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ABSTRACT 
Two plant samples of Monardella odoratissima 

were collected from southwestern Idaho. The 
fresh aerial parts were hydrodistilled to give pale-
yellow essential oils (3.67% and 3.38% yield), 
which were analyzed by gas chromatography 
(GC/MS, GC-FID, and enantioselective GC-MS). 
The essential oils were dominated by (+)-pulegone 
(76.3% and 72.7%) along with p-menth-3-en-8-ol 
(5.3% and 12.8%) and linalool (5.9% and 3.4%, 
> 96% (+)-linalool) as major components. The 
essential oil composition of M. odoratissima from 
Idaho is very different from that from Utah. This 
essential oil has been scarcely researched and 
likely represents a new chemical variant 
described for the species. With such a paucity of 
information, additional research is needed from 
other geographical locations within the range of 
M. odoratissima. 

INTRODUCTION 
Monardella Benth. (Lamiaceae) is a genus of 37 

species (World Flora Online, 2024) distributed in 
western North America (Kartesz,  2015), several of 
which have been used as herbal medicines by 
western North American native peoples (Moerman, 
1998). However, there has been very little work on 
the phytochemical constituents of this genus. 
Monardella odoratissima Benth. (mountain mint, 

desert mint, Lamiaceae) is a perennial plant that is 
found in sagebrush scrub to subalpine forests in the 
mountains of the Great Basin (Estiandan, 2017), 
including California, Oregon, Washington, Idaho, 
Nevada, Arizona, and as far east as western Colorado 
and western New Mexico (Figure 1). The plant is 
around 30-100 cm tall; the inflorescence of M. 
odoratissima is a head (16-22 mm wide) and is 
colored rose to purple; the leaves are opposite, 
lanceolate to ovate, and measure 18-27 mm (up to 45 
mm) long, and 6-10 mm (up to 20 mm) wide 
(Estiandan, 2017) (Figure 2). The plant was used by 
Native American tribes, including the Paiute and 
Shoshoni people, as traditional medicines. A 
decoction of the plant was taken as a remedy for 
colds and as a gastrointestinal aid for indigestion, 
flatulence, or minor indigestion (Moerman, 1998). 
The purpose of this work is to obtain and characterize 
the essential oil of M. odoratissima growing in the 
Owyhee Mountains of Idaho. Previously, three 
essential oil samples of Monardella undulata Benth., 
Monardella undulata var. undulata (syn. Monardella 
undulata Benth.), Monardella undulata var. 
frutescens Hoover (syn. Monardella undulata subsp. 
undulata), and Monardella crispa Elmer (syn. 
Monardella undulata subsp. crispa (Elmer) Elvin & 
A.C. Sanders), have been reported and were rich in 
pulegone (Tanowitz et al., 1987). Monardella 
hypoleuca A. Gray essential oil, on the other hand, 
was dominated by (E)-β-farnesene (Tanowitz et al., 
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1984). While this project was underway, a report on 
the essential oil of M. odoratissima from Utah 
appeared (Wilson et al., 2023). This work, then, 

compares the essential oil compositions of M. 
odoratissima from the Owyhee Mountains of Idaho 
and that from the Oquirrh Mountains of Utah. 

 
 

 
Figure 1. Range of Monardella odoratissima, based on (Estiandan, 2017). 
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Figure 2. Monardella odoratissima Benth. collected near Silver City, Idaho (43°2′43″ N, 116°46′36″ W, 1808 m asl). 
A: Photograph (by K. Swor). B: Scan of pressed plant (by W.N. Setzer).

 

 

MATERIALS AND METHODS 
Plant Material. Two different individual 

Monardella odoratissima plants were collected on 11 
August 2023, Owyhee Mountains, near Silver City, 
Idaho (43°2′43″ N, 116°46′36″ W, 1808 m asl). The 
plant was identified in the field by W.N. Setzer using 
a field guide (Turner and Gustafson, 2006) and 
verified by comparison with herbarium samples from 
the New York Botanical Garden (New York 
Botanical Garden). A voucher specimen (WNS-
Mog-7788) has been deposited with the University 
of Alabama in Huntsville herbarium. The fresh plant 
materials were frozen (–20 °C) until distilled. 

Essential Oil Extraction. The fresh/frozen aerial 
parts of M. odoratissima were each hydrodistilled 
using a Likens-Nickerson apparatus (Likens and 

Nickerson, 1964; Au-Yeung and MacLeod, 1981; 
Bouseta and Collin, 1995). The chopped plant 
samples (56.70 g and 34.36 g) were added to a 500-
mL flask, enough distilled water was added to cover 
the plant material, and distillation was carried with 
continuous extraction of the distillate with 
dichloromethane (20 mL) for 3 h, to give pale-yellow 
essential oils (2.08 g and 1.16 g, respectively). 

Gas Chromatographic Analysis. The M. 
odoratissima essential oils were analyzed by gas 
chromatography / mass spectrometry (GC/MS), gas 
chromatography with flame ionization detection 
(GC-FID), and enantioselective GC/MS as 
previously described (Satyal et al., 2023; Swor et al., 
2022). GC/MS: Shimadzu GCMS-QP2010 Ultra 
instrument (Shimadzu Scientific Instruments, 
Columbia, MD, USA), electron impact (EI) mode 
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(electron energy = 70 eV), scan range = 40–400 
atomic mass units, scan rate = 3.0 scans/s, ZB-5ms 
capillary column (Phenomenex, Torrance, CA, USA, 
60 m length, 0.25 mm inner diameter, 0.25 μm film 
thickness), helium carrier gas (column head pressure 
= 208.2 kPa, flow rate = 2.0 mL/min, injector 
temperature = 260 °C, ion source temperature = 260 
°C; GC oven temperature program (50 °C initial 
temperature, increased at 2 °C/min to 260 °C, then 
held at 260 °C for 5 min). For each essential oil 
sample, 0.1 μL (5% w/v solution in dichloromethane) 
was injected, splitting mode = 24.5:1. Retention 
indices (RI) were calculated based on a homologous 
series of n-alkanes (C8-C28) (van den Dool and Kratz, 
1963). The components in the essential oils were 
identified by comparison of RI values (within 5 RI 
units) and MS fragmentation (> 80% similarity) with 
reference compounds available in the Adams 
(Adams, 2007), FFNSC 3 (Mondello, 2016), NIST20 
(NIST20, 2020), and Satyal (Satyal, 2015) databases. 
GC-FID: Shimadzu GC 2010 instrument with FID 
detector (Shimadzu Scientific Instruments, 
Columbia, MD, USA), ZB-5 GC column 
(Phenomenex, Torrance, CA, USA, 60 m ´ 0.25 mm 
´ 0.25 μm film thickness), same operating conditions 
as above for GC/MS. The component percentages 
were calculated from raw peak integration without 
standardization (% compound = 100% ´ compound 
peak area / total integration). Chiral GC/MS: 
Shimadzu GCMS-QP2010S instrument (Shimadzu 
Scientific Instruments, Columbia, MD, USA), 
Restek B-Dex 325 column (Restek Corp., Bellefonte, 
PA, USA, 30 m ´ 0.25 mm diameter ´ 0.25 μm film 
thickness), injector and detector temperatures = 240 
°C. He carrier gas (column head pressure = 53.6 kPa, 
flow rate = 1.00 mL/min); GC oven temperature 
program (50 °C initial temperature held for 5 min, 
increased to 100 °C at a rate of 1.0 °C/min, then 
increased to 220 °C at a rate of 2 °C/min). For each 
sample, 0.3 μL (5% w/v solution in dichloromethane) 
was injected, splitting mode = 24.0:1. The 
enantiomers were determined by comparison of RI 
values with authentic samples (Sigma-Aldrich, 
Milwaukee, WI, USA), which are compiled in our in-
house database; enantiomer ratios were calculated 
from raw peak areas. 

Multivariate Analyses. A hierarchical cluster 
analysis (HCA) was carried out to visualize the 
similarity and differences of the essential oil samples 
using the distribution of essential oil components 
from this study and the study by Wilson and co-
workers (Wilson et al., 2023). The three M. 
odoratissima samples were treated as operational 
taxonomic units (OTUs), Pearson correlation was 
used to measure of similarity, and the unweighted 
pair group method with arithmetic average 
(UPGMA) was used to define the clusters. Principle 
component analysis (PCA) was undertaken to verify 
the HCA analysis. The HCA and PCA analyses were 
performed using XLSTAT v. 018.1.1.62926 
(Addinsoft, Paris, France). 

In-Silico Bioactivity Predictions. The structure of 
the major essential oil component, pulegone, was 
entered into the PASS Online server (Filimonov et 
al., 2014; Way2Drug, 2024), which automatically 
generated potential biological activities. The 
physicochemical properties of pulegone were 
obtained by entering the structure into the Swiss-
ADME online server (Daina et al., 2017; Swiss 
Institute of Bioinformatics, 2024). 

RESULTS AND DISCUSSION 

Hydrodistillation of the aerial parts of M. 
odoratissima gave pale-yellow essential oils in 
yields of 3.67% and 3.38% for samples #1 and #2, 
respectively. Gas chromatographic analysis (GC/MS 
and GC-FID) led to identification of 89 components 
in the essential oils (Table 1), which accounted for 
100% and 99.9% of the compositions of the two 
samples. The major components in the essential oils 
were the oxygenated monoterpenoids pulegone 
(76.3% and 72.7% for samples #1 and #2, 
respectively), p-menth-3-en-8-ol (5.3% and 12.8%), 
and linalool (5.9% and 3.4%). 

The essential oil composition of M. odoratissima 
from southwestern Idaho is in complete contrast to 
that reported previously from the Oquirrh Mountains 
of Utah (Wilson et al., 2023). In the previous report, 
the major components were limonene (27.7%), 1,8-
cineole (12.1%), (E)-β-ocimene (6.9%), and 
pulegone (4.3%). Furthermore, linalool was only 
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0.04% and p-menth-3-en-8-ol was not observed. To 
visualize the similarities between the Idaho samples 
and the difference compared to the Utah sample, both 
hierarchical cluster analysis (HCA) and principal 
component analysis (PCA) were carried out (Figures 
3 and 4, respectively). The HCA clearly shows 
striking similarity between the two Idaho samples (> 

99% similarity) and differences compared to the 
Utah sample (only 12% similarity). The PCA 
confirms the similarities between the two Idaho 
samples, with correlations to pulegone, p-menth-3-
en-8-ol, and linalool, and differences compared to 
the Utah sample (correlating with limonene, 1,8-
cineole, and (E)-β-ocimene).

  
 
Table 1. Chemical composition (%) of Monardella odoratissima essential oil from the Owyhee Mountains, Idaho. 

RIcalc
1 RIdb

2 Compound #1 #2 

850 850 (2E)-Hexenal 0.1 0.1 

875 873 2-Methylbutyl acetate  tr3 tr 

913 913 Isobutyl isobutyrate tr tr 

923 923 Tricyclene tr - 

926 927 α-Thujene tr tr 

933 933 α-Pinene 0.7 0.3 

949 950 Camphene 0.4 tr 

953 951 3-Methylcyclohexanone tr tr 

962 964 Benzaldehyde - tr 

969 967 Isoamyl propionate 0.1 tr 

972 972 Sabinene 0.4 0.3 

976 973 1-Octen-3-one 0.1 0.2 

977 978 β-Pinene 0.6 0.4 

979 978 1-Octen-3-ol 0.1 tr 

984 984 3-Octanone 0.1 tr 

988 989 Myrcene 0.3 0.2 

1005 1004 p-Mentha-1(7),8-diene tr tr 

1015 1015 2-Methylbutyl isobutyrate tr tr 

1017 1017 α-Terpinene tr - 

1024 1025 p-Cymene tr tr 

1027 1026 2-Acetyl-3-methylfuran  - tr 

1029 1030 Limonene 1.4 0.9 

1031 1031 β-Phellandrene  tr tr 

1032 1032 1,8-Cineole 1.0 0.9 

1035 1035 (Z)-β-Ocimene tr tr 

1044 1045 Phenylacetaldehyde 0.1 tr 

1045 1046 (E)-β-Ocimene 0.1 tr 

1057 1056 Artemisia ketone 0.2 tr 

1058 1058 γ-Terpinene tr tr 

1070 1073 p-Mentha-3,8-diene 0.1 0.2 

1070 1069 cis-Linalool oxide (furanoid) 0.1 tr 

1085 1086 Terpinolene 0.1 tr 

1086 1086 trans-Linalool oxide (furanoid) tr 0.1 
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RIcalc
1 RIdb

2 Compound #1 #2 

1101 1101 Linalool 5.9 3.4 

1103 1103 2-Methylbutyl 2-methylbutyrate 0.1 0.1 

1105 1107 2,2,6-Trimethyl-3-keto-6-vinyltetrahydropyran 0.1 0.1 

1122 1122 trans-p-Mentha-2,8-dien-1-ol 0.1 0.1 

1137 1137 cis-p-Mentha-2,8-dien-1-ol 0.1 0.1 

1146 1146 trans-Verbenol 0.1 0.1 

1151 1149 p-Menth-3-en-8-ol 5.3 12.8 

1163 1164 Menthofuran tr 0.1 

1165 1166 iso-Menthone 0.3 0.4 

1172 1170 δ-Terpineol - tr 

1173 1170 Borneol 0.7 - 

1175 1176 trans-iso-Pulegone 1.1 1.6 

1181 1180 Terpinen-4-ol 0.1 0.1 

1196 1195 α-Terpineol 0.4 0.5 

1201 1201 cis-Piperitol 0.1 0.1 

1209 1208 Verbenone 0.1 0.1 

1217 1216 Octadec-1-ene 0.1 0.2 

1220 1221 m-Isopropylbenzaldehyde 0.2 0.2 

1241 1241 Pulegone 76.3 72.7 

1244 1246 2,4-Diisopropyl-1,1-dimethyl cyclohexane 0.1 0.1 

1262 1262 Pulegone oxide A tr tr 

1269 1270 iso-Piperitenone - tr 

1276 1276 Neryl formate tr tr 

1280 1278 neo-iso-Pulegyl acetate - tr 

1284 1285 Bornyl acetate tr tr 

1288 1287 Pulegone oxide B 0.2 0.5 

1291 1290 Menthyl acetate tr 0.1 

1291 1290 Indole 0.2 0.3 

1307 1308 neo-iso-iso-Pulegyl acetate - tr 

1310 1306 Dihydrocarvyl acetate 0.1 0.2 

1338 1339 Piperitenone 0.3 0.2 

1375 1375 α-Copaene tr tr 

1383 1382 β-Bourbonene 0.2 0.2 

1384 1385 (E)-Jasmone 0.1 - 

1389 1390 trans-β-Elemene tr tr 

1392 1394 (Z)-Jasmone 0.4 0.2 

1417 1417 (E)-β-Caryophyllene tr tr 

1426 1427 γ-Elemene tr tr 

1429 1430 β-Copaene tr tr 

1432 1432 trans-α-Bergamotene - tr 

1446 1447 Geranyl acetone - tr 

1451 1452 (E)-β-Farnesene 0.1 0.3 
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RIcalc
1 RIdb

2 Compound #1 #2 

1480 1482 Germacrene D 0.7 0.4 

1489 1489 (Z,E)-α-Farnesene 0.2 0.2 

1494 1497 Bicyclogermacrene tr 0.1 

1503 1504 (E,E)-α-Farnesene 0.5 0.6 

1517 1518 δ-Cadinene tr tr 

1576 1576 Spathulenol - 0.1 

1606 1607 Lauryl acetate tr tr 

1639 1639 Phenethyl hexanoate tr tr 

1640 1642 Methyl (Z)-jasmonate - tr 

1839 1841 Phytone tr tr 

2144 2143 Serratol - 0.1 

2300 2300 Tricosane tr tr 

2500 2500 Pentacosane 0.1 0.1 

2700 2700 Heptacosane 0.1 0.1 
  Monoterpene hydrocarbons 4.0 2.3 
  Oxygenated monoterpenoids 92.4 94.1 
  Sesquiterpene hydrocarbons 1.7 1.7 
  Oxygenated sesquiterpenoids 0.0 0.1 
  Benzenoid aromatics 0.5 0.5 
  Others 1.3 1.2 
  Total identified 100.0 99.9 

1 RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a ZB-5ms column.  
2 RIdb = Reference retention index obtained from the databases (Adams, 2007; Satyal, 2015; Mondello, 2016; NIST20, 2020).  
3 tr = trace (< 0.05%). 
 

 
Figure 3. Dendrogram obtained by cluster analysis of the compositions of Monardella odoratissima 
essential oils from Idaho (this work) and from Utah (Wilson et al., 2023). 
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Figure 4. Principal component analysis of the essential oils of Monardella odoratissima from Idaho (this work) and 
from Utah (Wilson et al., 2023). 

 
 

The reasons for the vast differences are not clear. 
Climatic (Jaouadi et al., 2023), edaphic (Karimi et 
al., 2020; Vaičiulytė et al., 2022), phenological 
(Porres-Martínez et al., 2014; Mounira et al., 2022), 
seasonal (Lakušić et al., 2013; Méndez-Tovar et al., 
2016), or genetic (Martínez-Natarén et al., 2014; 
Leontaritou et al., 2020) differences can be 
responsible the variations in essential oil 
compositions. In this work, the plants were collected 
in the second week of August (the plants were in full 
flower) while the Utah sample was collected in the 
third week of July (also full flower), so seasonal 
variation does not seem likely. The differences in 
composition may not be surprising, however; the two 
populations are disjunct (see Figure 1), so 

phytochemical divergence may be expected. In 
addition, the elevations of the collection sites were 
different (1808 m in the Idaho collection and 3015 m 
in the Utah collection), which may account for the 
difference in compositions (Alimohammadi et al., 
2017; Talebi et al., 2019). It is likely that the Idaho 
samples and the Utah sample represent different 
chemotypes of M. odoratissima. Monarda fistulosa 
L. essential oil compositions indicate at least five 
different chemotypes (thymol, carvacrol, p-
cymene/carvacrol, geraniol, and α-terpineol), which 
can be attributed to different geographical areas of 
cultivation (Lawson et al., 2021a). 

Pulegone concentrations in members of the 
Lamiaceae are known to show seasonal effects. 
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Pulegone is the precursor in the biosynthesis of 
isomenthone and menthone (Croteau and 
Venkatachalam, 1986; Fuchs et al., 1999), and a 
seasonal study of Pycnanthemum virginianum 
showed a seasonal reduction in pulegone 
concentration with concomitant increase in 
isomenthone and menthone concentrations over the 
growing season (Setzer et al., 2021). Thus, it would 
be interesting to compare M. odoratissima essential 
oil compositions from samples collected earlier and 
later in the season.  

The high concentration of pulegone in this study 

may account for the traditional use of the plant to 
treat colds and indigestion. Pulegone was used for 
Prediction of Activity Spectra for Substances (PASS) 
(Table 2) and Absorption, Distribution, Metabolism, 
and Excretion (ADME) in-silico predictions (Table 
3). In the PASS prediction, the Pa is the probability 
for the compound to be active for the activity while 
the Pi is the probability to be inactive. The Pa reflects 
the similarity of the structure of a given compound to 
the structures of the typically active compounds in 
the training set. If the Pa is greater than 0.70 the 
chances of finding experimental activity are high 
(Filimonov et al., 2014). 

 
 
 
Table 2. Prediction of biological activities by the Prediction of Activity Spectra for Substances (PASS) online webserver for 
pulegone, the major component in the essential oil of Monardella odoratissima. 

Biological Activity Pa 1 Pi 2 

Carminative 0.937 0.001 

Antieczematic 0.886 0.006 

Antiseborrheic 0.783 0.022 

Immunosupressant 0.708 0.016 

Dermatologic 0.607 0.015 

Phobic disorders treatment 0.669 0.090 

Anti-inflammatory 0.060 0.033 

Antipruritic 0.573 0.020 

Anti-picornavirus 0.558 0.030 
1 Pa = Probability to be active. 2 Pi = Probability to be inactive. 
 
 
 
 

The predicted carminative activity of pulegone is 
consistent with the use of M. odoratissima to treat 
gastrointestinal disturbances, including flatulence, 
while the predicted anti-picornavirus activity of 
pulegone is consistent with the use of the plant to 
treat colds. Rhinovirus (a picornavirus) is the most 
common viral infectious agent in humans and is the 
predominant cause of the common cold (Andrews, 
1966). Interestingly, pulegone is predicted to show 
antieczematic, antiseborrheic, dermatological, anti-
inflammatory, and antipruritic activities, but there are 

apparently no reports on traditional uses of M. 
odoratissima to treat dermatological conditions. 

The drug-likeness and ADME properties (Table 
3) are consistent with oral bioavailability of 
pulegone. Note, however, that pulegone and its 
metabolites have exhibited long-term toxicity in 
rodent models (Cohen et al., 2020), including 
carcinogenic activities in mice (liver tumors) and 
female rats (urinary bladder tumors) (National 
Toxicology Program, 2011; Da Rocha et al., 2012). 
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Table 3. Drug-likeness and ADME properties predicted by in-silico studies using the SwissADME online webserver for 
pulegone. 
Physico-Chemical Properties 

Molecular weight 152.23 g/mol 

Hydrogen bond acceptors 1 

Hydrogen bond donors 0 

Number of rotatable bonds 0 

Topological polar surface area (tPSA) 17.07 Å2 

Absorption Parameters 

Water solubility (Consensus Log S) -2.74 

Lipophilicity (Consensus Log Po/w) 2.62 

Water solubility prediction Soluble a 

Drug Likeness Prediction 

Lipinski “Rule of Five” b Yes, 0 violations 

Bioavailability 

Bioactivity score 0.55 c 

Distribution Parameters Prediction 

Skin permeability (Log Kp (cm/s) d -5.04 

Gastrointestinal Absorption e High 

Blood-Brain Barrier (BBB) Permeability e Yes 
a Pulegone is water soluble, albeit to a small degree, as the Log S suggests; the water solubility of pulegone has been 
experimentally determined (1.38 g/L at 20 °C) (Smyrl & LeMaguer 1980). b Lipinski’s Rule of Five: An orally active drug should 
have no more than 5 hydrogen bond donors, no more than 10 hydrogen bond acceptors, a molecular weight less than 500 g/mol, 
and a calculated octanol-water partition coefficient (Log P) less than 5 (Lipinski et al,. 1997). c A bioavailability score of 0.55 
suggests > 10% bioavailability in rat or measurable Caco-2 permeability (Martin, 2005). d (Potts and Guy, 1992). e Gastrointestinal 
absorption and BBB permeability are predicted using the Brain Or IntestinaL EstimateD permeation (BOILED-Egg) method 
(Daina and Zoete, 2016). 
 
 
 
 
 

The enantiomeric distributions of chiral essential 
oil components of M. odoratissima were determined 
using enantioselective GC/MS (Table 4). The (–)-
enantiomers were dominant for α-pinene (> 76%), 
camphene (97%), sabinene (> 72%), limonene 
(97%), 1-octen-3-ol (100%), borneol (100%), α-
terpineol (100%), and germacrene D (100%). On the 
other hand, the (+)-enantiomers predominated in 
linalool (> 96%), iso-menthone (100%), and 
pulegone (100%). β-Pinene was nearly racemic in M. 
odoratissima. In comparison, the enantiomeric 

distribution observed in M. odoratissima from Utah 
was 70.6% (–)-α-pinene, 59.0% (+)-sabinene, 66.1% 
(–)-β-pinene, 80.8% (–)-limonene, 100% (+)-
pulegone, and 75.0% (+)-α-terpineol (Wilson et al., 
2023). Thus, the enantiomeric distributions are 
consistent between the Idaho and Utah samples for 
α-pinene, β-pinene, limonene, and pulegone, but the 
major enantiomers are reversed for sabinene and α-
terpineol.
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Table 4. Enantiomeric distribution (% enantiomer) of chiral components in the essential oil of Monardella odoratissima. 

Compound RIdb RIcalc #1 #2 

(–)-α-Pinene 976 978 79.6 76.9 

(+)-α-Pinene 982 984 20.4 23.1 

(–)-Camphene 998 999 97.3 - 

(+)-Camphene 1005 1006 2.7 - 

(+)-Sabinene 1021 1021 27.6 26.1 

(–)-Sabinene 1030 1030 72.4 73.9 

(+)-β-Pinene 1027 1027 43.6 46.5 

(–)-β-Pinene 1031 1030 56.4 53.5 

(–)-Limonene 1073 1071 97.1 96.8 

(+)-Limonene 1081 1079 2.9 3.2 

(–)-1-Octen-3-ol 1 1218 1220 100.0 - 

(–)-Linalool 1228 1229 1.6 3.2 

(+)-Linalool 1231 1232 98.4 96.8 

(+)-iso-Menthone 2 1302 1301 100.0 100.0 

(–)-Borneol 1335 1332 100.0 100.0 

(+)-Borneol 1340 - 0.0 0.0 

(–)-α-Terpineol 1347 1350 100.0 100.0 

(+)-α-Terpineol 1356 - 0.0 0.0 

(+)-Pulegone 3 1408 1409 100.0 100.0 

(+)-Germacrene D 1519 - 0.0 0.0 

(–)-Germacrene D  1522 1522 100.0 100.0 
1 Only (–)-Octen-3-ol was available as a standard. 2 Only (+)-iso-Menthone was available as a standard. 3 Only (+)-Pulegone 
was available as a standard.

 
Although there are no additional comparisons to 

be made within the Monardella genus in terms of 
enantiomeric distributions, comparisons are possible 
with Monarda (Lawson et al., 2021a; 2021b). While 
(–)-α-pinene was the major enantiomer in M. 
odoratissima, the (+)-enantiomer predominated in 
Monarda essential oils. (–)-Limonene was the major 
enantiomer in M. odoratissima as well as Monarda 
fistulosa essential oils. (+)-Linalool dominated in M. 
odoratissima, but (–)-linalool was the major 
enantiomer in M. fistulosa and M. bradburiana. (–)-
Borneol was the exclusive enantiomer in M. 
odoratissima as well as Monarda. (+)-α-Terpineol 
dominated in Monarda essential oils. 

CONCLUSIONS 
The essential oil composition of Monardella 

odoratissima from the Owyhee Mountains, Idaho, 

has been determined and complements an 
investigation from the Oquirrh Mountains of Utah. A 
comparison with M. odoratissima from the Oquirrh 
Mountains shows remarkable differences in both 
essential oil composition as well as differences in the 
distribution of enantiomeric monoterpenoids. The 
differences may be due to the disjunct populations of 
the two collections, differences in elevation as well 
as other environmental differences between the two 
collection sites. The Utah and Idaho samples likely 
represent different chemotypes and additional 
research is needed to explore this. Pulegone 
dominated the essential oil composition from Idaho, 
but pulegone concentrations are known exhibit 
seasonal variation in members of the Lamiaceae. It 
would be interesting to compare the essential oil 
compositions from other separate populations such 
as locations in New Mexico, central Washington, 
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central Oregon, and southern Nevada. It would also 
be informative to study the seasonal variation of 
essential oil compositions of this plant in as well as 
sampling M. odoratissima from other geographical 
locations and elevations. 
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