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Researchers often have hypotheses concerning the state of affairs in the population from which they 
sampled their data to compare group means. The classical frequentist approach provides one way of 
carrying out hypothesis testing using ANOVA to state the null hypothesis that there is no difference in 
the means and proceed with multiple comparisons if the null hypothesis is rejected. As this approach is 
not able to incorporate order, inequality, and direction into hypothesis testing, and neither does it able to 
specify multiple hypotheses, this paper introduces the informative hypothesis that allows more flexibility 
in stating hypothesis testing and is directly targeted to address and state the researcher’s study concern. 
The two new hypothesis terms under the informative hypothesis framework, the unconstrained and 
complementary hypotheses are introduced, and the approaches to state the level of evidence using the 
Bayes factor and Generalization AIC are elaborated. As this hypothesis conception is relatively new and 
the literature was mostly technical, the main aims of the paper are to introduce this conception, offer a 
general guideline, and provide an easy-to-read approach to the procedure with practical examples of 
carrying out this hypothesis approach and contrast it to the frequentist, using the R package. 
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Introduction 
 Hypothesis testing is a crucial procedure in modern 
research that applies in almost all fields and disciplines, 
particularly when the research concern is to test the 
likelihood that there are differences between groups 
regarding their equality, inequality, and order of group 
means to address the researcher’s study research 
concern for answering the research questions. Analysis 
of Variance (ANOVA), under the traditional null 
hypothesis significance testing (NHST), was frequently 
used as it is readily available in almost all common 
statistical software and often recommended for 
carrying out hypothesis testing. This approach defines 
a general way of carrying out hypothesis testing by 
specifying the null hypothesis as the equality of all the 
group means and the alternative hypothesis is not that 
specified by the null hypothesis (Maxwell and Delaney, 
2004). However, criticism of the NHST approach 
became more frequent and common as it has many 

limitations that when researchers become more aware 
of them, they are more likely to turn away from using 
it as this approach does not directly address their 
research concern. The informative hypothesis, the 
Bayesian approach for hypothesis testing, becomes an 
option a researcher will resort to addressing their 
research concern as it provides greater benefits and 
flexibility that is closer to addressing their research 
interests and objectives.  

 Despite the development of the informative 
hypothesis for more than three decades, the 
presentation detail of this subject is mainly restricted to 
stating the technical and statistical representation while 
the focus using software to carry out the testing and 
showing the practical concern to demonstrate the 
application systematically is lacking. The motivation of 
the current paper is to represent this valuable 
hypothesis testing approach using the R package, step 
by step to show users how to carry out this hypothesis 
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testing. Starting by emphasizing the limitations of the 
NHST approach, the informative hypothesis is 
introduced to state its basic concepts, purposes, 
benefits, and functionalities and contrast it to the 
frequency approach to show its superiority. The 
technical and statistical functionalities are explained 
but their formula specifications are kept to a minimum. 
Another focus of the paper is to give examples to state 
the usefulness of using the informative hypothesis and 
link to the specific purpose the researcher has in mind, 
showing the practical applications, and interpreting the 
results produced by the R packages, shown in a simple 
friendly style. Three R packages are used and their R 
syntax is accompanied to illustrate the hands-on 
relevancy that is also summarized in the appendices for 
reference.  

Limitations and Restrictions of NHST 

 There is no doubt about the practicality of the 
inferential ANOVA model under the NHST 
framework to carry out group means comparison as 
the applications were abundant. While numerous 
research and data analysts almost always employed this 
standard framework of frequentist statistics that 
features the p-value, it has been criticized as there are 
many limitations and not in line with the research 
interests a researcher intends to address. This 
dominant way of statistical testing does not form a 
clear logical procedure for a researcher to understand 
and follow but usually, due to the past established 
practice, dimly followed it without detailed 
understanding. The file-drawer effect (Rosenthal, 
1979; Royal, 1997) is one consequence of following 
this well-established procedure of the frequentist 
approach that resulted in findings that found nothing 
of statistical significance were not reported and absent 
from the publication world. This publication bias due 
to the absence of null findings was well noted in the 
literature (Moerbeek, 2019; Simmons, Nelson, & 
Simonsohn, 2011). 

 The limitations of the NHST go beyond its 
practical consequences boundary but its theoretical 
bases for carrying out hypothesis testing were also 
heavily criticized. First, it is hard to assume a 
population that is accurately described by the null 
hypothesis that “nothing is going on” (Altinisik, Van 
Lissa, Hoijtink, et al, 2021).  In the context of the 
testing of group means, stating all the means are of 
equality for the null hypothesis is an unrealistic 

specification as there might be no population that can 
be in agreement with a sample size setting that there 
are no differences in their means (Royal, 1997). More 
often, the researcher is more interested to test whether 
there is a difference among the means. Simply stating a 
null hypothesis of no difference is completely not a 
sensible starting idea for a research study. Second, the 
NHST formulation is often far away from the intended 
theory that a researcher would like to form the 
hypothesis that a population with group means are 
exactly equal to form a plausible hypothesis (Sober, 
2002). Third, it is hard to imagine a researcher prefers 
to wait for a rejection of a null hypothesis before 
proceeding to a second step finding out which group 
means differ from the rest. This indirect standard 
specification and procedure of the traditional ANOVA 
null hypothesis do not provide researchers with an 
evaluation in mind that align with their expectations 
(Van de Schoot, Mulder, Hoijtink, et al, 2011). Fourth, 
the NHST using the p-value cannot quantify the 
evidence in the data in favor of the hypothesis under 
investigation (Wagenmakers, 2007) since the p-value 
does not measure the probability that the studied 
hypothesis is true or not (Greenland, Senn, Rothman, 
et al, 2016; Wasserstein and Lazar, 2016; Wei, Yang, 
Rocha, et al, 2022). In short, there is no way to decide 
on accepting the null hypothesis. Fifth, a multiple 
hypotheses specification that formulates as specifically 
as possible according to the theory the researcher 
intends to test is not within the frame of NHST. Sixth, 
the value of the p-value that concludes with non-
significant findings is difficult to interpret. The non-
quantifying level of evidence is absent from the NHST. 
In summary, the NHST approach in hypothesis testing 
is non-informative to meet the research aim of carrying 
out hypothesis testing. A researcher would normally 
prefer to formulate one that can directly express a 
hypothesis that is according to theory expectation. 
When the absence of an effect is an important piece of 
information, moving away from the NHST to use the 
informative hypothesis becomes a preferred option. 

ANOVA: The Traditional Null hypothesis 
Significance Testing (NHST) Approach 

 Under the NHST framework, ANOVA is 
commonly used for carrying out the comparison of 
group means by specifying the null hypothesis and 
alternative hypothesis. The following states the 
comparison for four groups of means. 
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𝐻0: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 

𝐻1:  not 𝐻0, 

That is, 𝜇𝑖 ≠ 𝜇𝑗 for at least one pair of i, j 

 The null hypothesis qualifies the equality of the 
four group means, and the alternative hypothesis states 
that at least one of the group means is different from 
the others. The procedure to conclude the testing is to 
compare the p-value to a pre-specified significance 
level, usually, set at .05. If the p-value is less than 5%, 
the null hypothesis is rejected and concludes that they 
are at least one group's mean different from the other. 
The use of a pre-specified significance level became the 
main criticism of the NHST approach as it may not be 
a sensible formulation (Cohen, 1994; Harlow, Mulaik, 
& Steiger, 2016; Royal, 1997). Upon the rejection of 
the null hypothesis, multiple comparisons normally 
follow to determine which of the mean scores differ 
from each other. In this way, the results of ANOVA 
do not provide the evidence to conclude the 
acceptance of the null hypothesis. Neither does it 
provide the level and magnitude of evidence regarding 
the difference in means when the null hypothesis is 
rejected. 

 Why use Informative Hypotheses? For the last 30 years, 
the literature on informative hypothesis were on the 
rise (e.g. Altinisik, Van Lissa, Gu,  Hoitink, et al, 2021; 
Boehm, Steingroever & Wagenmakers, 2018; Hoijtink, 
1998, 2000, 2001, 2012, 2013; Hoijtink, Klugkist, & 
Boelen, 2008; Hoijtink, Muder, Van Lissa, & Gu, 2008; 
Klugkist & Hoijtink, 2007; Klugkist, Laudy, & 
Hoijtink, 2005; Kuiper, Klugkist, & Hoijtink, 2010; 
Kuiper, Hoijtink & Silvapulle, 2012; Laudy & Hoijtink, 
2007; Laudy, Boom, & Hoijtink, 2005; Mulder, 
Hoijtink, & Klugkist, 2010; Mulder, William, Gu, et al, 
2021; Klugkist, Laudy & Hoijtink, 2005; Klugkist, 
Laudy, & Hoijtink, 2010; Rouder, Speckman, Sun, et 
al, 2009; Van de Schoot, 2010; Vanbrabant, 2020; 
Vanbrabant, Van de Schoot, & Rosseel, 2015; 
Vanbrabant, Van Rossum, Van de Schoot, & Hoijtink, 
2013; Wei, Yanf, Rocha, et al, 2022). This increasing 
trend is not without a valid reason. There are at least 
three major benefits that researchers turned to 
informative hypothesis testing. 

 First, many researchers have specific expectations 
about the outcomes of their research, which often can 
formulate their hypothesis unambiguously. Compare 
to the NHST, the informative hypotheses can much 

more easily relate the researcher’s expectation to a set 
of hypotheses using inequality, and order/direction 
specification, to state the hypotheses directly and 
specifically. The informative hypothesis turns out as 
the most appropriate way that allows for specifying the 
formal structure of the hypotheses to be in line with 
the research objectives. The testing hypothesis 
becomes direct under the informative hypothesis 
rather than the indirect specification in NHST. For 
instance, a study that intends to test whether the mean 
of the control group is three-time in the magnitude of 
effect size than that of the experiment group can be 
easily carried out by specifying an ordered informative 
hypothesis that could not be carried out under NHST. 

 Second, the greatest advantage of using the 
informative hypothesis is perhaps that multiple 
hypothesis testing is always possible. Specifying a series 
of hypotheses is a key feature of the informative 
hypothesis that allows a researcher not only to state a 
list of hypotheses but also to quantify their relative 
level of evidence to identify the best hypothesis to 
address the research questions and also regarding the 
ranking and level of importance from a set of 
hypotheses. For instance, Heck, Boehm, Böing-
Messing, et al (2022) illustrated the Lucas (2003) study 
that studied the effect of the institutionalization of 
female leadership on perceived leadership using 
multiple informative hypotheses to compare five group 
means with three hypotheses and an unconstrained 
hypothesis. The following three hypotheses show an 
example of specifying a set of three hypotheses with 
the first hypothesis specifying the equality of four years 
of means, the second with increasing order, and the 
third reversing the means of the second hypothesis for 
the year 2018 and the year 2019 which the former is 
higher than the latter. 

𝐻1: 𝜇2017 = 𝜇2018 = 𝜇2019 = 𝜇2020 

𝐻2: 𝜇2017 < 𝜇2018 < 𝜇2019 < 𝜇2020 

𝐻3: 𝜇2017 < 𝜇2019 < 𝜇2018 < 𝜇2020 

 The third benefit of employing the informative 
hypothesis is not restricted to the specification of 
hypothesis testing, it also relates to research design. For 
instance, Monin, Sawyer, & Marquez (2008) 
experimented by comparing 27 groups with four 29 
conditions using the informative hypothesis. 
Moerbeek (2019) used an order hypothesis of a school-
based smoking prevention intervention with four 
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treatment groups. The informative hypothesis not only 
helps a researcher to specify the hypothesis specifically, 
but it also aids to plan their research design that aims 
to reduce the cost of research. The advantage is that 
given the same sample size, the power of the 
informative hypothesis is higher. Power can be gained 
and inherently a smaller sample size is expected using 
the informative hypothesis (Vanbrabant, Van de 
Schoot & Roseel., 2015). The gain in power and smaller 
sample size requirement are not limited to mean 
comparison, they are also applicable to other models 
such as the structural equation model (Van de Schoot 
& Strohmeier, 2011). 

Informative Hypothesis 

 What is an Informational Hypothesis? The informative 
hypothesis is also known as the inequality-constrained 
hypothesis. It contains constraints to specify 
hypothesis testing about the ordering of means, 
regression coefficients, and statistical parameters. 
Hoijtink et al (2019) further emphasized the inclusion 
of effect sizes and range constraints in the choice of 
constraints of the informative hypothesis. The type of 
constraints to formulate an information hypothesis 
include Larger Than ‘‘>’’, Smaller Than ‘‘<’’, Equal To 
‘‘=’’,  And “&”, Minus “-”, and, Plus “+” that place 
between the specified parameters (Hoijtink, Mulder & 
Van Lissa, et al. 2019; Van de Schoot,  2010). Hoijtink, 
Mulder & Van Lissa, et al (2019) define the space of 
the informative hypotheses by stating the specification 
of the expected relations between parameters (e.g. 
means) classified under four building blocks. The first 
building block emphasizes the use of equality and order 
constraints between parameters. The second block is 
the specification of equality and order constraints 
between combinations of parameters. The third block 
specifies the use of effect size, and the fourth block 
highlights the range constraint. The basic three forms 
for the first building block for the comparison of two 

means are 𝜇1 > 𝜇2, 𝜇1 < 𝜇2, and 𝜇1 = 𝜇2. The 

second building block examples such as 𝜇1 − 𝜇2 >
𝜇3 − 𝜇4, 𝜇1 + 𝜇2 > 𝜇3 + 𝜇4, and (𝜇1 − 𝜇2 > 𝜇3 −
𝜇4) & (𝜇1 + 𝜇2 > 𝜇3 + 𝜇4) show three illustrations 
of combinations of parameters of four means. An 

example of the third block,  𝜇1 > 𝜇2 + 0.5𝜎̂, shows 
the inclusion of effect size to state an informative 

hypothesis. The hypothesis |𝜇1 > 𝜇2| < 0.5𝜎̂ is a 
range constraint example, classified under the fourth 
block. 

 Informative, Complement, and Unconstrained Hypothesis. 
While the traditional NHST specifies no effect for the 
null hypothesis and the alternative hypothesis is that of 
not including in the null hypothesis, the informative 
hypothesis introduces two new hypothesis terms that 
are not adopted in the frequentist approach. An 
informative hypothesis states the (in)equality 
constraints of model parameters as described in the 
previous section by specifying a hypothesis or a set of 

hypotheses 𝐻i. These hypotheses are compared to 
either an unconstrained hypothesis or a complement 
hypothesis. For instance, with four group means 
specifying the inequality constraints of stating 

𝐻1: 𝜇1 < 𝜇2 < 𝜇3 < 𝜇4 and 𝐻2: 𝜇1 < 𝜇3 < 𝜇2 < 𝜇4 
of two informative hypotheses that provide two 
ordering of mean scores, are compared to either an 
unconstrained hypothesis or a complementary 
hypothesis. 

 The unconstrained hypothesis also referred to as 
encompassing hypothesis, places no constraints on the 
model that represents an alternative hypothesis that 
covers every ordering of parameter values that is not in 
line with the original hypothesis. In the context of 
group means comparison, an unconstrained 
hypothesis does not impose constraints on the means 
(Hoijtink, 2012). The unconstrained hypothesis of four 

group means is stated as 𝐻u:  𝜇1, 𝜇2, 𝜇3, 𝜇4. The 
commas in between the means notate there is no 
specific order of the means. 

 The complement hypothesis is the complement 
specification to the specified set of informative 
hypotheses. It is an alternative hypothesis that covers 
every ordering of parameter values that is not in line 
with the original set of hypotheses (Böing-Messing, 
Van Assen, Hofman, et al, 2017). The complementary 

hypothesis is indicated by the symbol 𝐻c.  In the 
context of the research theory, given the above 

informative hypothesis 𝐻1 and 𝐻2 of four group means 
that express the belief of the researcher’s theory on the 
order of the means, the complementary 

𝐻c: ! (𝐻1 𝑜𝑟 𝐻2 ) states the complementary. That is, 

𝐻c is the hypothesis that is not in line with the 
researcher’s expectation theory (Moerbeek, 2019; Van 
Lissa, Gu, Mulder, et al, 2021). For a set of three 

hypotheses, the 𝐻c thus becomes 

𝐻c: ! (𝐻1 𝑜𝑟 𝐻2 𝑜𝑟 𝐻3). For hypotheses with at least 
one equality constraint, the unconstrained hypothesis 
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and the complement are the same (Van Lissa, Gu, 
Mulder, et al 2021).  

 Bayes Factor, Complexity, and Fit. The Bayes factor 
(BF) is one of the oldest and most widely used 
indicators for carrying out testing a hypothesis under 
the Bayesian framework. It compares the predictive 
ability of two competing models corresponding to the 
hypotheses and indicates the degree of evidence in a 
data set between the null hypothesis and the alternative 
hypothesis  (Jeffreys, 1935). There is increasing 
attention on the Bayes factor for the evaluation of 
constrained hypotheses (e.g. Gu, Hoijtink, Mulder, et 
al, 2019; Gu, Hoijtink, Mulder, et al, 2020; Hoijtink, 
2012; Hoijtink, Klugkist, & Boelen, 2008; Hoijtink, 
Mulder, Van Lissa & Gu, 2019; Kato & Hoijtink, 2006, 
Klugkist & Hoijtink, 2007; Klugkist, Laudy & Hoijtink, 
2005, Klugkist, Laudy, & Hoijtink, 2010, Laudy & 
Hoijtink, 2007; Mulder, Mulder, Hoijtink & Klugkist, 
2010; Klugkist, Van de Schoot, Mulder, Hoijtink, et al, 
2011; Wei, Yang, Rocha, et al, 2022). In the context of 
the informative hypothesis, the Bayes factor is a 
quantification of the level and degree of evidence in the 
collected data in favor of an informative hypothesis. 

The Bayes factor, 𝐵𝐹iu, of an inequality-constrained 

hypothesis 𝐻i against an unconstrained hypothesis 𝐻u 
can be represented as the ratio of the posterior, the fit, 
and prior probabilities, the complexity respectively that 
the inequality constraints hold (Gu, Mulder & Hoijtink, 
2018; Hoijtink, 2012; Mulder, Hoijtink, & Klugkist, 
2010). BF can also be written as a ratio of two marginal 
likelihood values of the hypotheses given the data 
(Klugkist & Hoijtink, 2007), as shown in Equation (1) 
below. 

𝐵𝐹iu =
fi

ci
=

Fit 𝐻i

Complexity  𝐻i
=

𝑚(𝐻i|𝑑𝑎𝑡𝑎)

𝑚(𝐻u|𝑑𝑎𝑡𝑎)
             (1) 

where 𝑐𝑖 represents complexity, the proportion of the 
prior distribution that is supported by or in agreement 

with the hypothesis 𝐻𝑖, and 𝑓𝑖 , fit, is the proportion of 
the posterior distribution that is supported by or in 

agreement with the hypothesis 𝐻𝑖. The fit reflects the 
extent to which the data is in agreement with the 
restrictions specified in the hypothesis whereas the 
complexity reflects how specific the hypothesis is (Gu, 
Mulder & Hoijtink, 2018). Fit has a value between 0 
and 1, the larger the value, indicating the better fit. 
Complexity also has a value between 0 and 1 where 
smaller values denote lesser complexity, that is, more 
parsimonious is the hypothesis. The Bayes factor can 

be interpreted as the amount of evidence from the data 

in favor of the hypothesis 𝐻i against hypothesis 𝐻u. In 

general, the value of 𝐵𝐹𝑖𝑢 equals to one indicating 

there is no preference for either 𝐻𝑖 or 𝐻𝑢. If the value 

of 𝐵𝐹𝑖𝑢 is larger than 1, 𝐻𝑖 is preferred. On the 

contrary, for 𝐵𝐹𝑖𝑢 is between 0 and 1, 𝐻𝑢 is preferred. 
There is a direct interpretation of the value of BF. For 

instance, 𝐵𝐹iu = 10 indicates that after observing the 

data, the support for 𝐻i is 10 times stronger than the 

support for 𝐻u. To determine the strength of evidence, 
Kass and Raftery (1995), Jeffreys (1961), Goodman 
(1999), Held & Oft (2016), and Lee & Wagenmakers 
(2013) proposed the intervals of the values of BF to 
describe the level of evidence of support, with a 
descriptive classification scheme. These five 
descriptive classification schemes are given in 
Appendix D which gives slightly different descriptions 
and intervals of BFs but are similar in their 
interpretation and the ranges of intervals. Held and Ott 
(2016) described and classified the strength of evidence 
into six categories “weak”, “moderate”, “substantial”, 
“strong”, “very strong”, and “decisive”. While the 
description and the value to indicate the level of 
evidence differ for the five references, in general, a 
value of BF less than 3 has very little evidence, above 
3 indicates moderate evidence, greater than 10 
designates strong evidence, and more than 100 
specifies very strong evidence.  

 

Level of Evidence for Multiple 
Hypotheses 

 Evaluation of a single informative hypothesis is 
relatively straightforward in that the main aim is to 
determine whether the results of the hypothesis testing 
favor the informative hypothesis or the alternative 
which can be either an unconstrained or a 
complementary hypothesis. The multiple hypotheses 

with more than one 𝐻𝑖, the purpose of determining the 
level of evidence for the set of informative hypotheses 
becomes to find out the best hypothesis from the set 
or to discover which are the better hypotheses 
compared to the rest. There are at least two approaches 
to establish the level of evidence, namely the posterior 
model probabilities (PMP) and the generalized order-
restricted information criterion approximation 
(GORICA) weight. The former uses the Bayes factor 
and the latter is based on the order-restricted Akaike 
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information criterion. The functionalities and 
conceptions of these two approaches are briefly 
described in the following subsections.  

Posterior Model Probabilities 

 Posterior model probabilities (PMPs) allow for 
easier interpretation of the results to rank the level of 
support in logical probability terms when there are two 
or more informative hypotheses. (Klugkist, Laud, & 
Hoijtink, 2010). They give the magnitude of evidence 
in the data for a set of hypotheses, for each hypothesis 
on a scale that runs from 0 to 1, and the sum of all the 
hypotheses equals one. These specifications provide 
the interpretation of ranking straightforwardly. 

Equation (2) states the PMPs for all the 𝐻𝑖 and 

Equation (3) includes the 𝐻𝑢 into the formulation 
(Hoijtink, Gu, Mulder & Rossel, 2018; Klugkist, Laudy 
& Hoijtink, 2010).   

𝑃𝑀𝑃𝑖 =
𝐵𝐹𝑖𝑢

∑ 𝐵𝐹𝑖𝑢𝑖
  𝑓𝑜𝑟 𝑖 = 1, … , 𝐼𝑁,  𝐵𝐹𝑖𝑢 =

𝑐𝑖

𝑓𝑖
   (2) 

𝑃𝑀𝑃𝑖 =
𝐵𝐹𝑖𝑢

1+∑ 𝐵𝐹𝑖𝑢𝑖
   and 𝑃𝑀𝑃𝐻𝑢

=
1

1+∑ 𝐵𝐹𝑖𝑢𝑖
        (3) 

0 ≤ 𝑃𝑀𝑃𝑖 ≤ 1 

where PMP stands for posterior model probability, 𝐼𝑁 
denotes the number of competing hypotheses, BF 

denotes the Bayes factor, 𝑐𝑖 represents complexity, and 

𝑓𝑖 represents fit. As BF is the ratio of complexity and 
fit, it takes into account both the fit and the parsimony 
of the hypothesis. As such, the PMPs also consider the 
balancing of these two factors. The calculation of the 

PMPs is simple. Given three hypotheses 𝐻1, 𝐻2, and 

𝐻u with BF values of 1.5, 2.5,  and 4.5  respectively, 𝐻2 

is a better hypothesis than 𝐻1 as the value of 𝐻2 is 

greater than 𝐻1 but both 𝐻1 and 𝐻2 are weak 
hypotheses as it is outperformed by the unconstrained 

hypothesis 𝐻u, showing both the constraints 𝐻1 and 

𝐻2 are not supported by the data. The PMPs are thus 
0.18 (1.5/[1.5+2.5+4.5]), 0.29 (2.5/[1.5+2.5+4.5]), 

and 0.53 (4.5/[1.5+2.5+4.5]) respectively for 𝐻1, 𝐻2, 

and 𝐻u. 

 

Generalized Order-Restricted Information 
Criterion Approximation Weight 

 The PMP is not the only indicator to quantify the 
level of evidence for two or more informative 
hypotheses. While the PMP is simply the sum of the 

BFs to show the level of evidence that is based on the 
values of BF, the generalized order-restricted 
information criterion approximation (GORICA) using 
GORICA weight, is an alternative way of examining 
the level of evidence using the information criteria 
method. The development of GORICA could be 
traced back to the AIC when Akaike (1973) first 
introduced it to select the best of a set of models. 
Unfortunately, it cannot be used for evaluating 
inequality constraints hypotheses. Anraku (1999) 
proposed a modification of the AIC, the order-
restricted information criterion (ORIC) that 
incorporated inequality constraints but was restricted 
to simple order restrictions. Kuiper, Hoijtink, & 
Silvapulle (2011) further generalized it and proposed 
the GORIC which is a generalization of the ORIC that 
can be applied to univariate and multivariate normal 
linear models. Altinisik, Van Lissa. Hoijtink, et al 
(2021) further extended it to include generalized linear 
models (GLMs; McCullagh & Nelder, 1989), 
generalized linear mixed models (GLMMs; McCullogh 
& Searle, 2001) and structural equation models (SEMs; 
Bollen, 1989) named it as the generalized order-
restricted information criterion approximation 
(GORICA) which is asymptotically the same as 
GORIC. Similar to the conception of PMP which 
consists of two countering components of the fit and 
complexity, the expression of GORICA also breaks 
down into two parts of the corresponding fit and 
penalty (Altinisik et al, 2021) as stated in Equation (4). 
The level of evidence, the GORICA weight, is stated 
in Equation (5) below. 

𝐺𝑂𝑅𝐼𝐶𝐴𝑚 = −2𝐿(𝜃̃𝑚|𝜃, Σ̂𝜃̂) + 2𝑃𝑇𝑚(𝜃)           (4) 

𝐺𝑂𝑅𝐼𝐶𝐴 𝑊𝑒𝑖𝑔ℎ𝑡𝑚 =
𝑒𝑥𝑝(−1

2
𝐺𝑂𝑅𝐼𝐶𝐴𝑚)

∑ 𝑒𝑥𝑝(−1
2

𝐺𝑂𝑅𝐼𝐶𝐴𝑚,)𝑀
𝑚′=1

        (5) 

where 𝐿(𝜃̃𝑚|𝜃, Σ̂𝜃̂) is the likelihood in which 𝜃 and 

Σ̂𝜃̂ denote the maximum likelihood estimates of the 

structural parameters and their covariance matrix, 

respectively, and 𝑃𝑇𝑚(𝜃) is the penalty term. The 
hypothesis with the lowest GORIC value is preferred 
with the range of the GORICA weight varying from 0 
to 1 and the sum is equal to one. The GORIC values 
themselves are not directly interpretable and only the 
differences between the values can be examined. The 
GORICA weight represents the relative likelihood of 
hypothesis m given the data for the set of M 

hypotheses. For instance, when comparing 𝐻1 against 

hypothesis 𝐻u, the ratio of the two corresponding 
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weights, 𝐺𝑂𝑅𝐼𝐶𝐴 𝑊𝑒𝑖𝑔ℎ𝑡1/𝐺𝑂𝑅𝐼𝐶𝐴 𝑊𝑒𝑖𝑔ℎ𝑡𝑢, the 
evidence ratio, represents the strength of evidence in 

favor of 𝐻1 of being the best hypothesis. For instance, 

given three hypotheses 𝐻1, 𝐻2, and 𝐻u with GORICA 

weights of 0.30, 0.06, and 0.64 respectively, 𝐻1 is a 

better hypothesis than 𝐻2 as 𝐻1 is five times more 

support than 𝐻2 (0.30/0.06=3), but 𝐻1 is a weak 
hypothesis as it is outperformed by the unconstrained 

hypothesis 𝐻u with a higher weight of 0.64. That is, 

both the constraints 𝐻1 and 𝐻2 are not supported by 
the data. The next section uses an example to illustrate  

 

Examples Illustration 

 For illustration, a dataset that consists of ten years 
of the initial basic salary of 40,688 graduates that runs 
from the year 2011 to the year 2020 was extracted from 
the data warehouse Data Lake, the National University 
of Singapore, Institute for Applied Learning Sciences 
& Educational Technology, to find out whether the 
mean salary increases over time, to examine the 
equality and order effect, to scrutinize the effect size of 
the salary of selected years, and to carry out multiple 
hypotheses.  

NHST Approach 

 The NHST approach to examining group means is 
a straightforward standard procedure that starts with 
ANOVA. The null and alternative hypotheses for 
ANOVA to examine the 10 years of group means 
comparison is stated below. 

𝐻0: 𝜇2011 = 𝜇2012 = 𝜇2013 = 𝜇2014 = 𝜇2015

= 𝜇2016 = 𝜇2017 = 𝜇2018 = 𝜇2019

= 𝜇2020 

𝐻1:  not 𝐻0,  that is, μ𝑖 ≠ 𝜇𝑗 for at least one pair of i, j 

where 𝜇2011 to 𝜇2020 are the ten years of population 
means salary from the year 2011 to the year 2020. 
There are at least two ways to carry out ANOVA using 
package R. The R function aov() from the R base 

produces the traditional ANOVA output and the  

function lm() specifies the use of the linear model to 
produce the regression output of the group mean 
estimates in regression model format. The R syntax to 
generate the two ANOVAs is stated below. 

AOV <- aov(BSalary~Year-1,data=G) 

summary(AOV) 

LM <- lm(BSalary~Year-1,G) 

summary(LM) 

 Table 1 below prints the results of ANOVA. The 
degree of freedom is 9 as there are ten years of means 
specified in the factor year. The large F value is 
accompanied by a small p-value. Since the p-value is 
less than .05, the null hypothesis of equality of means 
is rejected and concludes there is at least one pair of 
salaries between year i and year j. 

 While the ANOVA results indicate the null 
hypothesis of equality of group salary means is 
rejected, it does not provide the answer of which are 
the years the inequality of salary occurred. The most 
common procedure under the NHST approach to deal 
with the rejection of the null hypothesis of group 
means is to follow up with multiple comparisons by 
comparing all possible pairs of two means to examine 
where the differences lie. In general, for k number of 
means, there are k(k-1)/2 pairwise comparisons. In the 
situation of comparing three means, there are three 
pairwise comparisons [ (3*2)/2 ]: group 1 versus group 
2, group 2 versus group 3, and group 1 versus group 3. 
Since the current example intends to compare ten 
group means, it gives a total of 45 mean comparisons 
for the 10 means [ (10*9)/2 ]. The greatest 
disadvantage of this approach is that there might be 
many groups to compare. More seriously, the error rate 
increases when all 45 hypothesis tests are performed.  
Consequently, the multiple comparison test (MCT) is 
introduced to control the error rate to set it at an 
appropriate level. The concept of family-wise error 
arises to control for type I error as the α inflation can 
occur when the same significant level is applied for the 
statistical analysis. Another issue the researcher has 

 

Table 1. ANOVA Output 

 DF Sum of Square Mean Square F Value P(>F) 

Year 9 2026160492 225128944 224.5 0.0000 

Residuals 40678 40796235152 1002882   
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to face is selecting the many methods for performing 
MCTs that have been developed. Midway, Robertson, 
Flinn, et al, (2020) noted the results of using these 
various multiple comparisons could range from 
generating very similar to very different results. 
Simulation results from Midway, Robertson,  Flinn, et 
al (2020) suggested Scheffé's test (Maxwell & Delaney, 
2004), Tukey's HSD (Tukey, 1949), Bonferroni (Bland 
and Altman, 1995), and Dunn- Šidák tests (Šidák, 1967) 
for pairwise comparisons of groups.  

 The following shows the syntax of generating 
Tukey’s test (Tukey, 1949; Yandell, 1997) to compare 
all possible pairs of means, based on studentized range 
distribution, using package multcomp, function glht 
(Hothorn, Bretz, and Westfall, 2008). The plot 
function followed generates the 95% family-wise 
confidence level plot. 

library(multcomp) 

summary(glht(AOV, 

mcp(Year="Tukey"))) 

plot(TukeyHSD(AOV)) 

 The graphical output of the 95% family-wise 
confidence level plot shows there are four pairs of 
means crossed over the zero vertical line showing that 
they are statistically not significant, as indicated by the 
four dotted circles. 

 Another way of producing the results of multiple 
comparisons is to print the summary statistics for the 
differences in means into a table form using letter 
symbols to indicate if there is a change in the letters to 
show that there are significant differences between the 
factor levels. The package PMCMRplus, function 
summaryGroup (Pohlert, 2021) produces the intended 
output as shown by the R syntax below. 

library(PMCMRplus) 

summaryGroup(tukeyTest(ANOVA1)) 

summaryGroup(duncanTest(ANOVA1)) 

summaryGroup(scheffeTest(ANOVA1)) 

 Table 2 summarizes the results of Tukey’s test, 
Duncan’s test (Duncan, 1955), and Scheffe’s test 
(Scheffe, 1953) produced by the R function 
summaryGroup. The Duncan’s test shows that the year 
2011 crosses over to 2012 (A to B), the year 2013 
crosses over to 2014 (B to C), the year 2015 crosses 
over to 2016 (C to D), the year 2016 crosses over to 
2017 (D to E), the year 2017 crosses over to 2018 (E 
to F), the year 2018 crosses over to 2019 (F to G), and 
the year 2019 crosses over to 2020 (G to H) are 
statistically different while the rest are not. The 
interpretation for the other three tests follows the same 
explanation. 

 

Figure 1. 95% Family-wise Confidence Level (Tukey Honest Significant Differences) 

 



Practical Assessment, Research & Evaluation, Vol 28 No 1 Page 9 
Tan, Informative Hypothesis for Group Means Comparison 

 
Table 2. Tukey’s, Duncan’s, Scheffe’s, and Bonferroni’s Multiple Comparison Test 

Year Tukey’s Test Duncan’s Test Scheffe’s Test Bonferroni’s Test 

2011 A A A A 

2012 B B B A 

2013 BC B B B 

2014 D C C C 

2015 CD C BC C 

2016 E D D D 

2017 D E DE DE 

2018 F F E EF 

2019 H G F F 

2020 H H F G 

 

 In summary, the NHST approach of stating the 
null hypothesis that all group means are equal is 
generally not in line with the researcher’s research 
objective and expectation. When the null hypothesis is 
rejected, the results that produce the statistics that not 
all group means are equal do not provide information 
to advise the researcher where the difference lies. 
While the multiple comparisons procedure points out 
where the differences lie, this two-step procedure is a 
general process that is also not in line with the intended 
hypothesis to align the researcher’s study concern. 

Informative Hypothesis 

 Nine informative hypotheses are illustrated to state 
the application of the inequality constraint hypothesis. 
Table 3 lists the description and informative 
hypotheses of these nine examples. Similar to the 
NHST specification, the first Example 1 specifies the 
complete equality of the ten years of salary, 

𝐻1: μ2011 = ⋯ = 𝜇2020, indicating there are no 
changes in the salary over the ten years. The second 
Example 2 specifies an informative hypothesis using 
the “<” constraint that there is an increasing order of 

salary, 𝐻1: μ2011 < ⋯ < 𝜇2020. This is an example of 
a complete-order informative hypothesis since all the 
means are included within one order specification. The 
third and fourth examples specify two incomplete-
order informative hypotheses using “<”  and “-”  
constraints. An incomplete order informative 
hypothesis is a hypothesis that does not include all the 
parameters within one order specification. Example 3 
specifies the first five years of means are less than the 
last five years of means. Example 4 specifies the order 
for the difference in two years of means for the 
selected 6 years has an order effect using the “-” 

constraint, 𝐻1: μ2014 − 𝜇2013 < 𝜇2017 − 𝜇2016 <
𝜇2020 − 𝜇2019. Example 5 uses the “+” constraint to 
specify an informative hypothesis showing the sum of 
the last five years is greater than the sum of the first 

five years, 𝐻1: μ2011 + ⋯ + 𝜇2015 < 𝜇2016 + ⋯ +
𝜇2020. Example 6 specifies the use of effect size in a 
hypothesis,  
𝐻1: μ2016 − 𝜇2015 = 150  &  𝜇2017 − 𝜇2016 = 100. 
Examples 7 to 9 give three examples of multiple 
hypotheses, starting with two hypotheses in Example 
7, and increasing to three and four hypotheses in 
Examples 8 and 9 respectively. 

 Table 4 shows the package bain function bain 
syntax for generating the corresponding 9 informative 
hypotheses stated in Table 3 to produce the Bayes 

factor and PMP for 𝐻𝑖, 𝐻𝑢 and 𝐻𝑐. Since the syntax of 
package gorica function gorica to generate the 
GORICA and GORICA weight is similar to that of the 
package bain, it is not shown in Table 4 but stated in 
Appendix B which illustrates and lists the minor 
difference between the two packages.  

 The general approach for using the function bain 
is to first generate a linear model using the lm() 
function and output to an R object that stores the 
group means information to feed into function bain. 
The syntax of generating the output of group means 
using lm() function is stated in the first row of Table 4. 
The linear model adds the term -1 to the formula to 
produce the estimates of all the group means to replace 
the default of forcing the first group mean as the 
intercept. The model output is named LM.  

 The specification of an informative hypothesis is 
rather straightforward. Two arguments need to be 
specified: the  first  argument  for  reading  in the R 
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Table 3. Informative Hypothesis Examples: Description and Hypothesis Specification 

Example Description Hypothesis 

1 
Complete Equality of Mean 

All the means are the same. 

𝐻1: μ2011 = 𝜇2012 = 𝜇2013 = 𝜇2014 = 𝜇2015 = 𝜇2016

= 𝜇2017 = 𝜇2018 = 𝜇2019 = 𝜇2020 

2 
Complete Order of Mean 

Increasing mean order over the 10 years. 

𝐻1: μ2011 < 𝜇2012 < 𝜇2013 < 𝜇2014 < 𝜇2015 < 𝜇2016

< 𝜇2017 < 𝜇2018 < 𝜇2019 < 𝜇2020 

3 

Incomplete Order of Mean 

Means for the years 2017 to 2020 are 
higher than the Means for the years 2011 
to 2014. 

𝐻1: (𝜇2011, 𝜇2012, 𝜇2013,𝜇2014, 𝜇2015,)

< (𝜇2016, 𝜇2017, 𝜇2018, 𝜇2019, 𝜇2020) 

4 

Incomplete Order of Mean 

Order for the difference in two years' 
mean. 

𝐻1: μ2014 − 𝜇2013 < 𝜇2017 − 𝜇2016 < 𝜇2020 − 𝜇2019 

5 

Using “+” Constraint 

The Sum of the last five years is greater 
than the sum of the first five years 

𝐻1: μ2011 + 𝜇2012 + 𝜇2013 + 𝜇2014 + 𝜇2015

< 𝜇2016 + 𝜇2017 + 𝜇2018 + 𝜇2019

+ 𝜇2020 

6 

Effect Size 

The difference between the years 2016 and 
2015 is 150 and the difference between the 
years 2017 and 2016 is 100. 

𝐻1: μ2016 − 𝜇2015 = 150  &  𝜇2017 − 𝜇2016 = 100 

7 

Multiple Hypotheses 

Hypothesis 1: Ex 1; Hypothesis 2: Ex 2 

𝐻1: μ2011 = 𝜇2012 = 𝜇2013 = 𝜇2014 = 𝜇2015 = 𝜇2016

= 𝜇2017 = 𝜇2018 = 𝜇2019 = 𝜇2020 

𝐻2: μ2011 < 𝜇2012 < 𝜇2013 < 𝜇2014 < 𝜇2015 < 𝜇2016

< 𝜇2017 < 𝜇2018 < 𝜇2019 < 𝜇2020 

8 

Multiple Hypotheses 

Hypothesis 1: Ex 1; Hypothesis 2: Ex 2 

Hypothesis 3: Ex 3; Hypothesis 4: Ex 4 

𝐻1: μ2011 = 𝜇2012 = 𝜇2013 = 𝜇2014 = 𝜇2015 = 𝜇2016

= 𝜇2017 = 𝜇2018 = 𝜇2019 = 𝜇2020 

𝐻2: μ2011 < 𝜇2012 < 𝜇2013 < 𝜇2014 < 𝜇2015 < 𝜇2016

< 𝜇2017 < 𝜇2018 < 𝜇2019 < 𝜇2020 

𝐻3: (𝜇2011, 𝜇2012, 𝜇2013,𝜇2014)

< (𝜇2017, 𝜇2018, 𝜇2019, 𝜇2020) 

9 

Multiple Hypotheses 

Hypothesis 1: Ex 1; Hypothesis 2: Ex 2 

Hypothesis 3: Ex 3; Hypothesis 4: Ex 4 

𝐻1: μ2011 = 𝜇2012 = 𝜇2013 = 𝜇2014 = 𝜇2015 = 𝜇2016

= 𝜇2017 = 𝜇2018 = 𝜇2019 = 𝜇2020 

𝐻2: μ2011 < 𝜇2012 < 𝜇2013 < 𝜇2014 < 𝜇2015 < 𝜇2016

< 𝜇2017 < 𝜇2018 < 𝜇2019 < 𝜇2020 

𝐻3: (𝜇2011, 𝜇2012, 𝜇2013,𝜇2014)

< (𝜇2017, 𝜇2018, 𝜇2019, 𝜇2020) 

𝐻4: μ2014 − 𝜇2013 < 𝜇2017 − 𝜇2016 < 𝜇2020 − 𝜇2019 
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Table 4. Informative Hypothesis Examples: R Syntax 

Example Description Package bain, Function bain Syntax 

 Run ANOVA via Linear Model LM <- lm(BSalary~Year-1,data) 

1 All means are the same. 
bain::bain(LM, 

"Year2011=Year2012=Year2013=Year2014=Year2015=Year2016=Year2017 

=Year2018=Year2019=Year2020") 

2 
Increasing mean order over the 

10 years. 

bain::bain(LM, 

"Year2011<Year2012<Year2013<Year2014<Year2015<Year2016<Year2017 

<Year2018<Year2019<Year2020") 

3 
Means for the years 2017 to 

2020 are higher than the Means 

for the years 2011 to 2014. 

bain::bain(LM, 

"(Year2011,Year2012,Year2013,Year2014,Year2015)<(Year2016,Year2017 

,Year2018,Year2019,Year2020)") 

4 
Order for the difference in two 

years' mean. 
bain::bain(LM, 

"Year2014 - Year2013 < Year2017 - Year2016 < Year2020 - Year2019") 

5 
The Sum of the last five years is 

greater than the sum of the first 

five years 

bain::bain(LM, 

"Year2011+Year2012+Year2013+Year2014+Year2015 < 

Year2016+Year2017+Year2018+Year2019+Year2020") 

6 

The difference between the 

years 2016 and 2015 is 150 and 

the difference between the 

years 2017 and 2016 is 100. 

bain::bain(LM, 

"Year2016 - Year2015 = 150 & Year2017 - Year2016 = 100") 

7 
Hypothesis 1: Ex 1; Hypothesis 

2: Ex 2 

bain::bain(LM, 

"Year2011=Year2012=Year2013=Year2014=Year2015=Year2016=Year2017 

=Year2018=Year2019=Year2020; 

"Year2011<Year2012<Year2013<Year2014<Year2015<Year2016<Year2017 

<Year2018<Year2019<Year2020") 

8 

Hypothesis 1: Ex 1; 

Hypothesis 2: Ex 2 

Hypothesis 3: Ex 3; Hypothesis 

4: Ex 4 

bain::bain(LM, 

"Year2011=Year2012=Year2013=Year2014=Year2015=Year2016=Year2017 

=Year2018=Year2019=Year2020; 

"Year2011<Year2012<Year2013<Year2014<Year2015<Year2016<Year2017 

<Year2018<Year2019<Year2020; 

"(Year2011,Year2012,Year2013,Year2014,Year2015)<(Year2016,Year2017 

,Year2018,Year2019,Year2020)") 

9 

Hypothesis 1: Ex 1; 

Hypothesis 2: Ex 2 

Hypothesis 3: Ex 3; Hypothesis 

4: Ex 4 

bain::bain(LM, 

"Year2011=Year2012=Year2013=Year2014=Year2015=Year2016=Year2017 

=Year2018=Year2019=Year2020; 

"Year2011<Year2012<Year2013<Year2014<Year2015<Year2016<Year2017 

<Year2018<Year2019<Year2020; 

"(Year2011,Year2012,Year2013,Year2014,Year2015)<(Year2016,Year2017 

,Year2018,Year2019,Year2020); "Year2014 - Year2013 < Year2017 - Year2016 

< Year2020 - Year2019") 

 

object LM, and the second argument specifies the 
hypothesis within the “ ”.  For instance, the 
specification of “Year2011=…=Year2020” states the 

equality of 𝐻1 for the first Example 1 that corresponds 

to the hypothesis 𝐻1: μ2011 = ⋯ = 𝜇2020 . The syntax 
of Example 2 is “Year2011< … <Year2020”, which 

corresponds to the hypothesis 𝐻1: μ2011 < ⋯ <
𝜇2020. The rest of the Examples 2 to 6 follow the same 
specification. For multiple hypotheses, insert a 
semicolon symbol “;” to separate between two 
hypotheses. Example 8 with three hypotheses gives the 
syntax having two semicolons: “Year2011= … 

=Year2020; Year2011< … <Year2020; 
(Year2011,…,Year2015) < (Year2016,…,Year2020)” . 

 Tables 5 and 6 separately list the results of the nine 
informative hypotheses for the first six and last three 
hypotheses respectively. There are two sets of outputs 
for these nine informative hypotheses. The results of 
the Bayes factor and PMPs that used the package bain 
function bain (Gu, Hoijtink, Mulder, et al, 2020) are 
listed in the first six columns, and the generalized AIC 
outputs are listed in the last five columns using the 
package gorica, function gorica (Kuiper, Altinisik  & 



Practical Assessment, Research & Evaluation, Vol 28 No 1 Page 12 
Tan, Informative Hypothesis for Group Means Comparison 

 
Van Lissa, 2021). The abbreviations of these columns 
are listed in Table 7.  

 The results of Examples 1 and 4 show the favor 
for the unconstrained and complementary hypothesis 
with PMP.u and PMP.c both with the value of 1 and 

the 𝐻1 with the value of 0. That is, the level of evidence 

to support either 𝐻𝑢 or 𝐻𝑐 is very strong since they 
both have the value of one, showing the relative logical 
probabilities are not in favor of the equality of means 

over the ten years for 𝐻1 under Example 1, and neither 
the result is in favor of the three sets of differences 
between the two years 2020 & 2019 is greater than 
between 2017 and 2016, and is in turn greater than 
between 2014 and 2013 under Example 2. Similarly, 
the Weight.u and Weight.c also indicate the same 
conclusion that the generalized AIC weights of 1 for 

the 𝐻𝑢 or 𝐻𝑐.  

 Examples 2, 3, and 5 are all in favor of 𝐻1 with 
different degrees of evidence. For instance, the PMP.u 
for Example 5 shows the relative weight of 0.667 and 

0.333 in favor of 𝐻1 and 𝐻𝑐 respectively, and 0.623 and 

0.377 respectively for 𝐻1 and 𝐻𝑐 under the generalized 
AIC evaluation. 

 The results of the three multiple hypotheses in 

Table 6 show the strong support for 𝐻2 that there is an 
increasing rank order of salary over time, under the 
Bayes factor evaluation. However, under the 

generalized AIC evaluation, the favor turns to 𝐻3 that 
the means for the years 2017 to the year 2020 are 
greater than for the years 2011 to the year 2014. 

Example 9 gives the PMP.u values for 𝐻2 and 𝐻3 0.807 
and 0.192 respectively showing stronger support for 

𝐻2 whereas the Weight.u under generalized AIC is 

0.155 and 0.834 for 𝐻2 and 𝐻3 respectively, indicating 

the stronger support for 𝐻3. 

Table 5. Results of Informative Hypothesis Examples 1 - 6: Bayes Factor and Generalized AIC 

Example Hypo-
thesis 

Baye Factor Generalized AIC 

Fit Com BF.u BF.c PMP.u PMP.c Loglik Penality gorica Weight.u Weight.c 

1 𝐻1 0.000 0.000 0.000 0.000 0.000 0.000 -1047 1.000 2096 0.000 0.000 

𝐻𝑢     1.000  -37 10.000 94 1.000  

𝐻𝑐      1.000 -37 10.000 94  1.000 

2 𝐻1 0.000 0.000 1196.1 1196.5 0.999 0.999 -41 2.919 88 0.933 0.933 

𝐻𝑢     0.001  -37 10.000 94 0.067  

𝐻𝑐 1.000 1.000 1.000   0.001 -37 10.000 94  0.067 

3 𝐻1 1.000 0.004 257 148×107 0.996 1.000 -37 5.673 85 0.987 1.000 

𝐻𝑢     0.004  -37 10.000 94 0.013  

𝐻𝑐 0.000 0.996 0.000   0.000 -55 9.899 131  0.000 

4 𝐻1 0.000 0.166 0.000 0.000 0.000 0.000 -37 4.838 83 0.000 0.000 

𝐻𝑢     1.000  -22 6.000 56 1.000  

𝐻𝑐 1.000 0.834    1.000 -22 5.661 55  1.000 

5 𝐻1 1.000 0.500 2.000 229×1011 0.667 1.000 -37 9.499 93 0.623 1.000 

𝐻𝑢     0.333  -37 10.000 94 0.377  

𝐻𝑐 0.000 0.500 0.000   0.000 -820 9.499 1659  0.000 

6 𝐻1 0.000 0.000 6180 6180 1.000 1.000 -12 1.000 26 0.700 0.700 

𝐻𝑢     0.000  -11 3.000 28 0.300  

𝐻𝑐      0.000 -11 3.000 28  0.300 
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Table 6. Results of Informative Multiple Hypotheses Examples 7 - 9: Bayes Factor and Generalized AIC 

Example Hypo-
thesis 

Baye Factor Generalized AIC 

Fit Com BF.u BF.c PMP.u PMP.c Loglik Penality gorica Weight.u 

7 𝐻1 0.000 0.000 0.000 0.000 0.000 0.000 -1047 1.000 2096 0.000 

𝐻2 0.000 0.000 907.3 907.5 0.999 0.999 -41 2.922 88 0.933 

𝐻𝑢     0.001  -37 10.000 94 0.067 

𝐻𝑐      0.001     

 

8 

𝐻1 0.000 0.000 0.000 0.000 0.000 0.000 -1047 1.000 2096 0.000 

𝐻2 0.000 0.000 908.7 908.9 0.784 0.785 -41 2.922 88 0.156 

𝐻3 1.000 0.004 249.4 144×108 0.215 0.215 -37 5.674 85 0.833 

𝐻𝑢     0.001  -37 10.000 94 0.011 

𝐻𝑐 0.000 0.996 0.000   0.000     

9 𝐻1 0.000 0.000 0.000 0.000 0.000 0.000 -1047 1.000 2096 0.000 

𝐻2 0.000 0.000 1026.5 1027 0.807 0.807 -41 2.922 88 0.155 

𝐻3 1.000 0.004 244.8 148×107 0.192 0.193 -37 5.674 85 0.834 

𝐻4 0.000 0.168 0.000 0.000 0.000 0.000 -55 8.836 128 0.000 

𝐻𝑢     0.001  -37 10.000 94 0.011 

𝐻𝑐 0.000 0.828 0.000   0.000     

 

Table 7. Abbreviations for Function bain and gorica 

Abbreviation Description 

Function bain 

Fit Fit 

Com Complexity 

BF.u Bayes factor of the hypothesis versus the complement hypothesis 

BF.c Bayes factor of the hypothesis versus the unconstrained hypothesis 

PMP.u Posterior model probabilities plus the unconstrained hypothesis 

PMP.c Posterior model probabilities plus the complement hypothesis 

Function gorica 

Loglik Log-likelihood 

Penalty Penalty 

gorica Generalized Order-Restricted Information Criteria Approximation (GORICA) value 

Weight.u GORICA weight includes the unconstrained hypothesis 

Weight.c GORICA weight includes the complement hypothesis 
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Summary and Conclusion 

 Bayesian evaluation of inequality constrained 
hypothesis has become an attractive alternative for 
hypothesis testing, keeping pace with and moving 
towards replacing NHST. While the criticism of the 
evaluation of the traditional null hypothesis is steadily 
increasing, this paper is in time to demonstrate how to 
use the R package to carry out informative hypotheses 
and provide R scripts to describe the syntax and show 
the procedures and steps to carry out with examples. 

 This paper starts with a discussion on the 
limitations of the NHST approach for carrying out 
hypothesis testing and points out that this fixation 
procedure can become a painfully tedious process that 
requires at least a two-step procedure with first 
specifies the null hypothesis of no effect and upon 
rejection goes on to the second step to perform 
multiple comparisons to determine which are the 
paired means are statistically significant and which are 
not. This cumbersome two-step procedure with 
potentially increased type I error rates due to multiple 
testing becomes redundant when the informative 
hypothesis is used. The informative hypothesis directly 
specifies the intended hypothesis. While NHST is not 
possible to conclude by accepting a null hypothesis, the 
informative hypothesis provides the means to carry out 
multiple hypotheses and quantify the level of evidence 
of the order constrained effect. This paper introduces 
the concepts and procedures to carry out the 
informative hypothesis by first defining it, presenting 
the two new hypothesis terms, unconstrained and 
complementary hypothesis, and describing the 
posterior model probabilities (PMPs) that are based on 
the Bayes factors and the GORICA weights based on 
generalized AIC to determine the level of evidence for 
multiple hypotheses, and gives nine examples of 
informative hypotheses using the various constraints 
to show its application and stating the syntax. 

 

Discussion 

 While informative hypothesis testing has many 
benefits in comparison to the NHST approach, there 
is one noticeable practical gain not explicitly 
mentioned in the previous section is that when using a 
set of hypotheses, a researcher can test it out 
incrementally by examining the changes in the PMPs 
and GORICA weights with different order 

arrangement of insertion the hypotheses to form a 
series sets of multiple hypotheses. Examples 7 to 9 
show one way of order arrangement to display the 

incremental effect by introducing 𝐻𝑖 starts with two 
hypotheses for the first hypothesis is about the equality 
of group mean, followed by a hypothesis on an 
incremental mean over the ten years, and subsequently 
inserting new hypotheses to four to show the changes 
that take place for the PMPs and GORICA weights. 
This order arrangement could be rearranged according 
to the research questions the researcher intends to 
answer the research concern, say by stating the 
hypothesis of testing the incremental order of means 
as the first hypothesis to show the level of evidence is 
high and when the rest of the three hypotheses are 
inserted, they are of no relevancy in changing the level 
of evidence for the first-mentioned hypothesis. This 
ordering approach could be used in a research study to 
examine the order effect by examining the changes in 
the relative rank by specifying a set of multiple 
hypotheses.  

 The choice between the unconstrained and 
complementary hypothesis is another practical issue 

one has to decide. The 𝐻𝑐 directly addresses the 
researcher’s hypothesis in mind to test according to the 
theoretical expectation. As such, in practice, it is not 
generally recommended to test an inequality-
constrained hypothesis against the unconstrained 

hypothesis 𝐻𝑢 (Böing-Messing et al, 2017) if the 
objective is to define a set of informative hypotheses 
according to the theory. However, when the set of 
hypotheses is badly specified, it acts as a fail-safe 
hypothesis (Van Lissa et al, 2021) to mitigate the risk 

of bad specification. The advantage of using 𝐻𝑢 is that 

when all constrained hypotheses 𝐻𝑖 under 

investigation fit poorly, the posterior probability of 𝐻𝑢 

turns out as larger than all the individual 𝐻𝑖, giving the 
evidence that the theories specified by the researcher, 
none of them are supported by the data, the so-called 
fail-safe hypothesis approach. Van Lissa, Gu, Mulder, 

et al (2021) mentioned the benefit of using 𝐻𝑢 that 
places no constraints on the parameters is that it is 
implemented in the R package bain function such that 
it pays almost no cost of using it and it can be easily 
carried out. They also recommend a second approach 
to include a hypothesis that is the complement of the 
union of all informative hypotheses in the set when 
there are overlaps with each of the hypotheses under 
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consideration, however not available in the package 
bain. 

 The informative hypothesis is not without 
restriction when applying it. There are practical notings 
to take care of when using it for hypothesis testing. 
Altinisik, Van Lissa, Hoijtink, et al (2021) noted the 
limitations of GORICA that it although easier to apply, 
assumes there is an adequate sample size, and also 
noted the use of MLE using package goric may 
produce biased parameter estimates when outliers exist 
in the data. 

 The caution note on stating the practical 
interpretation of the posterior model probabilities 
(PMPs) under the Bayesian approach is crucial for 
noting that Klugkist, Laud, and Hoijtink (2010) qualify 
it as a logical probability, not the common probability 
sense of interpretation commonly referred to. As 
posterior model probabilities are translations of Bayes 
factors resulting in numbers on a scale from zero to 
one, they should not be interpreted as the classical 
probability as it does not have a frequency 
interpretation. This is especially obvious when the 
unconstrained hypothesis is used. The interpretation 
would lead to strange conclusions because constrained 
hypotheses can have posterior probabilities larger than 

𝐻𝑢. PMPs thus are measures of relative support that 
take both fit and complexity into account. Similarly, 
GORICA weights should also be viewed as a logical 
probability. 
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Appendix A. R Packages for Informative Hypothesis and Basic Syntax 

 

Table A-1 lists the three R packages discussed in the paper to carry out informative hypotheses with their 

references. 

Table A-1. R Packages – Informative Hypothesis and References 

Package Description Reference 

bain Bayesian Informative Hypothesis Evaluation Gu, Hoijtink, Mulder, et al (2020) 

BFpack Flexible Bayes Factor Testing of Scientific Expectations Mulder. Williams, Gu, et al (2021) 

gorica Evaluation of Inequality Constrained Hypotheses Using 
GORICA 

Kupier, Altinisik, and Van Lissa (2021) 

Package bain, Function bain 

Package bain, an abbreviation for BAyesian INformative hypothesis evaluation, uses the Bayes factor to 

evaluate hypotheses specified using equality and inequality constraints for a range of statistical models. The basic 

syntax of this function is specified below. 

bain(x, hypothesis) 
 

where x is an R object that contains the outcome of statistical analysis in the case of comparison of group means is 

a linear model using lm() include a factor for comparison of a set of group means. The second argument is to 

specify an informative hypothesis or a set of hypotheses.  

Package gorica, Function gorica 

Package gorica implements the generalized order-restricted information criterion approximation (GORICA) 

to evaluate (in)equality constrained hypotheses (Kuiper, Altinisik  & Van Lissa, 2021). The basic syntax of the 

function gorica is specified below. 

gorica(x, hypothesis) 

 
where x is an R object that contains the outcome of statistical analysis and the hypothesis argument is to specify an 

informative hypothesis or a set of hypotheses. 
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Package BFpack, Function BF 

The R package BFpack contains a set of functions for hypothesis testing using Bayes factors and posterior 

probabilities under commonly used statistical models. The main function BF needs a fitted model (e.g., an object of 

class lm for a linear regression model to generate group means) and the argument hypothesis, a string that specifies 

a set of equality/order constraints on the parameters. The basic syntax is specified below. 

BF(x, hypothesis) 

 
where x is an R object that contains the outcome of statistical analysis and the hypothesis argument is to specify an 

informative hypothesis or a set of hypotheses. 
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Appendix B. R Functions Summary – NHST and Informative Hypothesis 

 
The syntax to generate hypothesis testing for group means comparison for both NHST and informative 

hypothesis are listed in Table B-1 below. 

Table B-1. R Function Summary – NHST and Informative Hypothesis 

Function Description 

NHST – ANOVA  

aov(Y~Group-1,data) ANOVA using aov() 

AOV <-lm(Y~Group-1, data) ANOVA using Linear Model 

NHST – Multiple Comparison  

multcomp::glht(AOV, mcp(Group="Tukey")) Tukey HSD 

PMCMRplus::summaryGroup(tukeyTest(AOV)) Tukey Test 

PMCMRplus::summaryGroup(duncanTest(AOV)) Duncan’s Multiple Range Test 

PMCMRplus::summaryGroup(scheffeTest(AOV)) Scheffe’s Test 

agricolae::LSD.test(AOV, "F",p.adj="bonferroni")) Sidak’s Test 

Graphing 95% Family-Wise Confidence Level  

plot(TukeyHSD(AOV) Tukey HSD 

Informative Hypothesisas  

bain::bain(AOV,  
   "Gp1=Gp2=Gp3=Gp4"; 
   "Gp1<Gp2<Gp3<Gp4") 

𝐻1: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 

𝐻2: 𝜇1 < 𝜇2 < ⋯ < 𝜇𝑛 

𝐻𝑢: 𝜇1, 𝜇2, 𝜇3, 𝜇4 

𝐻𝑐: 𝑁𝑜𝑡 (𝐻1 𝑜𝑟 𝐻2) 
gorica::gorica(AOV,  
   "Gp1=Gp2=GP3=Gp4"; 
   "Gp1<Gp2<Gp3<Gp4") 

𝐻1: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 

𝐻2: 𝜇1 < 𝜇2 < ⋯ < 𝜇𝑛 

𝐻𝑢: 𝜇1, 𝜇2, 𝜇3, 𝜇4 
gorica::gorica(AOV,  
   "Gp1=Gp2=Gp3=Gp4", 
    comparison=c("complement")) 

𝐻1: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 

𝐻𝑐: 𝑁𝑜𝑡 (𝐻1 𝑜𝑟 𝐻2) 

gorica::gorica(AOV,  
   "Gp1<Gp2<Gp3<Gp4", 
    comparison=c("complement")) 

𝐻1: 𝜇1 < 𝜇2 < ⋯ < 𝜇𝑛 

𝐻𝑐: 𝑁𝑜𝑡 (𝐻1 𝑜𝑟 𝐻2) 

BFpack:: BF(AOV,  
   "Gp1=Gp2=Gp3=Gp4"; 
   "Gp1<Gp2<Gp3<Gp4") 

𝐻1: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 

𝐻2: 𝜇1 < 𝜇2 < ⋯ < 𝜇𝑛 

𝐻𝑐: 𝑁𝑜𝑡 (𝐻1 𝑜𝑟 𝐻2) 
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Appendix C. Descriptive Labels for Bayes Factors 

 
Table C-1. Descriptive Labels for Bayes Factors: Categorization of Bayes Factors into Evidence Against  
 
 

Bayes 
Factor 

Evidence Against Bayes 
Factor 

Evidence Against 

Jeffreys 
(1961) 

Goodman  
(1999) 

Held & Ott 
(2016) 

Lee & 
Wagenmakers 

(2013) 

Kass and Raftery 
(1995) 

1 to 3 Bare Mention  Weak Anecdotal 1 to 3 
Not worth more than 
a bare mention 

3 to 10 Substantial 
Weak to 
Moderate 

Moderate Moderate 3 to 20 Positive 

10 to 30 Strong 
Moderate to 
Strong  

Substantial Strong 20 to 150 Strong 

30 to 100 Very Strong Strong Strong Very Strong >150 Very Strong 

100 to 
300 

Decisive Very Strong Very Strong Extreme   

>300   Decisive    

 


	OLE_LINK5
	OLE_LINK6

