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Statistical process control (SPC) charts have been widely used in the field of educational measurement. 
The cumulative sum (CUSUM) is an established SPC method to detect aberrant responses for educational 
assessments. There are many studies that investigated the performance of CUSUM in different test 
settings. This paper describes the CUSUM procedure and shows how it can be used to monitor the test-
taking process and detect aberrant responses. It aims to provide an accessible guide for the CUSUM 
control chart. 
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Introduction 
 When using any assessment scores, the underlying 
assumption is that examinees' responses should not be 
affected by unusual behaviors. However, various 
aberrant responses are commonly seen in practical 
testing situations. For example, Ward et al. (2016) 
found that around 10% of examinees had careless 
responses during a test. Besides carelessness, test 
behaviors such as speededness, lack of motivation, 
cheating, pre-knowledge of items, warm-up effect, and 
fatigue all cause aberrant responses (Sinharay, 2017b; 
Zhang et al., 2020). Having aberrant responses will also 
undermine the accuracy of the ability estimation of 
examinees, leading to invalid conclusions and 
inferences based on assessment scores (Shao, 2016). It 
is crucial to detect aberrant responses to reduce their 
negative influences on test score validity. 

 There are different approaches to detect aberrant 
responses. For instance, one direction is to directly 
model aberrant behaviors based on different 
assumptions. In addition to using traditional 
unidimensional item response models (IRT), models 
have been developed, such as the Mixture Model (Bolt, 
Cohen, & Wollack, 2002), the Hybrid Model 

(Yamamoto & Everson, 1997), and the Graduate 
Change Model (Wollack & Cohen, 2004). This study 
adopted another approach, modeling the responses 
using standard models and flagging responses or 
response patterns that do not fit the typical response 
model. In the early development of this approach, 
researchers utilized different person-fit statistics (PFS) 
to identify test takers who showed abnormal item 
response patterns (which resulted in artificially high- or 
low-test scores). They then separate those test takers 
from those who exhibited normal item response 
patterns (Karabatsos, 2003). However, traditional PFS 
indices do not perform well in detection (De La Torre 
& Deng, 2008). Most person-fit research focuses on 
paper-and-pencil examinations in the literature (van 
Krimpen-Stoop & Meijer, 2000). Statistical process 
control (SPC) methods were recently introduced to 
detect aberrant responses, particularly the cumulative 
sum control chart (CUSUM). 

 In 1998, Bradlow, Weiss, and Cho firstly adopted 
the CUSUM method to detect four types of aberrant 
behaviors: warm-up effects, fatigue, sub-expertise, and 
lack-of-fit, in a computerized adaptive test (CAT). 
Since then, many articles have utilized the CUSUM 
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method to detect aberrant response behaviors in a test 
(Armstrong & Shi, 2009a, 2009b; Meijer, 2002; 
Tendeiro & Meijer, 2012; Tendeiro et al., 2013; van 
Krimpen-Stoop & Meijer, 2000, 2001). It provides a 
practical methodology to examine changes numerically 
and visually, using person- fit statistics (PFS) over time 
(Armstrong & Shi, 2009a). 

 Compared to other SPC methods, such as change-
point analysis, the CUSUM owns simplicity in terms of 
computation. However, the procedure of generating a 
CUSUM plot is not straightforward. This study will 
demonstrate the standard CUSUM procedure using 
one widely used index, the weighted residual between 
expected and observed scores. This study aims to 
provide an accessible guide for researchers who want 
to apply CUSUM in their research. First, we introduce 
the CUSUM method under the traditional SPC 
framework. Then the procedure of CUSUM will be 
explained in the context of aberrant response detection 
in educational testing, including the steps of 
determining the boundary values. For illustration, we 
simulate two aberrant behaviors, the warm-up effect, 
and random responses. The definitions of these two 
behaviors are given in the later section. We can easily 
observe differences between normal and aberrant 
behaviors through its corresponding CUSUM chart. 
Finally, we discuss the advantages and disadvantages of 
the CUSUM method. 

 

A Review of CUSUM Procedures 
 Yu and Cheng (2022) defined SPC as "a collection 
of methods for monitoring, controlling, and improving 
a random process through statistical analysis" (p. 2). It 
was initially developed and utilized to monitor product 
quality in production or manufacturing areas. Using 
SPC, the product quality can be actively measured and 
charted simultaneously while manufactured things are 
mass-produced. For example, if one company makes 
chocolate beans, each bag should have a certain 
amount of beans. If each bag has too many beans, that 
will increase the costs of materials for the company. 
Nevertheless, customers will not be satisfied if too few 
beans are in a bag. Therefore, the company needs to 
control the number of chocolate beans during 
production, which can be achieved through SPC. 

The production or process that needs to be statistically 
controlled usually has a stable distribution. Schafer, 
Coverdale, Luxenberg, and Jin (2011) described a 

general procedure of SPC: Plotting the index of the 
product, such as means of groupings of products, on a 
chart within certain limits. Technicians visually analyze 
charts to see whether deviations from expectations are 
beyond specific boundaries. Suppose the graph 
contains any pattern or the points deviate too far from 
the expected values. In that case, the process is 
considered "out of control." Some variability is 
expected due to sampling variations and variances 
across sampled groups. Suppose the variations are 
within predefined limits, and the pattern of deviations 
appears random. In that case, the process is considered 
"under control." When this situation occurs, there is no 
need to do any following analysis. 

 Montgomery (2013) provides a detailed review of 
many different types of control charts. Recently, SPC 
was introduced to the educational measurement field 
to detect aberrant responses. For example, Omar 
(2010) used Shewhart's mean and standard deviation 
charts to measure and monitor the consistency of 
rating performance items in operational assessments. 
The CUSUM (Page, 1954) is another established SPC 
method widely used in educational measurement to 
detect aberrant responses. It is effective to detect small 
changes in the variable being measured. 

Traditional CUSUM Procedure 

 van Krimpen-Stoop and Meijer (2000) described a 

traditional CUSUM procedure: Let 𝑍𝑡 be the value of 

a standard normally distributed statistic 𝑍 collected at 
a time point t (t = 1, 2, … ) from a sample of size N 
(e.g., the standardized average number of chocolate 
beans). Let d be a reference value (the choice of d value 
is given below); statistics sums are accumulated in two 
directions only if they surpass the "goal value" by more 

than d units: when 𝑍𝑡  > d (e.g., there are more 
chocolate beans in a bag than expected), positive values 

are accumulated in C+; when 𝑍𝑡  < - d (e.g., there are 
fewer chocolate beans in a bag than expected), negative 

values are accumulated in C-. The starting values are 𝐶+ 

= 𝐶− = 0. The two-sided CUSUM process for each 
time point t is shown below: 

𝐶1
+ = max{0, 𝑍1 − 𝑑} , (1) 

To understand equation 1 better, 𝑍1  represents the 
value of some statistic that is computed to monitor the 
statistical process, and d is the tolerated deviation from 
that statistic. Since Z is a value from a standard normal 
distribution, it is centered around 0. Assume the value 
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of Z is 1.3. Then the difference between Z and d would 
be 0.8, and the value of equation (1) would be 0.8. If 
the value of the difference is negative, the value of 
equation (1) goes to zero. 

𝐶2
+ = max{0, (𝑍1 − 𝑑) + (𝑍2 − 𝑑)}  

= max{(𝑍2 − 𝑑) + 𝐶1
+}, (2) 

The process from equation (1) continues, and we 
accumulate the values of the differences between Z and 
d. Assume this time that the value of Z is 0.4. In this 
case, the difference between Z and d would be -0.1, and 

the value of 𝐶+is 0.8 + (-0.1) = 0.7. 

𝐶3
+ = max{0, (𝑍3 − 𝑑) + 𝐶2

+} , (3)
          

𝐶𝑡
+ = max{0, (𝑍𝑡 − 𝑑) + 𝐶𝑡−1

+ } , (4) 

At the same time,  

𝐶𝑡
− = min{0, (𝑍𝑡 + 𝑑) +  𝐶𝑡−1

− }, (5) 

 𝐶𝑡
+reflects the sum of consecutive positive values 

of 𝑍𝑡 − 𝑑 , and 𝐶𝑡
− reflects the sum of consecutive 

negative values of 𝑍𝑡 + 𝑑,. Sums are accumulated on 
both sides simultaneously. It is worth noting that both 

𝐶𝑡
+ and 𝐶𝑡

− can go back to 0, as they are not constantly 

accumulating. Only |𝑍𝑡 |> 𝑑, 𝑍𝑡  will be taken into 
account. Let h be a pre-determined threshold value. 

When 𝐶𝑡
+  > h, or 𝐶𝑡

−  < -h, the process is "out-of-
control." Otherwise, the process is "in control." A 
complete example with computations is provided in 
the illustration. 

 The underlying assumption of the traditional 
CUSUM procedure (van Krimpen-Stoop & Meijer, 

2000) is that the 𝑍𝑡 values are asymptotically standard 
normally distributed. The d and h values are determined 
based on this assumption. The value of d is often 
chosen to be one-half the magnitude of the mean shift 

(in 𝑍𝑡units) to be detected; for instance, d = 0.5 is a 
good option for detecting a shift of one standard 

deviation of 𝑍𝑡 . Many analytical studies investigated 

how to determine ℎ values after choosing the d value. 
Briefly speaking, the d and h parameters should be 
selected to provide good average run length 
performance (ARL). ARL is separated into two types. 
ARL0 is similar to type one error and represents the 
expected number of samples until a control chart 
signals, given that the process is in control; in other 

words, it sends a false alarm. At the same time, ARL∆ 
is similar to a true positive, the expected number of 

samples until a control chart signals, given that the 
process is out of control. The process is like balancing 
type I error and power in the same way as hypothesis 
testing. Montgomery (2013) provided some general 
recommendations for selecting d and h and the 
underlying rationale for this choice (p.422). Usually, h 

= 4 𝑜𝑟 5 when d = 0.5. 

CUSUM Procedure Based on the Weighted 
Residual  

 Like many other SPC methods, CUSUM requires 
identifying a variable that represents the quality of the 
process needing statistical control (Omar, 2010). 
Researchers have proposed various CUSUM indices to 
represent the test-taking quality in an educational test. 
van Krimpen- Stoop and Meijer (2000) offered 8 
CUSUM indices, all of which were some kinds of 
residuals (weighted or unweighted) between the 
expected and observed scores of an item. Other 
CUSUM indices are based on the likelihood ratio test 
(Sinharay, 2016; Armstrong & Shi, 2009a). Yu and 
Cheng (2022) provided a comprehensive review of 
these statistics. This section introduces the CUSUM 

procedure using the most widely used index (𝑇𝑖 , see 
equation 6), the weighted residual, for illustration 
purposes. Researchers can use other indices to suit 
their needs, but the CUSUM process remains the same. 

 Let i denote the ith item in a test. 𝑇𝑖 is the residual 

between the observed score (𝑋𝑖 ,) and the expected 
score of the ith administered item, given the length of 
the test (N): 

𝑇𝑖 =
1

𝑁
[𝑋𝑖 − 𝐸(𝑋𝑖|𝜃)]. (6) 

 The expected score, 𝐸(𝑋𝑖|𝜃) is usually calculated 
based on the unidimensional (dichotomous or 
polytomous) IRT models. In this study, we used the 1-
parameter logistic model (1 PL) for its simplicity: 

𝐸(𝑋𝑖|𝜃) =
1

1 + 𝑒−𝐷(�̂�−𝑏𝑖)
, (7) 

where 𝑏𝑖  is the item difficulty parameter. Student 

estimated ability is represented by 𝜃 . D is a scaling 
constant (D = 1.7 to scale the logistic to the normal 
ogive metric; D = 1 to use the logistic metric). If the 

examinee correctly answers an item, the 𝑇𝑖  will be 

positive; otherwise, the 𝑇𝑖  will be negative. 
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 Similar to the traditional CUSUM procedure, the 

start points 𝐶𝑡
+ and 𝐶𝑡

−r are 0. The residuals given in 
equation (6) are summed across consecutive items. For 
each examinee, after each administered item i, the 
CUSUM can be shown as: 

𝐶𝑡
+ = max{0, 𝑇𝑖 + 𝐶𝑖−1

+ }, (8) 

𝐶𝑡
− = min{0, 𝑇𝑖 + 𝐶𝑖−1

− }. (9) 

 𝐶𝑡
+  and 𝐶𝑡

−  are the cumulative sum of the 

consecutive positive and negative residuals ( 𝑇𝑖 ). A 

series of consecutive positive values of 𝑇𝑖  will make 

𝐶𝑡
+ larger, while consecutive negative values of 𝑇𝑖 will 

make 𝐶𝑡
− smaller. Let UB and LB represent the pre-

specified upper and lower bound, respectively. If 𝐶𝑡
+ > 

UB, or 𝐶𝑡
− < LB at some points, we can identify this 

response pattern as aberrant. Otherwise, we will 
classify this item score pattern as fitting the 
unidimensional IRT model. The CUSUM control chart 

is the scatter plots of 𝐶𝑡
+ and 𝐶𝑡

−  at every item point i. 

 However, the null distributions of proposed 
CUSUM indices are usually far from normal. For 

example, residual 𝑇𝑖  given in equation (6) follows a 
binomial distribution. Therefore, it is not appropriate 
to set d = 0.5 and UB = 4, LB = −4. There are several 
methods to determine UB and LB. In general, it is 
necessary to define a level of statistical significance 
(usually at a 5% level) first. Then the most extreme 
value is found, and the UB and LB are values for which 
2.5% of the most extreme values lie above (UB) or 
below (LB). This process can be achieved through 
Monte Carlo simulation or based on the empirical 
dataset at hand. We will explain this procedure later. 

 

Illustration through the Simulation 
 To demonstrate how to utilize CUSUM charts to 
identify abnormal response behaviors, we simulate 
normal responses and two aberrant behaviors: warm-
up effects and random responses for a 40-item test. In 
this simulation study, we used the 1PL model. Item 
difficulty parameters are generated from a standard 
normal distribution (mean=0, SD=1). Table 1 provides 
the item parameter values. An examinee has a warm-
up effect when he or she performs poorly at the 
beginning of the exam for some reason, such as 
nervousness or unfamiliarity, and then gradually 
returns to normal as the exam progresses. Random 
responses mean the examinee makes a random choice 

for items. Random responses might be caused by a lack 
of time (speededness) or motivation. They are more 
likely to occur near the end of the exam. CUSUM 
could, of course, be used to detect other aberrant 
behaviors such as item pre-knowledge (van Krimpen-
Stoop & Meijer, 2002), fatigue (Armstrong & Kung, 
2011), and sub-expertise (Bradlow et al., 1998), and 
speededness (Yu & Cheng, 2022). 

As previously stated, one critical step of the CUSUM 
process is finding upper and lower boundaries for non-
normally distributed data. We can complete this step in 
an operational setting through Monte Carlo simulation 
or empirical data analysis. In this study, we used Monte 
Carlo simulation to determine the boundary values 
(UB and LB): 

 1) The latent abilities of 10,000 examinees (𝜃) 
were generated from the standard normal 
distribution. Item scores were generated based on 

examinees' 𝜃𝑠 and item parameters (Table 1). 

 2) The probability of endorsing items, 𝑇𝑖  based 

on estimated 𝜃, and cumulative weighted residuals 
(C+ and C-) were calculated. 

 3) The maximal C+ and minimal C- values of each 
examinee were collected. Then the LB and UB 
were identified as 2.5% and 97.5% percentile of 
10,000 extreme values, respectively. 

 4) We repeated the previous steps 100 times, and 
a final LB and UB was the average value across 100 
replications. UB= 0.114, LB= -0.114. 

 We can also use the empirical dataset at hand to 
determine the UB and LB. Instead of generating 
responses of examinees, we can sample a group of 

examinees with approximately similar 𝜃  of the 
population. Then, as illustrated in steps 2 and 3, we 
calculate the UB and LB using extreme C+ and C- 

values of the subsample of examinees. There is a 
drawback of using empirical item responses instead of 
simulation: the existing misfitting item scores might 
affect boundary values. However, we expect most item 
score patterns will fit the underlying IRT model in 
reality. Meijer (2002) used both simulation and 
empirical datasets to investigate the influence of 
misfitting item responses and found similar bounds. 
So, we recommend using an empirical dataset if your 
sample size is big enough. 
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Table 1. Item Parameter Values for the Simulated Test 

Item Difficulty (b) Item Difficulty (b) 

1 -0.560 21 -1.068 

2 -0.230 22 -0.218 

3 1.559 23 -1.026 

4 0.071 24 -0.729 

5 0.129 25 -0.625 

6 1.715 26 -1.687 

7 0.461 27 0.838 

8 -1.265 28 0.153 

9 -0.687 29 -1.138 

10 -0.446 30 1.254 

11 1.224 31 0.426 

12 0.360 32 -0.295 

13 0.401 33 0.895 

14 0.111 34 0.878 

15 -0.556 35 0.822 

16 1.787 36 0.689 

17 0.498 37 0.554 

18 -1.967 38 -0.062 

19 0.701 39 -0.306 

20 -0.473 40 -0.380 

 

 We can also use the empirical dataset at hand to 
determine the UB and LB. Instead of generating 
responses of examinees, we can sample a group of 

examinees with approximately similar 𝜃  of the 
population. Then, as illustrated in steps 2 and 3, we 
calculate the UB and LB using extreme C+ and C- 

values of the subsample of examinees. There is a 
drawback of using empirical item responses instead of 
simulation: the existing misfitting item scores might 
affect boundary values. However, we expect most item 
score patterns will fit the underlying IRT model in 
reality. Meijer (2002) used both simulation and 
empirical datasets to investigate the influence of 
misfitting item responses and found similar bounds. 
So, we recommend using an empirical dataset if your 
sample size is big enough. 

Data 

 We generated the latent abilities of 2,000 
examinees (θ) from the standard normal distribution 
(mean=0, SD=1). 90% of examinees performed as 
expected without aberrant responses: item scores were 
generated based on the 1PL model. 5% of examinees 
(100) performances were affected by warm-up effects: 

the first 10 items' responses were generated based on 

their true 𝜃 - 2, and the remaining responses were 

based on true 𝜃. The non-invariant ability setting was 
from van Krimpen-Stoop and Meijer (2000). The 
remaining 5% of examinees (100) had random 
responses: items scores of the first 30 items still 
followed the 1PL model. However, the probability of 
answering items correctly for the last 10 items was 
fixed to 0.2 (guess rate for 5-option multiple choice 
questions; Yamamoto & Everson, 1997). 

Analyses 

 We used items’ true parameters and examinees’ 

estimated 𝜃s to calculate the expected scores (equation 
7) to mimic practical testing situations. The CUSUM 

method is based on the weighted residual, 𝑇𝑖 (Equation 
6) was applied to all 2,000 examinees in the sample. It 
should be noted that CUSUM's index is a statistic 
based on the cumulative sum. The CUSUM index is 
calculated continuously. When one item’s C+ or C- 
exceeds the critical value, it does not mean the aberrant 
behavior happened near or at that specific item. Lai 
(2001) suggested that the location of an item with a 
CUSUM index closest to 0 before the critical value 
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𝑖 

should be taken as the change point. We used R (R 
Core Team, 2021) to analyze and draw CUSUM plots. 

 

CUSUM Outputs  
Normal Responses 

 Table 2 provides information on one score pattern 
without any aberrant flagging response. The true ability 
of this examinee is 0.637, and the estimated ability is 

0.685. The first item is correct, and 𝑃1(𝜃) = .78 , 

which results in 𝑇1 =
1

𝑁
[𝑋1 − 𝑃1(𝜃)] =

1−.78

40
=

.0056  (Equation 6). Substituting this value in 

Equation 4 results in 𝐶1
+ =0.0056 and Equation 5 

results in 𝐶1
−=0. Answering the second item correctly 

results in 𝑇2 =.0071. 𝐶2
+ = max{0, 𝐶1

+ + 𝑇2} =
max(0,0.0056 + .0071) = 0.0127 , and 𝐶2

− =

min {0, 𝐶1
− + 𝑇2} = min{0,0 + .0071} = 0.  This 

examinee makes an incorrect choice for the third item, 

𝑇3 = −.0074, 𝐶3
+ = max{0, 𝐶2

+ + 𝑇3} =
max{0.0.0127 + (−.0074)} = 0.0054 , and 𝐶3

− =
min{0, 𝐶2

− + 𝑇3} = min{0,0 + (−.0074)} =
−0.0074. The procedure runs on both sides till the 
last item of a test. 

 The whole response answering process is in Figure 
1. The item number and cumulative residual are 
represented by the horizontal and vertical axes, 
respectively. Two horizontal red dash lines show the 
UB (0.114) and the LB (-0.114), respectively. The 

largest value of 𝐶1
+ is 0.0706 (item 23), and the smallest 

value of 𝐶1
− is -0.054 (item 14), and neither is across 

boundary lines. So, this pattern does not contain an 
aberrant response. 

 

Table 2. CUSUM Procedure for a Regular Response Pattern  

Item Item score P 𝑇𝑖 𝐶+ 𝐶− 

1 1 0.7766 0.0056 0.0056 0 

2 1 0.7141 0.0071 0.0127 0 

3 0 0.2946 -0.0074 0.0054 -0.0074 

4 1 0.6491 0.0088 0.0141 0 

5 1 0.6356 0.0091 0.0233 0 

6 0 0.2631 -0.0066 0.0167 -0.0066 

7 1 0.5559 0.0111 0.0278 0 

8 1 0.8755 0.0031 0.0309 0 

9 1 0.7978 0.0051 0.0359 0 

10 1 0.756 0.0061 0.042 0 

11 0 0.3685 -0.0092 0.0328 -0.0092 

12 0 0.5807 -0.0145 0.0183 -0.0237 

13 0 0.5707 -0.0143 0.004 -0.038 

14 0 0.6399 -0.016 0 -0.054 

15 1 0.7758 0.0056 0.0056 -0.0484 

16 1 0.2495 0.0188 0.0244 -0.0296 

17 1 0.5467 0.0113 0.0357 -0.0183 

18 1 0.9341 0.0016 0.0373 -0.0166 

19 1 0.496 0.0126 0.0499 -0.004 

20 1 0.761 0.006 0.0559 0 

21 1 0.8524 0.0037 0.0596 0 

22 1 0.7117 0.0072 0.0668 0 

23 1 0.847 0.0038 0.0706 0 

24 0 0.8044 -0.0201 0.0505 -0.0201 

25 1 0.7876 0.0053 0.0558 -0.0148 

26 1 0.9147 0.0021 0.058 -0.0127 
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27 0 0.462 -0.0115 0.0464 -0.0242 

28 0 0.63 -0.0157 0.0307 -0.04 

29 1 0.861 0.0035 0.0342 -0.0365 

30 1 0.3616 0.016 0.0501 -0.0205 

31 1 0.5644 0.0109 0.061 -0.0096 

32 1 0.7272 0.0068 0.0678 -0.0028 

33 0 0.4478 -0.0112 0.0566 -0.014 

34 0 0.452 -0.0113 0.0453 -0.0253 

35 0 0.466 -0.0117 0.0337 -0.037 

36 1 0.4992 0.0125 0.0462 -0.0244 

37 0 0.5328 -0.0133 0.0329 -0.0378 

38 1 0.6786 0.008 0.0409 -0.0297 

39 1 0.7294 0.0068 0.0477 -0.023 

40 0 0.7438 -0.0186 0.0291 -0.0416 

Note: P=probability of endorsing an item given 𝜃. 

Figure 1. The CUSUM Chart for a Response Pattern without Aberrant Response 

 

Warm-up Effect 

 Table 3 provides information on one score pattern 

with a warm-up effect. This examinee’s true ability (𝜃) 

is 1.222, while the estimated ability (𝜃) is -0.063. The 

lower estimated 𝜃 value is probably because the first 
10 items' responses were generated based on the 

𝜃𝑤𝑎𝑟𝑚−𝑢𝑝 = 𝜃 − 2 = −0.778. The non-invariant ability 
setting for the warm-up effect severely underestimates 
this examinee's ability level. This example illustrates the 
negative influence of aberrant responses to ability 
estimation. And the column P is the probability of 

correctly answering items based on the examinee's 

estimated 𝜃 and item parameters. 

 Figure 2 gives the CUSUM chart of this response 
pattern. This examinee answers all of the first 9 items 
incorrectly. These consecutive incorrect responses do 

not lead the 𝐶𝑖
− line across the LB. Then this examinee 

performs better in the middle and late stages of the test. 
We can see an upward trend from the chart after the 
beginning stage. It even leads to the last item above the 

UB. It is because the 𝑇𝑖 , 𝐶
+, and 𝐶− were calculated 

based on the underestimated 𝜃 . So, the first 10 
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consecutive items with abnormal errors are not 

cumulative enough for the 𝐶− line to across the LB. 
However, the remaining expected responses 

accumulate a lot for the 𝐶+ line. It is challenging to 
locate the change point solely based on the chart. 

 

Table 3. CUSUM Procedure for a Warm-up Response Pattern  

Item Item score P 𝑇𝑖 𝐶+ 𝐶− 

1 0 0.622 -0.0155 0 -0.0155 

2 0 0.5418 -0.0135 0 -0.0291 

3 0 0.165 -0.0041 0 -0.0332 

4 0 0.4668 -0.0117 0 -0.0449 

5 0 0.4522 -0.0113 0 -0.0562 

6 0 0.1446 -0.0036 0 -0.0598 

7 0 0.372 -0.0093 0 -0.0691 

8 0 0.769 -0.0192 0 -0.0883 

9 0 0.6512 -0.0163 0 -0.1046 

10 1 0.5946 0.0101 0.0101 -0.0945 

11 0 0.2164 -0.0054 0.0047 -0.0999 

12 1 0.3959 0.0151 0.0198 -0.0848 

13 0 0.3862 -0.0097 0.0102 -0.0944 

14 1 0.4568 0.0136 0.0238 -0.0809 

15 1 0.6209 0.0095 0.0332 -0.0714 

16 0 0.1359 -0.0034 0.0298 -0.0748 

17 1 0.3634 0.0159 0.0457 -0.0589 

18 1 0.8703 0.0032 0.049 -0.0556 

19 0 0.3178 -0.0079 0.041 -0.0636 

20 1 0.6011 0.01 0.051 -0.0536 

21 1 0.7321 0.0067 0.0577 -0.0469 

22 0 0.5388 -0.0135 0.0442 -0.0604 

23 1 0.7238 0.0069 0.0511 -0.0535 

24 1 0.6607 0.0085 0.0596 -0.045 

25 1 0.637 0.0091 0.0687 -0.0359 

26 1 0.8354 0.0041 0.0728 -0.0318 

27 0 0.289 -0.0072 0.0656 -0.039 

28 0 0.4462 -0.0112 0.0544 -0.0502 

29 1 0.7456 0.0064 0.0608 -0.0438 

30 0 0.2114 -0.0053 0.0555 -0.0491 

31 1 0.3801 0.0155 0.071 -0.0336 

32 0 0.5579 -0.0139 0.0571 -0.0475 

33 1 0.2773 0.0181 0.0751 -0.0295 

34 0 0.2808 -0.007 0.0681 -0.0365 

35 1 0.2923 0.0177 0.0858 -0.0188 

36 1 0.3206 0.017 0.1028 -0.0018 

37 1 0.3506 0.0162 0.119 0 

38 0 0.4998 -0.0125 0.1065 -0.0125 

39 1 0.5606 0.011 0.1175 -0.0015 

  40  0  0.5788  -0.0145  0.103  -0.016  
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Figure 2. The CUSUM Chart for a Response Pattern with a Warm-up Effect 

 

Random Response 

 Table 4 provides information on one score pattern 

with random responses. This examinee's true ability (𝜃) 

is 0.537, while the estimated ability (𝜃) is 0.043. The 

lower estimated 𝜃  value is likely because the last 10 
items' responses were generated based on the random 
guessing probability of 0.2. It is a mimic of rapid 
guessing behavior. The column P is the probability of 
correctly answering items based on the examinee's 

estimated 𝜃 and true item parameters. 

 Figure 3 gives the CUSUM chart of this response 
pattern. This examinee performs well at the first 29 

items. The line of 𝐶1
+ even crossed over the UB at the 

24th and 29th items. However, from the 30th item, all 
choices made by this examinee are wrong. The 
consecutive incorrect responses result in 1 item below 

the LB. We can observe a clear downward trend of 𝐶− 
line from the 30th item. The change point of this 
examinee is around the 30th item based on Figure 3. 

 

Discussion 
 One of the most critical quality control tasks in 
testing is developing a mechanism to monitor 

examinees' behavior for potentially abnormal 
responses. Failure to address this problem may lead to 
inaccurate item and ability parameter estimations, 
biased equated scores, and misunderstanding of 
examinee performance. Researchers have developed 
many PFS in educational assessment fields to detect 
aberrant responses. Karabatsos (2003) compared the 
performances of 36 different PFS in detecting aberrant 
responses. However, these PFS indices were overall  
statistics based on all item responses. The positive 
(negative) residual in one place in the sequence might 
cancel a negative (positive) residual in another place. 

 SPC charts, widely used to monitor product quality 
in the manufacturing area, are also very promising in 
addressing the limitation of the overall PFS index. 
Many studies applied the CUSUM chart, one of the 
SPC charts, to detect aberrant responses (van 
Krimpen-Stoop & Meijer, 2000, 2001. 2002; Meijer, 
2002; Armstrong & Shi, 2009a, 2009b; Tendeiro & 
Meijer, 2012). The CUSUM method calculates PFS for 
every item in the test. It identifies aberrant responses 
based on the cumulative values of the PFS. The 
visualization of the test-taking process can be provided 
immediately. It allows us to do a local inspection of the 
whole test-taking procedure. However, the CUSUM
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Table 4. CUSUM Procedure for a Random Response Behavior  

Item Item score P 𝑇𝑖 𝐶+ 𝐶− 

1 1 0.6464 0.0088 0.0088 0 

2 1 0.5678 0.0108 0.0196 0 

3 1 0.18 0.0205 0.0401 0 

4 1 0.493 0.0127 0.0528 0 

5 0 0.4783 -0.012 0.0409 -0.012 

6 0 0.1581 -0.004 0.0369 -0.0159 

7 1 0.3969 0.0151 0.052 -0.0008 

8 1 0.7871 0.0053 0.0573 0 

9 1 0.6747 0.0081 0.0654 0 

10 1 0.6197 0.0095 0.0749 0 

11 0 0.2348 -0.0059 0.0691 -0.0059 

12 0 0.4214 -0.0105 0.0585 -0.0164 

13 0 0.4114 -0.0103 0.0483 -0.0267 

14 1 0.483 0.0129 0.0612 -0.0138 

15 1 0.6453 0.0089 0.0701 -0.0049 

16 0 0.1488 -0.0037 0.0663 -0.0086 

17 1 0.3881 0.0153 0.0816 0 

18 1 0.8818 0.003 0.0846 0 

19 0 0.341 -0.0085 0.0761 -0.0085 

20 1 0.6261 0.0093 0.0854 0 

21 1 0.7522 0.0062 0.0916 0 

22 1 0.5648 0.0109 0.1025 0 

23 1 0.7443 0.0064 0.1089 0 

24 1 0.6839 0.0079 0.1168 0 

25 0 0.661 -0.0165 0.1003 -0.0165 

26 1 0.8493 0.0038 0.104 -0.0128 

27 0 0.3111 -0.0078 0.0962 -0.0205 

28 1 0.4723 0.0132 0.1094 -0.0073 

29 1 0.7651 0.0059 0.1153 -0.0015 

30 0 0.2295 -0.0057 0.1096 -0.0072 

  31 0  0.4052  -0.0101  0.0994  -0.0173  

32 0 0.5836 -0.0146 0.0848 -0.0319 

33 0 0.2989 -0.0075 0.0774 -0.0394 

34 0 0.3025 -0.0076 0.0698 -0.047 

35 0 0.3145 -0.0079 0.062 -0.0548 

36 0 0.3439 -0.0086 0.0534 -0.0634 

37 0 0.3749 -0.0094 0.044 -0.0728 

38 0 0.5261 -0.0132 0.0308 -0.0859 

39 0 0.5863 -0.0147 0.0162 -0.1006 

  40  0  0.6042  -0.0151  0.0011  -0.1157  
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Figure 3. The CUSUM Chart for a Response Pattern with a Random Responses 

 

procedure based on PFS differs from the CUSUM 
procedure in production areas. The traditional 
CUSUM procedure has an underlying assumption: the 
variable to be investigated is approximately normally 
distributed. The distributions of PFS indices in 
educational assessments are usually far from normal. 
Therefore, the selection of boundary values for 
CUSUM charts based on PFS is not as straightforward 
as traditional procedures. 

  This article used a simulation study to demonstrate 
the procedure of CUSUM to detect aberrant response 
patterns. Two aberrant behaviors, warm-up effect, and 
random responses were used as examples. People who 
are not professionals in psychometrics can use the 
sequence of presenting information in the chart to 
identify various distinct kinds of unexpected response 
behaviors. Besides detecting aberrant responses, the 
CUSUM method can also be used as a diagnostic tool 
to identify compromised items. Lee and Lewis (2021) 
adopted the CUSUM method to detect items that 
might be exposed during continuous testing. 

 Despite all advantages previously discussed, the 
CUSUM method has some limitations. Firstly, to fully 
understand an examinee's test-taking process, we need 
to manually check the CUSUM control chart to locate 
the change point and identify potential aberrant 

behaviors. It can be time-consuming and laborious for 
a large sample. Secondly, if one response pattern 
contains too many aberrant responses, it might result 

in inaccurate ability estimates, as well as 𝑇𝑖, 𝐶
+, and 𝐶− 

values. The performance of the CUSUM method 
might be negatively affected. Our warm-up effect 
example is in line with this situation. Hong and Cheng 
(2019) discussed this "masking effect" and how to use 
a robust estimation method to address the problem. 

 Identifying an aberrant response pattern is always 
contentious, especially in high-stakes testing. The 
CUSUM is a statistical method. Its classification of 
subjects, “with or without aberrant responses,” is a 
statistical inference that can only be used as a 
supplement to identify abnormal responding 
examinees. In addition to item scores, other sources of 
evidence, such as response time, examinee's self-
reported surveys, and teacher evaluations, are needed 
to verify an abnormal respondent. 
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Appendix A. Monte Carlo Simulation Codes 

 
#This code use Monte Carlo simulation to identify the UB and LB for CUSUM#####  

#IMPORTANT NOTES: 

#packages library(mirt) 

library(mirtCAT) 

library(dplyr) 

#INPUT (files that need to be in working directory)  

# null 

#OUTPUT (files will be generated) 

# 1. "MonteCarlo.csv" - it provides UB and LB for each replication  

# 2. LB and UB value 

TL=40  

N=10000 

set.seed(123) 

b.par <- rnorm(TL) 

slopeint <- -b.par #mirt used slope IRT parameters 

 #####CUSUM process############## 

plus.CUSUM <- function(PFS){ 

 test.length=length(PFS) 

 Cplus=rep(NA,test.length) 

 Cplus[1]=max(0,PFS[1]) 

 for (k in 2:test.length){ 

 

  Cplus[k]=max(0,Cplus[k-1]+PFS[k],na.rm = TRUE) 



Practical Assessment, Research & Evaluation, Vol 28 No 2 Page 15 
Wan & Keller, Using CUSUM to Detect Aberrance  

 
} 

Cplus 

    } 

mins.CUSUM <- function(PFS){ 

 test.length=length(PFS) 

 Cmins=rep(NA,test.length) 

 Cmins[1]=min(0,PFS[1]) 

 for (k in 2:test.length){ 

  Cmins[k]=min(0,Cmins[k-1]+PFS[k],na.rm = TRUE) 

} 

Cmins 

} 

#create a matrix to save UB LB values  

LB=UB=rep(NA,100) 

CriPoint <- cbind(LB,UB)  

CriPoint <- as.data.frame(CriPoint)  

#response matrix 

Res <- matrix(NA,nrow = TL,ncol = 8) 

colnames(Res) <- 

c("id","theta","b","score","P","PFS","Cplus","Cmins") 

 Res[,"b"]=b.par 

Res <- as.data.frame(Res) 

#matrix saving extremest CUSUM values for 1 person of 1 replication 

ExtreValue <- matrix(NA,nrow = N,ncol =4 ) 
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colnames(ExtreValue) <- c("ID","Theta","cmax","cmin")  

ExtreValue <- as.data.frame(ExtreValue) 

# replicate 100 times  

for (t in 1:100) { 

 true.theta =rnorm(N) #each replication, randomly generate 10000     

 thetas 

dataset <- 

      simdata(a=rep(1,TL),d=slopeint,itemtype="dich",guess=rep(0,TL),     

      upper=rep(1,TL),  

          Theta=true.theta) 

#fixed ability estimation 

pars <- data.frame(a1 =rep(1,TL),  

         d=slopeint) 

mod <- generate.mirt_object(pars, itemtype = '2PL')  

# trait scores for pattern 

theta.est <-fscores(mod, response.pattern = dataset,method="MAP")[,1] 

for (i in 1:N) { 

 #response matrix for each person  

 Res <- Res%>% mutate(id=i, 

theta=theta.est[i],  

P=1/(1+exp(b-theta)),  

score=dataset[i,],  

PFS=(score-P)/TL,  

Cplus=plus.CUSUM(PFS),  
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Cmins=mins.CUSUM(PFS)) 

# extreme values for each replication 

ExtreValue[i,] <- Res%>%summarise(ID=first(id),  

   Theta=first(theta), 

   cmax=max(Cplus),  

   cmin=min(Cmins)) 

} 

CriPoint[t,] <- ExtreValue%>%summarise(LB=quantile(cmin,0.025), 

    UB=quantile(cmax,0.975)) 

print(t) 

} 

write.csv(CriPoint,file="MonteCarlo.csv")  

#it tells us the value of LB and UB 

apply(CriPoint,2,FUN=mean)%>%round(digits = 3) 
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Appendix B. CUSUM Plot Codes 

 
UB=0.114 

LB=0.114 

library(ggplot2) 

library(scales) 

library(reshape2) 

#######################plot result#################################### 

Plot.PFS <- function(n.order){ #need to specify the working directory 

of response files firstly 

filename=paste("Res",n.order,".csv",sep = “”) 

Per.Res <- read.csv(filename) 

target= 0 true.theta=Per.Res$true.theta[1] 

est.theta=Per.Res$est.theta[1] 

widedate <- Per.Res[,c("X","Cplus","Cmins")] 

names(widedate) <- c("ITEM_SEQUENCE","C+","C-") 

N.up = sum(widedate$`C+`>UB) 

N.bot = sum(widedate$`C-`<LB) 

maintitle <- ("Cusum Chart") 

sub.t = paste("\n True Theta=",true.theta,"\n Estimated 

Theta=",est.theta, "\n Above UDB =",N.up,"; Below LDB 

=",N.bot,sep=" ") 

longdate <- melt(widedate,id.vars = 'ITEM_SEQUENCE', variable.name = 

'Direction', value.name = 'CUSUM') 

#######using ggplot to draw the plot 

ggplot(longdate,aes(x = ITEM_SEQUENCE, y = CUSUM, shape = 

Direction, color = Direction))+ 

#draw the point and connected using lines 

geom_point()+ 
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scale_color_manual(values = c("C+" = 'steelblue','C-' = 

'darkslateblue')) + scale_shape_manual(values = c('C+' = 17, 

'C-' = 16))+ geom_line(linetype="dotdash")+ 

#put UB and LB 

geom_hline(yintercept=c(UB,LB), linetype="dashed", color = "red")+ 

geom_hline(yintercept=target, linetype="dashed", color = 

"darkgreen")+ geom_label(label="UDB", x=39.5,y=UB,size =2,color = 

"black")+ geom_label(label="LDB", x=39.5,y=LB,size =2,color = 

"black")+ 

 

#define the title and x y lables 

ggtitle(maintitle,subtitle = sub.t)+ 

xlab("Item sequence")+ ylab("Cumulative Sum of PFS")+ 

theme(plot.title = element_text(face="bold",hjust = 

0.5,size = 11), 

plot.subtitle = element_text(face="italic",hjust = 0.5,size = 10))+ 
 

 

#change the scale of x and y axis 

scale_x_continuous(breaks = seq(1, 40, by = 2))+ 

scale_y_continuous(breaks = 

scales::pretty_breaks(n = 10)) 

} 
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