.g., 2022c, 
2022d, 2022e) are either based on alpha (Eq. 2): 

 

              ,        (13) 

 

 

theta (Eq. 3): 

, 
 

          ,        (14) 

 
 

omega (Eq. 6): 

 

       ,       (15) 

 

 

or rho (Eq. 7):  

        
     ,       (16) 

 
 

although other bases could be used as well. Basically, 

the element 𝑤𝑖𝜃 refers to a fact that the magnitude of 
the estimate depends on three things: the 
characteristics of the weight factor (w), of the item (i), 
and of the score variable (θ) as a manifestation of the 

latent trait as discussed above. If 𝑤𝑖𝜃 in Eq. (13) is 

operationalized as Rit, we get the traditional coefficient 

alpha. If, however, 𝑤𝑖𝜃 is operationalized, for instance, 
as Somers D, we get a conservative option for the 
deflation-corrected estimator of reliability based on 

alpha. If in Eq. (14) 𝑤𝑖𝜃 is operationalized as the 
principal component loading related to the first or the 
only principal component, we get the traditional 

coefficient theta. If, however in Eq. (14), 𝑤𝑖𝜃 is 
operationalized as D, we get a conservative option for 
the deflation-corrected theta. Parallel, if in Eqs. (15) 

and (16) 𝑤𝑖𝜃 is operationalized as factor loadings, we 
get the traditional omega and rho. By using D instead 
of the traditional factor loading, we get a conservative 
option for the deflation-corrected omega and rho.  

 Metsämuuronen (2022d) has typologized DCERs. 

Using RPC and RREG as 𝑤𝑖𝜃 leads to theoretical reliability 
because they refer to inferred correlation between non-
observed variables (see Chalmers, 2017). Using the 
other well-behaving estimators (D, G, D2, G2, RAC, or 
EAC) leads to more practical interpretations of the 
reliability. For example, the use of D or G gives the 
interpretation of indicating the proportion of logically 
(incrementally) ordered observations in all items on 
average after they are ordered by the score (see 
Metsämuuronen, 2021b, 2022d, 2023a, 2023b).  

 DCERs can be divided into two families: in 

attenuation-corrected estimators of reliability (ACER), 𝑤𝑖𝜃 
is operationalized as attenuation-corrected estimators 
of correlation (RAC or EAC; Metsämuuronen, 2022e, 

2022g) and, in MEC-corrected estimators (MCER), 𝑤𝑖𝜃 
is replaced by totally different estimator of correlation 
such as D or G (see Metsämuuronen, 2022c, 2022d). 
However, here, both are called by a common name, 
deflation-corrected estimators. Notably, Zumbo’s and 
colleagues (2007; Gadermann et al., 2012) ordinal alpha 
and ordinal theta may be included also in the extended 
family of DCERs; instead of changing the linking 
factor, the matrix of PMC is replaced by a matrix of 
RPC.  

 Finally, it may be wise to take seriously the note by 
Metsämuuronen (e.g., 2022c, 2022e) that using theta, 
omega, and rho outside of their traditional context is 
debatable. In the framework of DCERs, it is assumed 
that these estimators could be used as independent 
estimators; this seems consistent with the general 
measurement model discussed above. Alternatively, it 
is possible to think that the estimators using RPC, RREG, 
G, D, G2, D2, RAC, or EAC instead of the traditional λi 
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are based on renewed procedures on principal 
component- and factor analysis where the factor 
loadings are, for example, RPC and G2 instead of PMC 
(cl. ordinal theta by Zumbo and colleagues, 2007). 

 

Empirical examples of deflation of 

reliability in the achievement testing 

 Three examples are given of the phenomenon of 
deflation, specifically, within the achievement testing. 
The first example is a hypothetical example which is 
used in showing the manual calculation of the 
estimates. Two others are based on real-world datasets 
from national level testing settings. One is a dataset 
referred to above (Metsämuuronen & Ukkola, 2019) 
with extremely easy test items; this was a screening test 
of language related to the administrative language of 
the test itself. Only the students with immigrant 
background were expected to make mistakes in the 
test. Consequently, 75% of the students got full marks 
in the 8-item, 11-points test. The other dataset is based 
on a 30-item test of mathematics which is used as basis 
for a simulation of the performance of the estimators. 
From the original dataset, 1,440 tests with different 
sample sizes were produced. This dataset is used to 
study the behaviour of the estimators in comparison 
with the “population”. This analysis is intensified by a 
smaller dataset with 560 short tests with more extreme 
item difficulties from the same basic dataset.  

 In the numerical examples, of the alternative 
estimators of correlation, D, G and RAC are used for 
binary cases and D2, G2 and RAC for polytomous cases. 
The outcomes are similar type with other better-
behaving estimators (see Metsämuuronen, 2022d). D 
represents a conservative estimator and G more liberal 
estimator of correlation. RAC represents attenuation-
corrected alternative, while D and G lead to MEC-
corrected alternative for DCERs. 

Case 1: A hypothetical dataset with widely 
deviating item difficulties 

 The first case is a small dataset (n = 12, k = 5) with 
incremental difficulty levels in items (p = 0.083–0.917).  

 

 
2 The maximum value of Rit and eta is obtained by ordering the items and score independently and calculating the 
correlation after that (Metsämuuronen, 2022e, 2022g). 

This could be a short subtest of “Sets” or 
“Programming” amid a larger test battery related to 
mathematics achievement. Relevant indicators of the 
items such as item variances, maximal correlation in 
the dataset, as well as indices of item–score correlation 
(Rit, D, G, and RAC) and relevant derivatives of the 
estimators of correlation for estimating the reliability 
are collected in Table 1a. Calculation of the estimators 
of correlation is discussed in Appendix 1. Table 1b 
shows the principal component and factor loadings 
needed for the traditional theta, omega, and rho. Table 
1c collects the estimates of reliability. 

 From Table 1a it is known that Rit varies 0.302–
0.704 although it is also known that item g1, as an 
example, cannot even get higher value than what 
already was obtained, Rit = Ritmax = 0.427 and, hence, 
attenuation-corrected Rit equals RAC = Rit/Ritmax = 1.2 
Notably, with items with extreme difficulty levels, the 
estimates by D, G, and RAC are remarkably higher 
(0.909–1.000) in comparison with Rit (0.472). The 
deflation-corrected estimators of correlation can detect 
the deterministic pattern by the high magnitude in the 
estimates of association: D = G = RAC = 1. In the 
case of item g1, D = 0.909 detects the one tied pair 
while G = 1 ignores it. Notably, in the binary case, D 
equals D2, G equals G2 and Rit equals coefficient eta. 

 Using Eq. (2) and Table 1a, the estimate by the 

traditional alpha is �̂�𝛼 =
5

4
(1 −

0.778

0.9572
) = 0.189. 

Parallel, using Eq. (3) and Table 1b, the traditional 

estimate by theta is �̂�𝑇𝐻 =
5

4
(1 − 1/1.598) = 0.486, 

traditional omega by Eq. (4) and Table 1b is �̂�𝜔 =
1.4852/(1.485 + 3.600) = 0.280, and the 

traditional rho by Eq. (5) and Table 1b is �̂�𝑀𝐴𝑋 =
1

1+
1

499.250

= 0.998. The last seems and feels obvious 

overestimation caused by item g5 which behaves 
poorly in the maximum likelihood estimation and 
causes a near-deterministic pattern (see Table 1b). It is 
good to remember the warnings by Aquirre-Urreta and 
colleagues (2019) and Metsämuuronen (2022a) that 
maximal reliability easily gives (obvious or suspicious) 
overestimates with finite samples. In small samples the  
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Table 1a. Hypothetic dataset with widely deviating item difficulties 

 items     scores   

test taker g1 g2 g3 g4 g5 θX θPC θFA 

1 1 0 0 0 0 1 -0.168 -0.289 

2 0 1 0 0 0 1 -2.008 -0.289 

3 1 1 0 0 0 2 -0.637 -0.288 

4 1 0 1 0 0 2 0.368 -0.289 

5 1 1 0 0 0 2 -0.637 -0.288 

6 1 1 0 0 0 2 -0.637 -0.288 

7 1 0 1 1 0 3 1.487 -0.288 

8 1 1 1 0 0 3 -0.101 -0.289 

9 1 1 1 0 0 3 -0.101 -0.289 

10 1 1 1 0 0 3 -0.101 -0.289 

11 1 1 0 1 1 4 1.520 3.174 

12 1 1 1 1 0 4 1.018 -0.287 

p 0.917 0.750 0.500 0.250 0.083 SUM   
σ2

i 0.076 0.188 0.250 0.188 0.076 0.778   
Ritmax 0.472 0.689 0.912 0.770 0.487    
Rit 0.472 0.302 0.522 0.704 0.472 2.472   
D = D2 0.909 0.370 0.611 0.889 0.909 3.689   
G = G2 1 0.500 0.688 1 1 4.188   
RAC = Rit/Ritmax 1 0.438 0.572 0.914 0.971 3.894   
σi x Rit 0.131 0.131 0.261 0.305 0.131 0.957   
σi x D 0.251 0.160 0.306 0.385 0.251 1.353   
σi x G 0.276 0.217 0.344 0.433 0.276 1.546   
σi x RAC 0.276 0.190 0.286 0.396 0.268 1.416   
D2 0.826 0.137 0.373 0.790 0.826 2.954   
1−D2 0.174 0.863 0.627 0.210 0.174 2.046   
D2/(1−D2) 4.762 0.159 0.596 3.765 4.762 14.044   
G2 1 0.250 0.473 1 1 3.723   
1−G2 0 0.750 0.527 0 0 1.277   
RAC2 1 0.192 0.328 0.835 0.942 3.296   
1−RAC2 0 0.808 0.672 0.165 0.058 1.704   

 
Table 1b. Principal component and factor loading  

 

PC 
loadings   

Factor 
loadings       

 λi λi
2 λi λi

2 1−λi
2 λi

2/(1−λi
2) 

g1 0.632 0.399 0.091 0.008 0.992 0.008 

g2 -0.339 0.115 0.174 0.030 0.970 0.031 

g3 0.447 0.200 -0.301 0.091 0.909 0.100 

g4 0.809 0.654 0.522 0.272 0.728 0.375 

g5 0.479 0.229 0.999 0.998 0.002 499.250 

SUM  1.598 1.485 1.400 3.600 499.764 
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Table 1c. Estimates of reliability 

 base 

weight Alpha Theta Omega Rho 

traditional 0.189 0.468 0.280 0.998 

D 0.719 0.827 0.869 0.934 

G 0.843 0.914 0.932 (no solution) 

RAC 0.765 0.871 0.899 (no solution) 

 

probability    to   obtain     deterministic   of   a   near-
deterministic datasets at least in one item is very high. 
In these cases, the estimates by rho will be obviously 
too high. Except the obvious overestimate by rho, the 
estimates by the traditional magnitudes of the estimates 
are too low to be accepted as real estimates. The better 
behavior of the estimators of correlation by D, G, and 
RAC with items with extreme difficulty level gives a hint 
that the traditional estimators are radically deflated. 

 Because the magnitude of the estimates by D, G, 
and RAC tends to be higher than those by Rit, that is, 
they give deflation-corrected estimates of correlation, 
also the magnitude of the estimates of reliability by 
DCERs are higher than by using the traditional 
estimators. The deflation-corrected estimates are 
calculated by using the estimators in Eq. (13) to (16) 
and Table 1a. Then, the raw score is used as the 
manifestation of the latent ability—using the principal 
component-, factor- or IRT-score would not change 
the results much (see Metsämuuronen, 2022c). Here, 
the deflation-corrected estimates are computed by 
using D as an example; the others are computed in 
parallel manner. By using Eq. (13) and Table 1a, 
deflation-corrected alpha using D as the linking factor, 

“alphaD”, is 
( )2

_

5
ˆ 1 0.778 1.353 0.719

4
D = − =

. 
Using Eq. (14) and Table 1a, the deflation-corrected 

theta, “thetaD” is 
( )_

5
ˆ 1 1 2.954 0.827

4
TH D = − =

. 
The deflation-corrected omega, “omegaD” is calculated 
by Eq. (15) and Table 1a as follows: 

( )2 2

_
ˆ 3.689 3.689 2.046 0.869D = + =

. Unlike 
with G and RAC, it is possible to also compute the 
deflation-corrected rho by using D as the weight; using 
G or RAC would not be possible because of the 
deterministic pattern in one or several items. Then, the 
deflation-corrected rho by using D as the linking 
factor, “rhoD”, is calculated by Eq. (16) and Table 1a as 

follows: 

1

_

1
ˆ 1 0.934

14.044
MAX D

−

 
= + = 
  . The 

magnitude of the last estimate seems not to refer to an 
obvious overestimate unlike by using the traditional 
rho. However, Metsämuuronen (2022d) do not suggest 
using DCERs based on rho with small sample sizes (n 
< 200) because of the risk of obvious overestimation 
or because the estimate is not possible to be calculated 
because of deterministic patterns. 

 The DCERs using G give higher estimates than 
those by D. This is expected because the estimates by 
G are almost always higher than those by D (see 
exceptions in Metsämuuronen, 2021b). This is caused 
by different base for the probability; G omits the tied 
cases while D use all cases. The behavior of RAC in 
comparison with D and G is largely unstudied. 
However, it seems that estimates are systematically 
somewhat higher in magnitude than those by D but 
lower than those by G. Hence, if the estimates using D 
are more conservative and those by G are more liberal, 
the estimates using RAC seem to be a kind of consensus 
between liberal and conservative estimates. If we take 
alphaD, thetaD, and omegaD as reference, in the given 
dataset, the traditional alpha is deflated by 74% 
[=(0.719−0.189)/0.719×100%], theta by 43% and 
omega 68%. If the estimators using G were the 
reference, the traditional alpha was deflated by 77%, 
theta by 49% and omega by 69%. 

 Deflation in the estimates of reliability is seen also 
as inflation in the standard errors. Knowing that the 

standard deviation of the score is 𝜎𝑋 = 0.957, it is 
known that the traditional standard error would be 

S.E.m. = 0.957 × √1 − 0.189 = 0.862 points if 
coefficient alpha is used in estimation. If DCERs are 
used, the standard error would be between 0.379 (G) 
and 0.507 (D) points. This means a reduction of 41–
56% in the estimate of standard error if DCERs are 
used instead of the traditional estimators of reliability. 
In other words, using the traditional estimator of 
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reliability gives 1.7–3.2 times wider standard errors in 
comparison with estimates based on DCERs. The 
difference would be wider (2.3–3.3 times) if omega 
would be used as a base in estimation. 

Case 2: Test of extreme difficulty level  

 Sometimes, the achievement test may be very (or 
too) easy or difficult for the target group—or it is 
purposefully made easy for a specific reason such as 
being a diagnostic part of a larger test set. Sometime, 
this kind of (sub)test may be aimed to be a test for 
selecting test takers to continue at a specific level in the 
rest of the test—this is common in adaptive testing—
or as a test in a low-level criterion-referenced standard. 
Because all items in the dataset may be very easy to the 
target population, the traditional estimators are 
expected to be radically deflated. As an example of this 
kind of test, a specific, national level dataset with 
exceptionally easy items with n = 7,770 test takers 
discussed and further analyzed by Metsämuuronen 
(2022a, 2022d, 2022f; originally in Metsämuuronen and 
Ukkola, 2019) is used here as an example.  

 The test was a screening test of proficiency in the 
language used in the factual test; only the test-takers 
with immigrant background with assumingly lower 
achievement level in the administrative language of the 
school (and in the test) were expected to make mistakes 
in the test items. Altogether 75% of the test takers gave 
full marks in the test of 8-items and 11-points; the 
distribution of the score is obviously non-normal 
(Figure 2). The question is, can the traditional 
estimators of reliability detect the fact that the lowest-

performing test takers are systematically scoring lower 
also in the individual items? Descriptive statistics of the 
dataset are discussed by Metsämuuronen (2022d). 
Here, relevant pieces of information for estimating 
reliability are collected in Table 2a, principal 
component- and factor loadings for the traditional 
theta, omega, and rho in Table 2b, and the estimates of 
reliability in Table 2c. The factual calculation of 
estimates is demonstrated in Case 1 and, hence, only 
the outcome is of interest here.  

 The traditional estimators of reliability are 
obviously deflated; estimates vary 0.246 (alpha) to 
0.493 (rho) indicating, traditionally, that the test cannot 
separate between the lower- and higher performing test 
takers. However, the average item–score associations 
by D and G are 0.831 and 0.879, respectively, indicating 
high association between the score and individual 
items. Knowing the interpretation of D and G, on 
average, 92–94% of the observations are logically 
(incrementally) ordered to the same order as the score 
is, that is, almost all lower-performing test takers 
perform lower in all items of the test after they are 
ordered by the score (see the discussion of common 
language estimators of reliability in Metsämuuronen, 
2023a).  This is known from the fact that the common 
language effect sizes PHD = 0.5+0.5×0.831 = 0.915 if 
the tied pairs are included (D) and PHG = 
0.5+0.5×0.879 = 0.940 if the tied pairs are omitted (G) 
(see the discussion of common language estimators of 
effect size in Metsämuuronen, 2023b). The estimates 
of reliability by using D and G as the linking factors 

 

Figure 2. Distribution of the original dataset in Case 2 (n = 7,770) 
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Table 2a. Characteristics of items, estimates of item–score correlation, and derivatives for estimating reliability 

 g1 g2 g3 g4 g5 g6 g7 g8 SUM 

scale 0−1 0−1 0−1 0−1 0−2 0−1 0−2 0−2  
p 0.960 0.980 0.990 0.910 0.890 0.980 0.985 0.990  
σi 0.186 0.126 0.088 0.287 0.610 0.122 0.211 0.169  
σ2

i 0.035 0.016 0.008 0.082 0.372 0.015 0.045 0.028 0.600 

Ritmax 0.635 0.548 0.478 0.754 0.811 0.541 0.579 0.553  
Rit 0.350 0.268 0.288 0.455 0.747 0.258 0.329 0.376 3.071 

D 0.791 0.779 0.858 0.789 0.952 0.766 0.832 0.877 6.644 

G 0.857 0.846 0.911 0.789 0.979 0.831 0.897 0.924 7.033 

RAC = Rit/Ritmax 0.551 0.490 0.603 0.603 0.921 0.477 0.568 0.680 4.892 

σi x Rit 0.065 0.034 0.025 0.131 0.455 0.032 0.069 0.063 0.875 

σi x D 0.147 0.098 0.076 0.226 0.581 0.094 0.176 0.148 1.546 

σi x G 0.160 0.107 0.080 0.226 0.597 0.102 0.189 0.156 1.617 

σi x RAC 0.103 0.062 0.053 0.173 0.562 0.058 0.120 0.115 1.245 

D2 0.625 0.607 0.736 0.622 0.907 0.586 0.692 0.770 5.546 

1−D2 0.375 0.393 0.264 0.378 0.093 0.414 0.308 0.230 2.454 

D2/(1−D2) 1.670 1.546 2.789 1.647 9.768 1.417 2.242 3.345 24.425 

G2 0.734 0.716 0.829 0.622 0.958 0.691 0.804 0.854 6.209 

1−G2 0.266 0.284 0.171 0.378 0.042 0.309 0.196 0.146 1.791 

G2/(1−G2) 2.760 2.520 4.856 1.647 22.828 2.236 4.105 5.871 46.823 

RAC2 0.304 0.240 0.363 0.364 0.849 0.228 0.322 0.462 3.131 

1−RAC2 0.696 0.760 0.637 0.636 0.151 0.772 0.678 0.538 4.869 

RAC2/(1−RAC2) 0.436 0.315 0.570 0.571 5.619 0.295 0.475 0.859 9.141 

 
Table 2b. Principal component and factor loading  

 PC loadings Factor loadings     

 λi λi
2 λi λi

2 1−λi
2 λi

2/(1−λi
2) 

g1 0.447 0.200 0.276 0.076 0.924 0.082 

g2 0.430 0.185 0.260 0.068 0.932 0.073 

g3 0.605 0.366 0.471 0.222 0.778 0.285 

g4 0.468 0.219 0.291 0.085 0.915 0.093 

g5 0.204 0.042 0.111 0.012 0.988 0.012 

g6 0.375 0.141 0.213 0.045 0.955 0.048 

g7 0.288 0.083 0.160 0.026 0.974 0.026 

g8 0.633 0.401 0.512 0.262 0.738 0.355 

SUM  1.636 2.294  7.204 0.974 

  
Table 2c. Estimates of reliability 

 base 

weight Alpha Theta Omega Rho 

traditional 0.246 0.444 0.422 0.493 

D 0.856 0.937 0.947 0.961 

G 0.880 0.959 0.965 0.979 

RAC 0.700 0.778 0.831 0.901 
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correspond well with this fact; estimates using D vary 
0.856 (alphaD) to 0.961 (rhoD) and the estimates using 
G vary 0.880 (alphaG) to 0.979 (rhoG). Hence, if using 
the estimators with D as the weight factor, the 
traditional estimators are deflated by 71% (alpha), 53 
% (theta), 55% (omega), and 49% (rho). 
Correspondingly, if the estimators using G are used as 
the reference, the deflation rates are 72%, 54%, 56%, 
and 50%, respectively.  

 The deflation of this size in the estimates of 
reliability have obvious consequences to the estimates 
of standard error. While knowing that the population 

standard deviation of the score variable X is 𝜎𝑋 =
0.875, it is known that the average standard error 

would be S.E.m. = 0.875 × √1 − 0.246 = 0.760 
points if the traditional coefficient alpha is used in 
estimation and 0.622 points if rho is used. If DCERs 
are used, the standard error would be between 0.127 
(rhoG) and 0.332 points (alphaD). This means a 
reduction of 56–80% in the estimate of standard error 
if DCERs are used instead of the traditional estimators 
of reliability. In other words, in the case, using the 
traditional estimator of reliability gives 2.3–4.9 times 
wider standard errors in comparison with estimates 
based on DCERs. 

Case 3: Larger simulation of the behaviour of 
DCERs with a special interest on the tests with 
items with extreme difficulty levels  

 Datasets and variables. Cases 1 and 2 are specific 
extreme cases where the population estimates are not 
known. Case 3 presents a simulation based on a real-
life dataset with an artificial “population” that can be 
used in assessing the characteristics of the estimators 
from the viewpoint of their behavior with population 
estimates. A dataset of 4,023 nationally represented 
test-takers of achievement in mathematics with 30 
binary items (FINEEC, 2018) is used as the 

“population”. In the original dataset, 𝜌𝑎 = 0.885, 

𝜌𝑇𝐻 = 0.890, 𝜌𝜔 = 0.887, and 𝜌𝑀𝐴𝑋 = 0.895, the 
traditional item–score correlation range 0.332 < Rit < 

0.627 with the average 𝑅𝑖𝑡̅̅ ̅̅ = 0.481, and item 

difficulties range 0.24 < p < 0.95 with the average �̅� = 
0.63.  

 Of the original “population”, 40 smaller samples 
with finite or small sample sizes were drawn, and 1,440 
tests were formed by varying the number of test-takers 

(n = 25, 50, 100, and 200), test items (k = 2–30, �̅� =

10.33), categories in the items (df(g) = 1–15, 𝑑𝑓(𝑔) =

4.57) and in the score (df(X) = 10–27, 𝑑𝑓(𝑋)̅̅ ̅̅ ̅̅ ̅̅ =
18.06), and the average difficulty levels in items (�̅� = 

0.50–0.76, �̿�= 0.66). Consequently, the lower bound of 

reliabilities vary notably (𝜌𝑎 = 0.55–0.93, 𝜌𝛼̅̅ ̅). The 
polytomous items were formed by summing the binary 
items. Hence, the datasets are partly dependent, 
specifically, when it comes to the score variable: the 
dataset is formed so that the same score is common to 
several combination of items. This has an effect to the 
standard errors: both the binary and polytomous items 
lead to the same standard error because the score 
variance is common for both types of items. The 
dataset of individual items  (n = 14,880)  including 
relevant indicators of item–score association is 
available in CSV format at 
http://dx.doi.org/10.13140/RG.2.2.10530.76482 and 
in SPSS format at 
http://dx.doi.org/10.13140/RG.2.2.17594.72641.  
The dataset of reliabilities (n = 1,440) is available in 
CSV format at 
http://dx.doi.org/10.13140/RG.2.2.30493.03040 and 
in SPSS format at 
http://dx.doi.org/10.13140/RG.2.2.27971.94241.   

 As the main utility of DCERs comes with tests 
including items with wide variety of difficulty levels or 
test with extreme in difficulty level, an additional 
dataset with shorter tests with more extreme difficulty 
levels was prepared from the original “population”. 
From the population, ten random samples with sample 
sizes n = 200, n = 100, n = 50, n = 25 were formed as 
in the main dataset. However, in these 40 samples, 14 
shorter tests with k = 5 (n = 4), k =8 (n = 3), and k = 
10 (n = 7) binary items were formed. Selecting shorter 
compilations of items made it possible to select the 
most extreme items to the test. Of the 14 tests, five 
used the easiest items with different compilations, five 
used the most difficult items, and four used the items 
of medium difficulty levels. In this additional dataset 
with 560 tests, the traditional coefficient alpha 
(AlphaRit) and rho (Maxrel) were computed and the 
conservative AlphaD is used as the benchmark. This 
dataset is available in CSV format at 
http://dx.doi.org/10.13140/RG.2.2.18911.94887 and 
in SPSS format at 
http://dx.doi.org/10.13140/RG.2.2.25622.83521.   

 In what follows, coefficient alpha is mainly used as 
an example. This may be justified because it is the most 

http://dx.doi.org/10.13140/RG.2.2.10530.76482
http://dx.doi.org/10.13140/RG.2.2.17594.72641
http://dx.doi.org/10.13140/RG.2.2.30493.03040
http://dx.doi.org/10.13140/RG.2.2.27971.94241
http://dx.doi.org/10.13140/RG.2.2.18911.94887
http://dx.doi.org/10.13140/RG.2.2.25622.83521
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widely used estimator of (the lower bound of) 
reliability (see, literature in, e.g., Cho & Kim, 2015; 
Hoekstra et al., 2019; Sijtsma, 2009). An interested 
reader finds relevant comparisons using omega as an 
example in Metsämuuronen (2022a) and (2022d). 
Some points are lifted related to the capability of 
traditional and deflation-corrected estimators to reflect 
the population reliability. A simple statistic is used for 
this: the difference between the sample estimate and 
the population value (d). When d < 0, the sample 
estimate underestimates the population value and 
when d > 0, reliability is overestimated. In what 
follows, this deviation between the sample estimate 
and population value related to a specific estimator is 
referred to as “dAlphaD” or “dAlpha traditional”. 
Because the real population reliability is unknown as 
being a real-world dataset, each estimator runs its own 
race: AlphaD in the sample is compared with AlphaD 
in the population, as an example.  

 General comparison of traditional and deflation-corrected 
estimators. The first, general lift from the datasets is that, 
in the binary settings, the DCERs give a univocal 
message that the reliability is at the level 0.914–0.938 
rather than 0.846–0.884 as suggested by the traditional 
estimators (Table 3, Figure 3). Within each base, the 
deviance obtained by different weight factors is 
nominal (0.914–0.926 by alpha; 0.926–0.935 by theta; 
0.929–0.938 by omega; 0.944–0.955 by rho).  However, 
Figure 3 illustrates the fact that the estimates based on  

rho may be mildly overestimated. This is expected in  

the datasets with finite samples (see Aquirre-Urrata et 
al., 2019; Metsämuuronen, 2022a).  

 With polytomous items, it is obvious that the 
estimators using D and G as the weighting factor fail 
to reach the real reliability (Table 3, Figure 3). This is 
caused by their poor behavior in reflecting the item–
score association when the number of categories 
exceeds 3 (in D) or 4 (in G) (see Metsämuuronen, 
2021a, 2021b). In the polytomous case, DCERs based 
on omega and rho seem to be close to each other, and 
their magnitude is notably higher than those based on 
alpha and theta. The former suggest that the reliability 
would be at the level of 0.917–0.937 and the latter that 
the level would be at 0.876–0.903. Both are somewhat 
higher than what the traditional estimators suggest 
(0.851–0.873). Deflation in the dataset is mild in 
comparison with the extreme datasets in Cases 1 and 
2; in binary case, on average 7–9% and, in polytomous 
case, 4–7% depending on the base and the weight 
factor. 

 Second, on average, of the traditional estimators, 
alpha, theta, and omega are conservative: they tend to 
give estimates that are lower in magnitude than the 
corresponding population value is. Rho is liberal: with 
small sample sizes, it tends to give estimates that 
overestimate the population value as discussed above. 
Although each estimator produces sample estimates 
that are higher or lower than the population value, rho 

 

 
Table 3. Means of estimates of reliability in the simulation dataset (n = 1,440 estimates) 

 binary items    polytomous items    

 N Alpha Theta Omega Rho N Alpha Theta Omega Rho 

traditional 320 0.846 0.867 0.851 0.884 1120 0.851 0.856 0.855 0.873 

RPC 320 0.926 0.935 0.938 0.954 1120 0.882 0.885 0.922 0.929 

RREG 320 0.916 0.926 0.930 0.944 1120 0.876 0.880 0.918 0.924 

G 320 0.924 0.931 0.936 0.955 1120 0.805 0.806 0.881 0.890 

D 320 0.914 0.927 0.929 0.949 1120 0.753 0.758 0.857 0.865 

G2 320 0.924 0.935 0.937 0.955 1120 0.900 0.903 0.932 0.939 

D2 320 0.914 0.927 0.929 0.949 1120 0.876 0.879 0.917 0.924 

RAC 320 0.914 0.926 0.929 0.947 1120 0.885 0.888 0.923 0.930 

EAC 320 0.914 0.926 0.929 0.947 1120 0.897 0.900 0.930 0.937 
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Figure 3. Average estimates in binary and polytomous settings 

 

 

 

is prone to produce more overestimates than 
underestimates. This is specifically true with binary 
items (Figure 4). Notably, in the binary case, all DCERs 
are conservative but the estimates are closer to the 
population value in comparison with the traditional 
estimator when it comes to range. This is specifically 
true with alpha, omega, and rho. With polytomous 
items, it is not recommendable to use D or G as the 
weight factor (see above); they tend to give 
underestimates. This is the reason why the dimension-
corrected D and G were developed (see 
Metsämuuronen, 2021a, 2021b). The dimension-
corrected estimators behave quite optimally in the 
dataset: the range is narrow and the average estimates 
are conservative. 

 More specified comparisons related to DCERs. Third, the 
traditional estimators seem to be very instable with 
short tests with easy items, a narrow scale in the score, 

and small sample size (Figures 5–11). Also, the 
traditional estimators tend to deviate more from the 
population estimates the more extreme the difficulty is 
(Figure 5). This is specifically true with binary items, 
and the phenomenon is known from the previous 
simulations as well as from Case 1 and Case 2. The 
larger simulation dataset did not include extremely 
difficult or easy tests and, hence the deflation seems 
moderate in the dataset. Notably, in the figures to 
come, with polytomous items, D2 and G2 are used 
instead D and G because of their better behavior with 
polytomous items. 

 The smaller dataset with extreme item difficulties 
confirms the fact that the estimates of reliability by 
coefficient alpha are greatly affected by the item 
difficulty (Figure 6). As expected, coefficient rho is 
instable with the smallest sample size  (n=25)  because,  
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Figure 4. Range, mean, minimum, and maximum value of selected estimators of reliability with binary and 
polytomous items (n = 1,440 tests) 

 

 

 

with small sample sizes, the maximum likelihood 
estimation produces easily extremely high values of 
factor loadings leading to suspiciously high estimates 
(see Figure 7). Of the 140 tests by n = 25, 6% did not 
get estimate at all, two were out of range (> 1.00) 
caused by the ultra-Haywood cases in the factor 

loadings (𝜆𝑖 = 1), and six was suspiciously high 

because of the Haywood cases (𝜆𝑖 ≈ 1). Suspiciously 

high cases were not found with tests with n   50. 

 In general, the estimates by AlphaD are more stable 
across the various levels of test difficulty in comparison 
with the traditional alpha and maximal reliability. It 

seems though that the estimates by the traditional 
estimators and DCERs differ the greatest with 
extremely easy items rather than with exceedingly 
difficult items; notably, the dataset did not include 
extremely difficult items. If we take AlphaD as the 
benchmark, with the easiest tests (average item 
difficulty p > 0.80), the estimates by the traditional 
alpha were deflated on average 0.27 units of reliability 
(32%) ranging from 0.14 units (15%) to 0.57 units 
(73%). Correspondingly, with the easiest tests, the 
estimates by maximal reliability are deflated on average 
by 0.15 units of reliability ranging from −0.10 units 
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Figure 5. Behaviour of the estimators by the test difficulty 

 

Figure 6. Behaviour of the estimators by the test difficulty in shorter tests with binary items with extreme difficulty 
(n = 560 estimates) 

 

Figure 7. Behaviour of maximal reliability by the test difficulty in shorter tests with binary items with extreme difficulty (n = 560 and 
420 estimates) 
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(the estimates by rho were higher than those by 
AlphaD) to 0.37 units (45%). That the estimates by 
DCERs are more stable at both ends of the scale of 
item and test difficulty, has a strict consequence also to 
the standard error of measurement (S.E.m). This is 
discussed later.   

 Not only are the estimates by DCER more stable 
at the extremes of item and test difficulty, they are 
more stable also when it comes to the scale of the 
score. In general, the estimates by reliability tend to be 

stable if the score includes more than 15 categories 
(Figure 8). Below 15 categories, the traditional 
estimators underestimate reliability more than DCERs. 
This is specifically true with binary items. The 
phenomenon is more obvious when using omega as 
the base of DCERs (see Metsämuuronen, 2022d).  

 The dataset including items with extreme difficulty 
indicate that the estimates by DCERs tend to be stable 
even with very short tests (Figure 9). In these cases,  

 

Figure 8. Behaviour of the estimators by the width of the score 

 

Figure 9. Behaviour of the estimators by the width of the score with very short tests with extreme difficulty levels in 
binary items (n = 560 and 420 estimates) 
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the suspiciously high estimates by maximal reliability 
with very small sample sizes appear to rise the average 
with extremely short tests. 

 When it comes to sample size, only four different 
options were in use in the analysis. Notably, the 
smallest, n = 25, seems to differ from the others; the 
traditional estimators (except rho) give notable 
underestimation in comparison with DCERs, 
specifically, with binary settings (Figure 10). When the 
sample size reaches or exceeds n = 100, there are no 
practical differences between the estimators.  

Obviously, the test difficulty and width of the score are 
relevant factors to consider also with larger sample 
sizes as seen in Case 2.  

 With datasets with short tests and extreme 
difficulty levels, the factual estimates by coefficient 
alpha and AlphaD are stable over the different sample 
sizes (Figure 11): the average magnitude of the 
estimates by the traditional coefficient alpha ranges by 
0.660–0.681 and by AlphaD by 0.824–0.842. The 
estimates by rho tend to get steadier by the sample size; 
they range 0.820–0.701 depending on the sample size.  

 

Figure 10. Behaviour of the estimators by the sample size 

 

Figure 11. Average estimates of reliability by the sample size with tests of extreme difficulty levels 
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 More detailed analysis of different estimators can 
be found in Metsämuuronen (2022a) where eight 
sources of deflation in the traditional estimators are 
discussed and in Metsämuuronen (2022d) where the 
characteristics of DCERs are typologized. In these, 
coefficient omega is used as the main benchmark.  

 Standard errors. As with Cases 1 and 2, here also the 
analysis is expanded to standard errors. The analysis is 
restricted to estimators based on coefficient alpha 
(AlphaRit and AlphaD). The datasets include the score 

variance (𝜎𝑋
2), and S.E.m. related to the traditional 

coefficient alpha is estimated by  

𝑆. 𝐸.𝑚. (𝛼) = 𝜎𝐸_𝑅𝑖𝑡 = 𝜎𝑋√1 − 𝑎𝑙𝑝ℎ𝑎𝑅𝑖𝑡  and the  

corresponding estimate by alphaD by  

𝑆. 𝐸.𝑚. (𝛼𝐷) = 𝜎𝐸_𝐷 = 𝜎𝑋√1 − 𝑎𝑙𝑝ℎ𝑎𝐷.  

 The specific interest is in the effect of item 
difficulty in the estimates of S.E.m. From this 
perspective, the estimates of S.E.m. from both the 
larger dataset with non-extreme test difficulties (n = 
1,440 tests) and the specific smaller dataset with short 
tests with extreme item difficulties (n = 560 tests) are 
collected in Table 4 and illustrated in Figures 12 and 
13. In Table 4, the inflation rate is computed simply as  

the difference between the estimates based on AlphaRit 
and AlphaD.  

 Three lifts are made from Table 4 and Figures 12 
and 13. First, on average, the estimates of S.E.m. are 
inflated 32%−39% with binary items by using the 
traditional alpha and if using AlphaD as the benchmark. 
The inflation rate in the real-life datasets seems to be 
notably lower than in the cases 1 and 2 above. Notably 
though, AlphaD gives us conservative estimates of 
reliability; the inflation would be estimated higher if, 
for example, Goodman–Kruskal G was used as the 
linking factor. In fact, in the larger dataset, the inflation 
was 43% if AlphaG was used as the benchmark. 
Second, with polytomous items, the inflation is 
nominal (9%), when AlphaD2 is used as the benchmark. 
The technical reason is that even if the dimension-
corrected D (D2) behaves better with polytomous items 
than D does, they both give very conservative estimates 
with polytomous items with large scale. In these 
settings, the estimates by Rit tend to be closer the trues 
correlation than D. However, even if dimension-
corrected G is used as the linking factor, the average 
inflation is 22% and with RPC, 12%, that is, the inflation 
is notably smaller than when binary items were used. 
The reason is the better behavior of Rit with 
polytomous items in comparison with binary items. 

 

Table 4. Average estimates of S.E.m. by the test difficulty 

 

short tests, 
extreme difficulty 

longer tests, 
medium difficulty 

average 
item binary items 

 
binary items 

 
polytomous items 

 

difficulty 
(p) 

alphaRit alphaD inflation   n alphaRit alphaD inflation n alphaRit alphaD2 inflation n 

0.35−0.40 0.986 0.785 0.201 2         

0.40−0.45 1.008 0.787 0.221 23         

0.45−0.50 1.126 0.877 0.249 31         

0.50−0.55 1.279 1.001 0.278 52 2.007 1.597 0.410 10 1.945 1.831 0.114 28 

0.55−0.60 1.292 0.987 0.305 59 1.981 1.544 0.437 44 1.975 1.841 0.134 138 

0.60−0.65 1.162 0.875 0.287 77 2.024 1.541 0.483 84 2.029 1.872 0.157 258 

0.65−0.70 1.162 0.851 0.311 97 2.097 1.530 0.566 119 2.112 1.911 0.201 450 

0.70−0.75 1.129 0.783 0.346 86 2.005 1.423 0.582 60 1.963 1.765 0.198 232 

0.75−0.80 1.067 0.695 0.373 62 1.894 1.290 0.604 3 1.991 1.916 0.075 14 

0.80−0.85 0.898 0.532 0.365 58         

0.85−0.90 0.723 0.393 0.330 13         

Total 1.124 0.810 0.315 560 2.040 1.515 0.525 320 2.039 1.861 0.178 
112
0 
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Figure 12. Average estimates of S.E.m. by the test difficulty 

 
 
Figure 13. Average estimates of S.E.m. by the test difficulty and score variance (n = 560) with binary items 

 
 

Third, with short tests of extreme difficulty levels, the 
inflation seems to get mildly higher by the easiness of 
the items, but it seems to be more stable by the score 
variance. Systematic studies also including extremely 
difficult items in this regard would be beneficial. 

Conclusions and restrictions 

 The starting point of the study was a question why 
the traditional estimators of reliability such as 
coefficients alpha, theta, omega, and rho would not be 
the best option in the datasets related to achievement 
testing. The reason is that the traditional estimators are 
prone to technical or mechanical error in the 

estimation in such types of tests where items with 
extreme item difficulty are used. These kinds of items 
are usually administered within achievement testing. 
Except for some tests based on a certain standard level 
(such as in language testing of a certain standard level), 
the achievement tests usually include items with 
different difficulty levels—even extremely easy and 
difficult items may be used to cover widely the 
different ability levels in the target population. The 
items with extreme difficulty levels are those being the 
main reason for the deflation; the traditional estimators 
may be radically deflated up to 70% or 0.60 units of 
reliability or even more. Hence, the test construction 

1.01

0.720.79

0.39

0.22

0.25

0.28

0.30

0.29

0.31

0.35

0.37

0.37
0.33

0.0

0.5

1.0

1.5

2.0

2.5

0,
40
−
0,
45

0,
45
−
0.
50

0,
50
−
0.
55

0,
55
−
0,
60

0,
60
−
0.
65

0,
65
−
0,
70

0,
70
−
0,
75

0,
75
−
0,
80

0.
80
−
0.
85

0,
85
−
0.
90

st
an

da
rd

 e
rr

or

average difficulty level of items in the test (p)

short tests, extreme difficulty, binary

S.E.m. alphaRit
S.E.m. alphaD
inflation

0.0

0.5

1.0

1.5

2.0

2.5

0,
45
−
0.
50

0,
50
−
0.
55

0,
55
−
0,
60

0,
60
−
0.
65

0,
65
−
0,
70

0,
70
−
0,
75

0,
75
−
0,
80

0.
80
−
0.
85

st
an

da
rd

 e
rr

or

average item difficulty (p)

longer tests, medium difficulty

alphaRit binary
alphaRit polytomous
alphaD binary
alphaD polytomous

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ta

nd
ar

d 
er

ro
r

average item difficulty (p)

p

SEMRit

SEMD

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9 10 11

S
ta

nd
ar

d 
er

ro
r

score variance (Var(X))

Var(X)

SEMRit

SEMD



Practical Assessment, Research & Evaluation, Vol 28 No 10 Page 22 
Metsämuuronen, Why traditional estimators of reliability usually fail 

 
related to the achievement testing usually leads us to 
datasets that are not favoring the traditional estimators 
of reliability. 

 The root reason for the deflation in the estimates 
of reliability is the product–moment correlation 
embedded in the most used estimators of reliability. 
PMC is prone to give deflated estimates for the item–
score association because PMC always gives 
underestimates when the scales of two variables are not 
equal as always is the case with a single item and the 
test score. A reasonable short-cut to reduce the 
negative bias in the estimates of reliability is to change 
the deflation-prone estimator PMC by a better 
behaving estimator. Previous studies have shown that 
certain coefficients of correlation would be reasonable 
alternatives for PMC. Such estimators as polychoric 
correlation coefficient, r-bireg and r-polyreg 
correlation, Somers’ delta, Goodman–Kruskal gamma, 
dimension-corrected D and G, and attenuation-
corrected Rit and eta are, if not totally deflation-free, 
nearly deflation-free estimators by several sources of 
deflation. Using these estimators instead of PMC leads 
us to short-cuts to the deflation-corrected estimators 
of reliability. 

 Empirical examples in this article as well as 
previous studies provide us with convincing facts of 
the behavior of the traditional estimators of reliability 
as well as the alternative estimators, DCERs, within 
achievement testing. Traditional estimators of alpha, 
theta, omega, and rho give always deflated outcomes 
and the deflation may be remarkable, specifically, if the 
scale of in the items is narrow. The empirical datasets 
strongly suggest using DCERs in assessing the general quality of 
assessment tests instead of the traditional estimators, if not 
exclusively, at least as a source of side information of 
whether the possibly low reliability would be caused by 
deflation or not. The estimates by DCERs are credibly, 
and for good reason, higher in magnitude than those 
by the traditional estimators but not overestimates; 
DCERs tend to reflect the population reliability more 
accurately than the traditional estimators.   

 A relevant question raised by an anonymous 
reviewer relates with the score variables. As the 
reliability is related to the variance of the score variable 
and, from the technical viewpoint, the benefit related 
to DCERs is related to the increased magnitude of the 
estimated score variance which is underestimated 
when using the traditional item–score correlation (cl. 

Eqs. 1, 2, and 13 and the related discussion), how this 
relates with the interpretation of the score variable 
itself (see the critical discussion in Chalmers, 2017 
related to unobservable variables)? The question is 
whether the reliability and particularly S.E.m. estimated 
by using DCER better represent the observed (raw) 
score variation expected in practice under the typical 
reliability assumptions—or does the observed score 
inherent the measurement error due to the items 
artificially categorizing the underlying latent variable? 
It seems that both mechanisms are correct. The issue 
is discussed by Metsämuuronen (2022i, 2022j). On the 
one hand, the estimated population variance of the test 
based on the observed dataset 

 
is radically deflated. Numerical examples show that, if 
using the estimates by deflation-corrected estimator of 
correlation such as wi = RPC, G, D, or RAC instead of the 
traditional wi =Rit, the “real” population variance may 
be 1.5–1.7 or even up to 2.6 times higher than what is 
obtained in the dataset (see Metsämuuronen, 2022i). 
This may be explained by another related result that the 
observations in the item-wise dataset which break the 
deterministic Guttman type of pattern (guessing in the 
low part and sleepiness at the high part of the scale) 
cause that the item difficulties are always less extreme 
than in the Guttman pattern (see Metsämuuronen, 
2022k). If we would change the observed dataset (with 
stochastic error) to a form of a Guttman-patterned 
dataset with the same percentage of correct answer, the 
score variance would be remarkably higher than what 
was observed. This phenomenon may be worth 
studying more. On the other hand, from the general 
measurement model and error variance viewpoints (see 
Eq. 12); 
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the inflation in the measurement error related to a 
compilation of the items, i.e., the score variable, gets 
higher the more we have items (Metsämuuronen, 
2022j). This far, the phenomenon is understandable 
and simple. A less simple question is how this 
phenomenon should be utilized in, e.g., interpreting 
S.E.m., rectifying the attenuation, and in the meta-
analytic processes (see, e.g., Sackett & Yang, 2000; 
Schmidt & Hunter, 2015). Studies in this respect may 
be valuable.  
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 Unfortunately, the original dataset used in the 
empirical section did not include extremely difficult 
items and, hence, the behavior of the traditional 
estimators and DCERs remains unstudied by using this 
dataset. However, because of the symmetricity of 
coefficients of correlations in simulations (see 
Metsämuuronen, 2021a, 2022f) we would expect to see 
symmetric behavior also in the difficult extreme of 
item and test difficulty levels. Another question is 
whether the test takers behave differently with easy 
than difficult items. It is possible that guessing 
behavior with extremely difficult items changes the 
behavior of the estimators too. Studies in this regard 
may be beneficial. 

 The paradigm of deflation-corrected estimators of 
reliability is still in its infancy. Although the main lines 
and results are already published, systematical 
simulations are needed to confirm certain specificities 
such as their behavior with very short test, test with 
extreme difficulty levels, and behavior of possible 
alternative bases and weight factors for the estimators. 
Notably, the simulation dataset in Case 3 is based on 
one, real-world dataset; systematic simulations would 
enrich the discussion notably. From the viewpoint of 
further studies, it is largely unknown how the deflation 
is seen in estimators of reliability within the paradigm 
of generalizability theory, IRT-modelling, and 
nonparametric IRT modelling, and confirmatory factor 
analysis; estimators of reliability within these settings 
may include elements of deflation, but we do not know 
what the mechanism for deflation would be. Finally, 
accessible R-codes for the DECRs as well as for the 
new estimators of correlation (D2, G2, RAC, EAC) should 
be developed. However, those can be calculated 
manually the same manner they were calculated for this 
article by using common spreadsheet software, but for 
the applied researchers and basic user of software 
packages, some kind simple statistical package could be 
valuable to develop. 
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Appendix 1. Estimation of the coefficients of correlation used in DCERs 

Rit 

In IBM SPSS, the syntax for Rit is CORRELATIONS /VARIABLES=g X or CROSSTABS /TABLES=item BY 
Score /STATISTICS=CORR. In SAS, the command PROC CORR provides Rit. Correspondingly, in R, Rit is 
calculated by cor(dat$g, dat$X) (see, e.g., https://statsandr.com/blog/correlation-coefficient-and-correlation-test-in-
r/#between-two-variables). For the empirical section, Rit was calculated by using basic spreadsheet software (MS-
EXCEL). 
 

D   

In IBM SPSS, the syntax for D is CROSSTABS /TABLES=item BY Score /STATISTICS=D. The option “Score 
dependent” is selected. In SAS, the command PROC FREQ provides D by specifying the TEST statement by 
DELTA, SMDCR options.  Correspondingly, in RStudio, D is calculated by SomersDelta(x, y = NULL, direction = 
c("row", "column"), conf.level = NA, ...) (see https://rdrr.io/cran/DescTools/man/). For the empirical section, D 
was calculated by using IBM SPSS software. 

 

G  

In traditional software packages such as IBM SPSS, for instance, the syntax for G is CROSSTABS /TABLES=item 
BY Score /STATISTICS=GAMMA. In SAS, the command PROC FREQ provides G by specifying the TEST 
statement by GAMMA, SMDCR options.  Correspondingly, in RStudio G is calculated by GoodmanKruskalGamma(x, 
y = NULL, conf.level = NA, ...) (see https://rdrr.io/cran/DescTools/man/). For the empirical section, G was 
calculated by using IBM SPSS software. 

Attenuation-corrected PMC (RAC) 

RAC is the proportion of the observed item–score correlation (
Obs

gX ) of maximal correlation (
Max

gX ) possible to 

obtain with the observed g and X: 
Obs

gX gX

AC Max Max

gX gX

 


 
= = . The maximum values of Rit in the given dataset are obtained 

when the correlation is calculated between variables g and X after they are ordered independently. In the traditional 
software packages such as IBM SPSS, for instance, the syntax for Rit is CROSSTABS /TABLES=item BY Score 
/STATISTICS=CORR. In SAS, the command PROC CORR provides Rit. In R, Rit is calculated by cor(dat$g, dat$X) 
(see, e.g., https://statsandr.com/blog/correlation-coefficient-and-correlation-test-in-r/#between-two-variables).  In 
R, the variables (vectors) can be sorted by a command sort (x) #. For the empirical section, both the maximal and 
observed Rit were calculated manually by using a spreadsheet software (MS-EXCEL).  

Principal component and factor loadings 

In IBM SPSS, the principal component loadings are calculated by the command FACTOR   /VARIABLES g1 g2 
g3 g4 g5  /MISSING LISTWISE /ANALYSIS g1 g2 g3 g4 g5  /PRINT INITIAL EXTRACTION /CRITERIA 
FACTORS(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /METHOD=CORRELATION. 
Parallel, the factor loading with maximum likelihood estimation is calculated by the command FACTOR   

https://rdrr.io/cran/DescTools/man/SomersDelta.html
https://rdrr.io/cran/DescTools/man/
https://rdrr.io/cran/DescTools/man/GoodmanKruskalGamma.html
https://rdrr.io/cran/DescTools/man/
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/VARIABLES g1 g2 g3 g4 g5  /MISSING LISTWISE /ANALYSIS g1 g2 g3 g4 g5  /PRINT INITIAL 
EXTRACTION /CRITERIA FACTORS(1) ITERATE(25) /EXTRACTION ML /ROTATION NOROTATE. 
The table “factor matrix” is selected. 
The procedures for principal component and factor analyses with SAS can be found at 
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/statug_factor_examples01.htm   

In R, the princomp( ) function produces an unrotated principal component analysis. 
https://www.statmethods.net/advstats/factor.html gives a syntax as follows: 

# Pricipal Components Analysis 

# entering raw data and extracting PCs  

# from the correlation matrix  

fit <- princomp(mydata, cor=TRUE) 

summary(fit) # print variance accounted for  

loadings(fit) # pc loadings  

plot(fit,type="lines") # scree plot  

fit$scores # the principal components 

biplot(fit)  

Parallel, syntax for the factor analysis is 

# Maximum Likelihood Factor Analysis 

# entering raw data and extracting 3 factors,  

# with varimax rotation  

fit <- factanal(mydata, 3, rotation="varimax") 

print(fit, digits=2, cutoff=.3, sort=TRUE) 

# plot factor 1 by factor 2  

load <- fit$loadings[,1:2]  

plot(load,type="n") # set up plot  

text(load,labels=names(mydata),cex=.7) # add variable names  

 
 

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/statug_factor_examples01.htm
https://www.statmethods.net/advstats/factor.html
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