

communication +1 is a peer-reviewed open-access journal. © 2025 Zachary Aaron Furste. This is an open-access article distributed under
the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.

 OPEN ACCESS

 Furste, Zachary, 2025. “Stuff You Can Click:
Sensing Infrastructure with Software Emulation.”

communication +1, vol XI, iss I, pp. 1-32.
DOI: https://doi.org/10.7275/cpo.1939

Stuff You Can Click: Sensing Infrastructure with
Software Emulation
Zachary Aaron Furste, University of Amsterdam, Netherlands, z.a.furst@uva.nl

How can we sense infrastructure? This article begins by considering the role of the body in
some recent influential approaches to media infrastructure. The critical work of Lisa Parks,
as well as the cartographic project of Kate Crawford and Vladan Joler, prominently feature
the eye, whereas the media archaeologies of Wolfgang Ernst and Erkki Huhtamo proceed
from the hand's interaction with individual media devices. By contrast, durational "recipes"
from Colorado's Media Archaeology Lab and "walking tours" led by Amsterdam's Critical
Infrastructure Lab emphasize embodiment in time and (urban) space.

In the context of this taxonomy, the second part of the article describes in-browser
software emulation. Detailing the history of emulation and the technical processes that
brought it into the browser, I argue that sites like infinitemac.org stage a tactile reckoning
with not only software history, but also the underlying techniques of network
infrastructure.

1

Dall’osservatorio: Eyes on infrastructure

In a 2015 essay, Lisa Parks outlined a “stuff you can kick” theory of media
infrastructures. The piece convincingly argues that attention is due not only to
narratives, symbols, or aesthetics contained in a given piece of media, but also to the
“material resources that are arranged and used to distribute audiovisual content.”1
Along with scholars like Paul Edwards, Geoffrey Bowker, and Nicole Starosielski,
Parks has provoked media theory to reconsider an aesthetic bias that privileges the
representational in favor of the infrastructural, operational, and microtemporal. As
Parks and Starosielski put it, “our current mediascapes would not exist without our
current media infrastructures.”2

I am on board for all of this. I would like to note, however, that this “stuff you
can kick” formulation invokes, but defers, embodied action and sensation. The essay
does not quite, in other words, call on media academics to lace up steel-toed boots.
Rather, it elegantly reflects on some filmic and photographic documentation of other
laborers—postal workers in Washington, D.C.; electrical linemen in Southern
California; police officers and special forces soldiers in Iran—carrying, stretching, and
stomping infrastructure.

To be sure, given the constellation of historical and geographical
infrastructures in question, scholars of such mediascapes sit at a necessary remove.
Kate Crawford’s widely cited Atlas of AI, for example, presents a “topographical
approach [to offer] different perspectives and scales.”3 Drawing on methods from
science and technology studies and art history, Crawford describes the book’s
approach as “walking through the many landscapes of computation and seeing how
they connect.”4 She stresses the counter-hegemonic valence of this mapping and the
subjective aspect of visualization: “we gain a better understanding of AI’s role in the
world by engaging with its material architectures, contextual environments, and
prevailing politics and by tracing how they are connected.”5 Atlas of AI marks an
important intervention into often dematerialized discourses surrounding artificial
intelligence.

1 Lisa Parks, “‘Stuff You Can Kick’: Toward a Theory of Media Infrastructures,” in Between Humanities

and the Digital, eds. Patrik Svensson and David Theo Golberg (Cambridge, MA: MIT Press, 2015),
356.

2 Lisa Parks and Nicole Starosielski, “Introduction” in Signal Traffic: Critical Studies of Media
Infrastructures (Urbana, IL: University of Illinois Press, 2014), 1.

3 Kate Crawford, Atlas of AI (New Haven: Yale University Press, 2021), 11.
4 Atlas of AI, 11.
5 Atlas of AI, 12.

2

I would again point out the implicit model it employs: documentation,
diagramming, presentation to the senses for slow contemplation.

Crawford has recently extended this tracing—the visual apprehension of
systems of immense complexity—in Calculating Empires, an ongoing installation
project in collaboration with Vladan Joler (figure 2). In this work, the “walking
through” becomes a bit more literal, even if the landscapes—installed at the
Osservatorio of the Fondazione Prada in Milan (November 23, 2023–January 29, 2024)
and as part of Poetics of Encryption KW Institute of Contemporary Art in Berlin
(February 17, 2024–May 26, 2024)—remain fundamentally diagrammatic. Arranged
across several centuries, hundreds of topoi, and thousands of custom illustrations, the
KW press release describes the project as a “24 meter-long map charting how power

Figure 1 – Documentation of Calculating Empires at the Osservatorio of Fondazione Prada in Milan.
Photos by Piercarlo Quecchia. Courtesy Fondazione Prada.

3

and technology have been intertwined since 1500.”6 Crawford has stated that the
overwhelming aspect of the experience is the point, and that the pair hopes to elicit
slow reading and the “radical act of contemplation.”7

Hands-on objects

Yet, as the artist (and Crawford collaborator) Trevor Paglen contends, “human visual
culture has become a special case of vision, an exception to the rule.”8 The “radical act
of contemplation” in Calculating Empires functions as an important counterpoint to
both mainstream modalities of instant algorithmic gratification and the “hyperscale”
processing that circulates this culture. It also necessarily elides the processual, freezing

6 Press release at https://www.kw-berlin.de/en/poetics-of-encryption-conversation-kate-crawford.
7 Crawford’s comments in presentation and discussion with Nadim Samman at KW Institute for

Contemporary Art, Berlin, February 18, 2024, as part of the Poetics of Encryption program.
8 “Invisible Images,” The New Inquiry (December 8, 2016). https://thenewinquiry.com/invisible-images-

your-pictures-are-looking-at-you/.

Figure 2 – Documentation of Calculating Empires at the Osservatorio of Fondazione Prada in Milan.
Photos by Piercarlo Quecchia. Courtesy Fondazione Prada.

4

these flows not only into words, illustrations, and diagrams, but also into select
material objects.

In the installation in Milan, the black box diagrams of Calculating Empires are
accompanied by display cases filled with artifacts. One case contains silicon wafers,
punch cards, an NVIDIA GPU, a spy camera, and a polygraph machine (figure 3).
Another lays out 28 samples of the minerals used in the production of computational
technology (figure 4). In this way, the exhibition activates the viewer’s perception
beyond the two-dimension vector-based illustrations and charts, connecting to
theories of the materiality of “things.”9 Inhering in the lithium and graphite samples,
of course, are not only the labor processes of excavation, circulation, and
transformation into computational machinery, but also geological histories.10 A
viewer thus walks through the “black box” to arrive at familiar museological displays
which present the “thingness” behind the nodes in Crawford and Joler’s diagrams.

9 See, e.g., Bill Brown, “Thing Theory,” Critical Inquiry 28, no. 1 (2001): 1-22.
10 See Jakko Kemper, “Deep Time and Microtime,” Theory, Culture, & Society (2024); Jussi Parikka, A

Geology of Media (Minneapolis: University of Minnesota Press, 2015).

Figure 3 – Display of physical objects in Calculating Empires, Osservatorio of Fondazione Prada in
Milan. Photos by Piercarlo Quecchia. Courtesy Fondazione Prada.

5

While this approach is diagrammatic in its placement of objects into the visual
rhetoric of a museum display, it is careful to avoid uncritical pretense to “objective”
documentation; Crawford has cited the speculative practice of Aby Warburg’s
Bilderatlas Mnemosyne as an inspiration.11 Still, the only physically manipulable
component of the installation, tellingly, are the blueprints of the diagrams awaiting
the visitor an architect table (figure 1). Calculating Empires asks a viewer to trace, chart,
view, apprehend, and understand.

I do not wish to discount the contribution of these interventions by Crawford
and Joler (nor of Parks and other advocates of an infrastructural approach to media
studies). Instead, I note a productive tension between the visual/representational and
the material/infrastructural. Clearly, artists and writers should engage infrastructure
with the tools they have. But, if as Wolfgang Ernst has argued, “the essence of technical
media is revealed only in their temporal operations,” is something left on the table, so
to speak, by contemplative, diagrammatic, visually oriented approaches?12

11 Kate Crawford in conversation with Nadim Samman at KW, Berlin, Germany, February 24, 2024,
part of Poetics of Encryption.

12 Chronopoetics (New York: Rowman & Littlefield, 2016), vii.

Figure 4 – Display case with elements and minerals in Calculating Empires, Osservatorio of
Fondazione Prada in Milan. Photos by Piercarlo Quecchia. Courtesy Fondazione Prada.

6

The inclusion of material objects recalls a strain of media archaeology that
extends a kind of Wunderkammer approach to collecting curious objects. These
collections, contra conventional museum exhibitions, invite hands-on engagement
with their wonders. In addition to serving as a staple of museum education
programming, this tactile disposition has spurred scholars in the field of media
archaeology. Ernst argues that chronopoetics not only should shape how we interpret
technical media, but time itself. His paradigmatic case is a radio receiver which, when
it operates, does so across the very same circuits and so in a manner processually
identical to when it was first used.

Ernst’s chronopoetics illuminates the microtemporal and operative nature of
contemporary media. Still, it shares with other media archaeological approaches
something of a bias toward individual media objects. So too with the wonderful Media
Archaeological Fundus curated by Ernst at Humboldt Universität in Berlin, which
inventories discrete objects.13 YouTube videos documenting the use of each object,
Ernst’s hands emerging from offscreen to operate a machine in their way isolate each
apparatus as an individual unit of study, even if broader systems (such as terrestrial
AM transmission or PAL video, as in figure 5) are implied.

13 https://www.musikundmedien.hu-berlin.de/de/medienwissenschaft/medientheorien/fundus/media-
archaeological-fundus. See also Darren Wershler, Lori Emerson, and Jussi Parikka, The Lab Book
(Minneapolis: University of Minnesota Press, 2022): 73-78 & 94-92.

Figure 5 – Screenshot from YouTube video in which a hand demonstrates the magnetic deflection of
a cathode ray tube from the Media Archaeological Fundus at Humboldt University in Berlin.

7

Erkki Huhtamo’s research, to name another example, is intimately connected
to his own collection of historical media devices; his essays and books are replete with
images captioned with “from the author’s collection.”14 Huhtamo, whose emphasis on
the discursive “topoi” surrounding media practice is often framed in distinction to the
strict technological focus of Kittler and Ernst, shares with his German counterparts
an investment in the value of particular objects as evidence for a new media history.
In Huhtamo’s hands, a particular media device acts as a “rare survivor opens a
peephole into a lost media cultural moment which it helps bring back to life.”15

To recap the taxonomy that I’ve developed of aesthesis with media objects: the
critical essay by Parks uses the tool of visual analysis and historical argumentation to
interpret recordings related to media infrastructures. Crawford’s Atlas picks up on
this, emphasizing a speculative and embodied cartographic tradition. As an
exhibition, this approach is architecturally enframed and intentionally overwhelming
with diagrammatics to provoke contemplation and understanding in a viewer. Ernst
stresses the manipulability and operationality of media devices. Huhtamo collects the
oddities to augment media history and unsettle assumptions about contemporary

14 See, e.g. the preface to Illusions in Motion (Cambridge, MA: MIT Press, 2013). See also “Artifacts of
Media Archaeology: Inside Professor Erkki Huhtamo’s Office” video by Daily Bruin,
https://www.youtube.com/watch?v=Ks9tyaft7Gs/.

15 Erkki Huhtamo and Doron Galili, “The Pasts and Prospects of Media Archaeology.” Early Popular
Visual Culture 18, no.4 (2020): 337.

Figure 6 – Screenshot from a YouTube video by The Daily Bruin showing Erkki Huhtamo operating
a Mutoscope, one of the early moving image devices in his collection.

8

media cultures by restoring lost topoi from the past, though in both cases these object-
inventories tend to lose focus on infrastructural flows.

Into the infrastructural flow

The rich recent discourse of hacking, “media labs” and other kinds of hands-
on media archaeological practice suggests other possibilities for engaging technical
systems.16 Lori Emerson at the Media Archaeology Lab at the University of Colorado
Boulder has emphasized the “recipes” and “experiments” possible with legacy devices.
The MAL’s “Other Networks” projects, for example, take up communication
networks that existed before (or alongside of) TCP/IP, the backbone of the Internet.

16 See Wershler, Emerson, and Parikka, The Lab Book.

Figure 7 – Documentation of a Media Archaeology Lab's experiment showing Lori Emerson’s Twitter
feed transmitted over VHF radio to 8 analog televisions.

9

Workshops have dealt with short wave radio, smoke signals, semaphore, and analog
TV broadcasts (figure 7). 17

Expanding avenues of engagement with media technology has clear
pedagogical advantages, allowing students with different learning styles to encounter
historical material across different technological paradigms. It also centers focus on
the processual and interlocking aspects of mediascapes.

Likewise, the Critical Infrastructure Lab based at the University of
Amsterdam hosts “infrastructure walks” to observe wireless equipment in urban
settings. Taking groups through Berlin and Amsterdam, scholars Niels ten Oever and
Maxigas also occasion embodied experiences in which familiar cityscapes are refigured
in terms of the web of technologies hiding in plain sight (figure 8). These walks put
into literal motion the urban media archaeological approach outlined by Shannon
Mattern.18

In the rest of this article, I consider another onramp to embodied, processual
engagement with material infrastructure: in-browser software emulation on sites like
infinitemac.org where one can boot an emulated version of Mac 7.6 in a web browser
tab alongside the one containing, for example, an email inbox. Initially, this process
seems directly opposed to media archaeology’s interest in the materiality of obsolete
media forms. Doesn’t cleaving the GUI from its material basis reinscribe the very
fantasy of “user experience” that this work is at pains to problematize?

To be sure, vital aspects of the material culture of computing drop away in
emulation. Yet, as I will argue, in-browser emulations in fact stage a tactile reckoning
with not only software history, but also the underlying techniques of network
infrastructure. This reckoning recasts media theoretical assumptions about the
“stack” of hardware and software that produce sensory experience. To arrive at this
encounter, however, I will first explain software emulation and trace the technical and
historical developments that took it into the web browser.

17 Emerson, “Table of contents for Other Networks: A Radical Technology Sourcebook.”
https://loriemerson.net/2024/03/14/table-of-contents-for-other-networks-a-radical-technology-
sourcebook/. See also https://othernetworks.net/.

18 See Code and Clay, Data and Dirt (Minneapolis: University of Minnesota Press, 2017).

10

Figure 8 – “A handout was created” by Maxigas for the Critical Infrastructure Lab's walks, CC0.

11

Running the past

The archive of executable history – historical software – shares some similarities with
audiovisual archives. Unlike paper documents, photographs, or material objects, but
rather like “time-based” audiovisual archives, software is durational: it unfolds in
sequence. Software is “executable” like a sound recording or video is “playable.”
Whereas a video or audio clip, as essentially a fixed function of frequencies on a time-
axis, can be transcoded and repackaged to play in different formats – on a mobile, a
gallery’s media player, a streaming website – effectively repackaging software often
requires consideration of the “user interaction” constituent of software experience. A
software archive must not only map the times, pixels, frequency spectrum across
formats for a given re-presentation, in other words, but also input (like keyboard
strokes or mouse clicks) and the processual transformations occasioned thereby.
Refactoring code into similar packages in new languages, interpreters, and runtime
environments is one approach to achieving the same algorithmic ends.

But it’s not only these ends that concern historians and archivists of software;
it’s also the texture and structure of user experience. Hence, while video or photo
documentation of a legacy system is useful for providing details about interface design
choices or program features, these formats necessarily transform manipulable
environments into grids of pixels (image) or video timelines. Indeed, many of these
systems predate reliable screenshotting/capture and/or ubiquitous high-resolution
photography, the archive is paltry to begin with.

Moreover, given the scarcity and unreliability of legacy hardware – think of
demagnetized floppy disks, corrupted hard drives, broken peripherals – there are
substantial pragmatic obstacles to simply pointing, for example, an iPhone at the
screen of a Mac from the 1980s to inscribe its software into an archival record.

This last deliberately naïve hypothetical raises the question of just what is
particular to software: it is in principle a set of instructions independent from the
actual machines that run it. Software emulation is a field of techniques that puts this
principle into practice. The basic configuration for software emulation has a “host”
operating system—typically something contemporary—running a “guest” operating
system. It thus trades on Turing equivalence, that is the capacity for a computer that
can be implemented by a Turing Machine, to implement any arbitrarily complex set
of computations, given unlimited time.

Turing Completeness and the related Church Turing thesis are invested in the
logical force of computation. These perspectives are often framed in terms of numbers
and calculation: two machines are Turing equivalent if they can produce the same

12

(numerical) output given the same (numerical) input.19 An interest in the “texture” of
user experience described above, however, draws emulation from the dispositive
domain of symbolic logic to the sensorium of phenomenology. Hence, while it is
afforded by the most fundamental advances in computer science, software emulation
has been extensively developed, like much of digital culture, in that quintessential
experiential domain of computation: gaming. Richard Rinehart and Jon Ippolito have
described the collaborative enthusiast culture that gave rise to emulators developed
in the 1990s by retro gamers.20

This development, moreover, converged with a BBS and Usenet culture in
which emulators and ROMs were freely distributed, leading to lawsuits like Sega vs
MAPHIA in 1993.21 This scene marked a shift from an earlier for-profit model in which
companies sold floppy disks containing emulators through ads in computer

19 See Kyle Steiglitz, The Discrete Charm of the Machine (Princeton: Princeton University Press, 2019),
151-153.

20 Re-collection (Cambridge, MA: MIT Press, 2014).
21 See Sega Enterprises LTD. Vs MAPHIA ruling, http://www.internetlibrary.com/pdf/Sega-Enterprises-

Maphia.pdf

Figure 9 – The announcement for the comp.emulators Usenet group with the goal of drawing
together “discussion spread all over Usenet.”

13

magazines.22 And while emulation may be afforded by one of the foundational theories
of computer science, its practice was often devilishly complicated. Usenet posts from
comp.amiga.sys.emulations and comp.emulators.misc contain hundreds of requests
for help troubleshooting emulators (figure 9).

Emulating Apple

Users of Commodore Amiga systems represented one of the largest early emulation
communities. Along with a robust Usenet discussion, the community benefited from
a culture of file sharing. The site Aminet began in 1991 as an FTP server started by
Swiss computer scientists. Over the next few years, it would host thousands of freely
distributed software files. In 1996, two years after launching its World Wide Web site,
its 30,000 files had it claiming to be the world’s largest collection of freely distributed
software.23

 In addition to games and other software released for the Amiga platform and
its AmigaOS operating system, there was significant interest in emulating other
systems, chief among them the Apple II and IIe which, as Laine Nooney has detailed,
had the “largest library of programs of any microcomputer” available in the early
1980s.24 This was sometimes, as with products like A-Max and Emplant, achieved
through additional hardware that would slot into one of the Amiga’s ports to translate
software into language that the Amiga could run. In 1995, however, a German
engineering student and hobbyist developer named Christian Bauer posted
ShapeShifter, a software-only emulation of the Apple II, to Aminet.25 There was some

22 For a firsthand account of these changes to distribution, see ”A Concise History of Emulation –
Part 1 The Early Years 90’s”, YouTube video by Retr0Rewind. https://youtu.be/nCvmlvS5bn0/.

23 “The history of Aminet” archived version accessed from
http://web.archive.org/web/20150220020812/http://wiki.aminet.net/The_history_of_Aminet.

24 The Apple II Age (Chicago: University of Chicago Press, 2023), 14.
25 An archival version of the Usenet post is available via Google Groups:

https://groups.google.com/g/comp.sys.amiga.emulations/c/uCuI31Qmaq8/m/e4-xBbp10D8J.

Figure 10 – A 1995 Usenet post on comp.sys.amiga.emulations incredulous about the new software-
only Apple II emulator.

14

incredulity, with one Usenet poster noting the upload date of April 1st: “is this some
sort of April Fools joke?? Or does it work??” (figure 10). (A response attested to
ShapeShifter’s credibility, citing Bauer’s work on Frodo, a popular Commodore 64
emulator for Amiga.)

In 1999 Bauer would continue his prolific output with Basilisk, a program
emulating the Macs of the 1980s and early 1990s on the host platform of either Linux
or BeOS. A successor, Basilisk II, was highly popular and thereafter adapted by Lauri
Personen for Windows and, since 2008, maintained by a community of volunteers.26
Basilisk’s key contribution is in systematically modeling the 68K Motorola processors
found inside Mac machines from the 1980s and early 1990s (figure 11). These
processors’ instruction set architecture—the specification of how machine code tells
hardware how to perform arithmetic operations, store data in registers and memory,
etc.—differs both from the PowerPC that replaced them in the “PowerMacs” from
1994 on, and from those in Apple computers after the 2005 announcement of the
switch the Intel-developed x86 platform, still used in most personal computers and
servers (though newer Macs tout an “Apple Silicon”-specific custom instruction set,
similar to the ARM varieties in most phones and tablets.)

Basilisk II and other software emulators recreate the abstractions taken as
foundational by machines like the Apple Macintosh introduced in the famous 1984
Super Bowl ad. Basilisk was not the first program to do so, as emulation was a built-
in feature of Mac System 7.1.2 and onwards, allowing newer PowerPC computers to
run titles from the company’s back catalog. However, Basilisk’s emulation allowed the
software to escape the “walled garden.” Unlike company employees with access to the
famously closed-source code of operating systems like Mac OS or Windows, emulator
projects tend to be driven by reverse engineering.

With a systematic translation for instructions written for one (guest)
instruction set into the language expected by another (the host), the original binary
files—say those held on a floppy disk or pre-loaded onto an OEM computer, become
once again executable on a newer machine at paltry cost of computation, thanks to
the exponential scaling of computer power. If one managed to extract a ROM—Read
Only Memory image—from the computer and/or floppy disk as a file, one could
execute this file in a properly configured emulator. As mentioned above, though,
accessing and/or extracting ROMs and properly configuring an emulator is not a
simple affair.

26 “Basilisk II” emaculation wiki entry, https://www.emaculation.com/doku.php/basilisk_ii.

15

Figure 11 – Screenshot from Basilisk II’s GitHub repository showing a Motorola 68K processor (like
those used in the Apple II) emulated for Unix in C++.

16

JavaScript eats the world

The enthusiasts in the 1990s writing emulation software for old gaming consoles and
PC operating systems were doing so at the dawn of what Michael Lewis would term
“the new new thing”: multimedia transmitted over the world wide web.27 During the
mid- to late-90's boom of emulation that coincided with stronger processors, files
began to be distributed not over floppy disks sent through the post or BBS servers,
but personal websites (figure 12).28 And while the developers involved tended to prefer
a minimalist aesthetic for distributing their files and listing their projects, there was
an appetite for a scripting language to add some dynamism to the static experience of
HTML.

JavaScript was famously authored in 10 days in May 1995 by Brendan Eich,
who’d been recently hired by Netscape to pursue Marc Andreessen’s “rallying cry”
that “Netscape plus Java kills Windows.”29 While the scripting language would end up
with only loose semantic connections to its namesake, Java, it would eventually
overtake Microsoft’s rival Visual Basic Script. In the second half of the 1990s, most
major web browsers included an engine for executing these scripting languages. For a
complex mix of reasons beyond the scope of this article, JavaScript’s adoption was
fragmented by the browser wars of the 1990s and the prevalence of Microsoft’s
ActiveX plugin, Sun’s Java Runtime Environment, and Macromedia’s Flash,
extensions which ran much of the dynamic web content during this period.30

This changed with the spread of AJAX techniques (asynchronous JavaScript
and XML) in popular products from the mid-2000s, like Gmail and Google Maps.
Processing instructions (written in JavaScript) from a website asynchronously allowed
for components to load after other aspects of the page had been rendered by the
browser. So, Google Maps would snappily update based on user interaction (e.g.,
zooming in on a map) without the need for any external plug-ins.31 Google’s release of

27 The New New Thing (New York: Norton, 1999).
28 For an firsthand account of these changes to distribution, see ”A Concise History of Emulation –

Part 1 The Early Years 90’s”, a YouTube video by Retr0Rewind. https://youtu.be/nCvmlvS5bn0.
29 Wirfs-Brock and Eich, “JavaScript: The First 20 Years,” Proceedings of the ACM on Programming

Languages 4 (June 2020), 7.
30 See Wirfs-Brock and Eich, “JavasScript: The First 20 Years,” 52-79. On the prevalence of Flash, see

Megan Ankerson, Dot-Com Design (New York: New York University Press, 2018): 141-158. On Java in
the late-90s, see Mary Brandel, “Java and Windows 95,” Computerworld November 22, 1999.

31 Jesse James Garrett, “Ajax: a New Approach to Web Applications” (February 18, 2005), archived
version accessed via the Internet Archive at
http://web.archive.org/web/20050222032831/http://www.adaptivepath.com/publications/essays/arch
ives/000385.php.

17

the V8 JavaScript engine built into the new Chrome browser marked a considerable
leap in efficiency further enabling dynamic interaction within the open standards of
the web.32

Chrome’s dramatic increase in rendering speed was achieved with its V8
engine, which, using a technique called Just-in-Time compilation, would turn a
developer’s JavaScript into “native machine code”—the kind of commands included
in the instruction set architecture detailed above. V8 also used innovations in this
compilation process like hidden classes, inline caching, and generational garbage
collection to address the challenges posed by the openness and flexibility (dynamic
typing) that made JavaScript easier to learn than its stricter counterparts.33

Similar innovations would be taken up by the WebKit and Gecko JavaScript
engines in Safari and Firefox, respectively. By the end of 2008, Chrome, Firefox, and
Safari had all introduced Just-In-Time compilers, dramatically increasing the speed
of JavaScript.34

The tandem developments of emulation software by an online community and
the increased capacity of browser engines to natively run complex web applications
would lead, in a few years, to experiments in running legacy systems in the browser.
To join these strands, let’s revisit the example of Basilisk II, the emulator behind
infinitemac.org.

Previously, running Bauer’s C++ source code (a small part of which is shown
in Figure 11,) meant first sending that code through a compiler, an algorithm which
would put together a binary readable by a specific “instruction set architecture,” like
the x86 of PC desktops since the 1990s. A user looking to download a pre-compiled
binary file—one to simply open and execute—would thus select a file corresponding
to their machine (figure 12). These files are the result of C++ using an “ahead-of-time”
compilation process.

32 See Krik L. Kroeker, “Toward Native Web Execution,” Communications of the ACM 52, no. 7 (July

2009): 16-17. https://doi.org/10.1145/1538788.1538795.
33 Mads Ager, “V8: High Performance JavaScript Engine,” talk at Google I/O 2009,

https://youtu.be/FrufJFBSoQY. See also Richard Artoul, “JavaScript Hidden Classes and Inline
Caching in V8” Under the Hood (blog), April 26, 2015,
https://richardartoul.github.io/jekyll/update/2015/04/26/hidden-classes.html

34 Alon Zakai, “The History of WebAssembly,” YouTube video, December 3, 2020,
https://youtu.be/XuZt1OCCQTg.

18

As we have seen, JavaScript engines such as Chrome’s V8 also compile source
code, though theirs is typically “just-in-time” compilation. In a 10-year anniversary
post about the Internet Archive’s emulation service, archivist Jason Scott explains that
the site’s offerings of historic arcade games and software are enabled by an innovation
in this process: a “cross-compiler” named Emscripten made it possible to compile code
originally written in C, C++ or Objective-C to JavaScript.35

According to then-Mozilla employee Alon Zakai explained in a paper
introducing Emscripten, previous attempts to run other programming languages on
the web foundered because they could not “run on some platforms, for example, Java
and Flash cannot run on iOS devices such as the iPhone and iPad.”36 Zakai presented
the paper in 2011, four years after the announcement of the iPhone and a year after
release of the first iPad. Projects like Zakai’s apprehended a web culture that

35 “A Quarter In, A Quarter-Million Out: 10 Years of Emulation at Internet Archive,” September
2023, https://blog.archive.org/2023/09/20/a-quarter-in-a-quarter-million-out-10-years-of-emulation-
at-internet-archive. For a remarkable set of emulators originally written in JavaScript, see
https://copy.sh/v86. Emscripten now compiles not to JavaScript, but to WebAssembly, a binary
format adopted by major browsers from 2017 to 2019. See Haas, et al., “Bringing the Web up to
Speed with WebAssembly,” PLDI 2017, https://doi.org/10.1145/3062341.3062363.

36 Alon Zakai, “Emscripten: An LLVM-to-JavaScript Compiler,” Proceedings of the ACM Internatinoal
Conference on Object Oriented Programming Systems, Languages and Applications Companion (October
2011), 301. https://doi.org/10.1145/2048147.2048224.

Figure 12 – Screenshot of download options on a Bauer's personal site for Basilisk II, archived on
October 13, 2005, accessed via https://web.archive.org/web/20051013064429/http://basilisk.cebix.net/.
Note the option do download source code or binaries for different architectures (i386, ppc, x86, and
Amiga.)

19

increasingly ran on the html, CSS, and JavaScript universal to web browsers across
devices. (The first presentation in this 2011 session was by Brendan Eich, the original
author of the JavaScript language: “The JavaScript World Domination Plan at 16
Years.”37) The brief “example uses” section at the end of Zakai’s Emscripten paper
include implementations of Python, PDF-rendering, and the Bullet Physics library.38
In just a few days after Zakai’s presentation, Jason Scott posted on his blog a call to
bring emulators into the browser using JavaScript.39

Part of Scott’s appeal in his plea for help bringing emulation in the browser
was to augment a history comprised of “artifacts” (the kinds of files he archived with
archive.org) with “experiences.”40 It took a couple years for these “experiences” to load
but in January 2013, Scott announced a beta version of JSMESS, which ported the
cross-platform emulator MESS to JavaScript (figure 13). The first version offered
support for the game consoles Atari 2600, ColecoVision, Fairchild Channel F,
Odyssey2, and the Sega Genesis, as well as the Texas Instruments 99 4/a PC.41 That
month also saw the initial commit of an emulator of the OpenRISC1000 processor
written in JavaScript.42

More platforms would follow that year, both on archive.org’s emulation
project, powered by JSMESS, and elsewhere. Ansgar Grunseid announced Arc, a
project putting Linux machines in websites in August 2013.43 That October, the
developer and UX designer James Friend used Emscripten to port PCE, an emulator
of Classic Mac OS written in C, to the browser.44 The pseudononymous copy.sh shared
a hand-coded emulator of the x86 instruction set, which initially ran several Linux
distributions and later offered a range of operating systems including various releases
of Windows and Unix-based systems.45

37 https://doi.org/10.1145/2048147.2048218
38 Zakai, “Emscripten: An LLVM-to-JavaScript Compiler,” 310-311.
39 “JavaScript Hero: Change Computer History Forever” on ASCII by Jason Scott (bl0g)

http://ascii.textfiles.com/archives/3375.
40 Scott, “JavaScript Hero”
41 “JavaScript MESS” about page, archived version on January 26, 2013 accessed via

http://web.archive.org/web/20130126213541/http://jsmess.textfiles.com:80/
42 https://github.com/s-macke/jor1k/commit/96a52715447df3ccbef9d3dfcc1bb19903dd4bef
43 Ansgar Grunseid, “Virtual Machines in the Browser” (blog post),

http://blog.grunseid.com/2013/arc.html.
44 Announced at “PCE.js – Classic Mac OS in the Browser” https://jamesfriend.com.au/pcejs-classic-

mac-os-browser and still available at https://jamesfriend.com.au/pce-js/.
45 https://copy.sh/v86.

20

Some of the discourse around these projects carries the thrill of pulling off the
impossible, or at least the seemingly ill-advised, demonstrating that well-trod hacker
mastery over the latest technologies to absurd ends. Well ahead of the curve, the
legendary open-source programmer Fabrice Bellard wrote of his own JSLinux
emulator, published to his personal website May 23, 2011: “I did it for fun, just because
newer JavaScript Engines are fast enough to do complicated things.”46 Comments on
the popular discussion site Hacker News alternate between glee and awe (figure 14).
Glee at the audacious incongruity between an operating system, the software ‘closest
to the metal’ of a given machine, and the (increasingly less) humble HTML website,

46 “JavaScript PC Emulator – Technical Notes,” blogpost, May 23, 2011. Archived version accessed
through http://web.archive.org/web/20110524162113/http://bellard.org/jslinux/tech.html

Figure 13 – Screenshot of announcement for first Beta of JSMESS on Jason Scott's textfiles.com.

21

several TCP/IP layers abstracted from the devices that abstract it, all JavaScript, the
often-derogated “kiddie” language. Awe at the mastery of not only the nominally
“frontend” language and the emulated operating systems, but all the way down the
stack to the granular functions of CPUs.

More recent iterations of these projects have drawn on the newly adopted
standard of WebAssembly, jointly designed by engineers from Google, Microsoft,
Mozilla and Apple.47 WebAssembly is a bytecode or portable binary-code format—
the “assembly” in its name refers to the low-level language that corresponds to a given
instruction set architecture—Power PC and x86 each have their own assembly
language. WebAssembly was designed to be platform independent, however, and is
instead targeted towards a web browser. Because it’s a low-level binary file, it’s not a
language that developers write in, but instead a “compilation target”—human written
source code is fed to a compiler that outputs the webassembly .wasm file.

Before turning to the last example, infinitemac.org and engaging
phenomenologically with the experience of computing infrastructure that it
occasions, it’s worth establishing the stakes of this encounter through a review of the
overlapping practices that made it possible.

The principle behind emulation—Turing equivalence—was demonstrated in
1937 but emerged in broader practice in the 1980s and especially the 1990s, when

47 See Haas, et al., “Bringing the Web up to Speed with WebAssembly” and Alon Zakai, “The History
of WebAssembly.” Zakai stresses the project’s resulting from collaboration between major browser
vendors Mozilla, Google, and Apple.

Figure 14 – A post on Hacker News discussing copy.sh's v86 JavaScript emulator,
https://news.ycombinator.com/item?id=6567967.

22

personal computer users with a nostalgic connection to an earlier cycle of PCs, started
tinkering with running the old software on their ever-more-powerful processors. A
culture of sharing, iterating, and hobbyists developed an 1990s run of these emulators,
distributing them first over BBS’s, FTP and collectively troubleshooting them in
Usenet groups.

Along a parallel track, as this scene shifted to HTTP websites, JavaScript was
developed and introduced to add dynamic execution capabilities to what had been
static webpages. After a decade of false starts and fragmentation despite integration
in every major browser, interactive sites on the AJAX model, namely Google Maps,
demonstrated the promise of developing applications that ‘just ran’ in the browser,
without separate plugins. With the release and eventual dominance of the iPhone and
other touchscreen internet devices that could run standard HTML/JavaScript but not
Flash or other plugins, this position solidified. The development of more sophisticated
engines for running the JavaScript code, like Chrome’s V8 expanded developers’ sense
of what was possible to run in the browser. Tools for cross-compiling established
codebases, like Emscripten, allowed emulators designed to be run on a local machine
to be systematically ported into webpages, as with the archivally-minded JSMESS.
The adoption of WebAssembly as a binary compilation target that could run on every
browser further enhanced the performance of non-JavaScript programs running in a
web browser.

“Software is eating the world,” declared Marc Andreessen in a much-hyped
2011 Wall Street Journal essay published simultaneously on the website of his influential
venture capital firm.48 At least among the architects of this cosmophagy, software’s
own recent ancestors were on the menu.

Point and click: digital aesthesis

Infinitemac.org is a hobbyist project run by Mihai Parparita, a San Francisco-
based developer who has worked for Slack and Google. The site draws together
existing web-adaptations of emulators written to be run locally—like James Friend’s
port of Christian Bauer’s Basilisk II for running Classic Mac in browser that we have
seen above—in addition to new compilations of other emulators to WebAssembly.
Parparita has documented the project on blog.persistent.info.

48 Marc Andreessen, “Why Software Is Eating The World,” blogpost, August 20, 2011
https://a16z.com/why-software-is-eating-the-world/ and The Wall Street Journal
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460 .

23

On loading the site, a user is presented with a succession of bootable virtual
machines running Mac and NeXT operating systems from 1984 to 2001 (figure 16). In
addition to a one- or two-sentence description of the developments present in each
emulated release, each is styled with reference to the original PCs that ran them—a
“beige box” framing the Chicago typeface and rounded buttons for the mid-80s Macs
and the dark frame and Helvetica text on a shadowed button for the NeXT machines
(figure 15). Parparita describes this display as a kind of curated gallery, responding to
the overwhelming choice of several hundred bootable images at the Internet Archive.

When a user mouses over one of these, perhaps to click on the “run” button,
they are presented with an additional button: “customize” (figure 16). This option
represents one of infinitemac’s unique contributions: the capacity to load particular
software and also to save data from an emulated environment. In a blogpost describing
the motivations for the project, Parparita mentions the previous web discussed above,
but notes that “none of these setups replicated the true feel of using a computer in the
90s. They’re great for quickly launching a single program and playing around with it,
but they don’t have any persistence, way of getting data in or out of it, or running
multiple programs at once.”49 The effort even extends to networking between
instances, so that the site supports using AppleTalk or multi-player games across
emulators running separately.

So, what of the embodied experience that this produces? One immediately
present UX frustration arises when navigating the menus of Mac OS 7.1. To continue
seeing a dropdown menu, a user must keep holding down the mouse button after
clicking on “File” or “Edit”. The process of selecting thus becomes integrated into the

49 Mihai Parparita, “Infinite Mac: An Instant-Booting Quadra in Your Browser,” persistent.info blog,
March 31, 2022, https://blog.persistent.info/2022/03/blog-post.html.

Figure 15 – Screenshots showing stylized icons corresponding to design of the emulated systems.

24

original click, and force is applied in step with the scanning of the eye(s) and the
reasoning of the mind.

We can observe, with the help of infinitemac, the switch to “sticky menus” in
OS 8 when clicking a menu becomes a one-shot affair. The tactile logic shifts from
“let me execute the Edit/Copy command” to “let me browse the available Edit
commands to see if there’s one I'd like.” In some senses, this might be a holdover from
terminal autocompletion which had existed since the 1960s, for example in the
Berkeley Timesharing System and later with the press of a button like with “escape

Figure 16 – Screenshot of the first four systems available for emulation on infinitemac.org’s “gallery”.

25

completion” in TOPS-20, an operating system for the PDP-10.50 It may resonate,
therefore, with the “tab completion” still vital to the everyday use of Unix shells like
bash, fish, and zsh today.

Beyond demonstrating this development in the history of user experience
design, this interruption to the browsing process represents a unique sort of glitch:
what is perceived as a malfunction in the website’s interactivity is, in fact, the faithful
rendering of an old paradigm. In this sense, while it shares some aesthetic sensibilities
with Shane Denson’s discorrelated images or Legacy Russell’s glitch manifesto, this
effect arises from a kind of seamlessness.51 Here, a disorientation stems from the
seamless integration of multiple vernaculars, paradigms, systems into the surface of
the self-same browser window.

On one hand, this seamlessness can be read as symptomatic of the Silicon
Valley fantasy of “frictionless” design, a fantasy that subordinates material reality to
ephemeral user experience.52 While it pays homage to the physicality of these machines
with frames, beeps, and blinking LEDs, no emulation can capture the proper sounds,
smells, and tactile sensations of hardware. What’s more, as Parparita has explained,
the project involves a constant tradeoff between realistic simulation of these systems
(which often operated several times more slowly than their infinitemac counterparts)
and accessibility.53 The emulated systems, for example, expect user input from a mouse
and keyboard, demanding that Parparita cobble together systems for translating
touch input from smartphones and tablets. So, while the look and feel of the UX are
present, many of the characteristic aspects of the material technology fade into yet
another user interface (figure 18).

On the other hand, the “experience” seamlessly achieved by this scrollable
gallery of bootable machines resists assimilation into a daily practice. A user on a
touch device may be able to glide down the gallery to select a machine to boot, for
example, but once it does boot, they will quickly be forced into the logic of the
scrollbar with clickable arrows. The “tap” of both handheld devices and laptop
trackpads is in tension, in a related juxtaposition, with the double-clicking expected
by something like Mac OS 8. In these situations, like with glitches, routinized tactile
engagements with technology are disrupted.

50 Dan Murphy, “Origins and Development of TOPS-20."

https://web.archive.org/web/20200801165237/http://www.opost.com/dlm/tenex/hbook.html
51 Shane Denson, Discorrelated Images Durham, NC: Duke University Press, 2020; Legacy Russell, Glitch

Feminism: A Manifesto, London: Verso, 2020.
52 See Jakko Kemper, Frictionless, (London: Bloomsbury,) 2024.
53 Comment by Mihai Parparita in Zoom interview with the author, March 8, 2024.

26

Recent work by Kyle Stine and Jacob Gaboury on the hardware of computer
imagery has rightfully grounded the visual experience of the digital in the material
processes that produce it.54 Likewise, scholars like David Parisi and Rachel Plotnick
have persuasively reframed media histories in the tactile and haptic.55 In browser
emulations transfigure input/output devices like the screen and speakers, but also the
mouse/capacitive touch surface (figure 17).

54 Stine, “Critical Hardware: The Circuit of Image and Data,” Critical Inquiry 45 (Spring 2019): 762-
786; Gaboury, Image Objects (Cambridge, MA: MIT Press 2021).

55 See, e.g., Parisi, Archaeologies of Touch (Minneapolis: University of Minnesota Press, 2018) and
Plotnick, “Force, Flatness, and Touch without Feeling,” New Media & Society 19, no. 10 (October
2017): 1632-162.

Figure 17 – Photo of four Apple devices running infinitemac.org, posted on the blog of Mihai
Parparita, the project's developer. https://blog.persistent.info/2023/03/infinitemac-dot-org.html.
Photo courtesy of Mihsi Paparita.

27

Emulation everywhere

Infinitemac and other emulation projects expose a user to the change over time, and
thus contingency of, certain tactile computing formations. More than this, though,
the gallery of possible bootable images and the potential to transform a browser
window into another machine materializes a fundamental infrastructural technique
that undergirds digital culture: virtualization.

It's not just these niche retro-computing projects that seek to turn individual
machines into abstractions, repeated across hardware. This is precisely the logic
behind every major website, mobile service, and “cloud” phenomenon. What we
encounter with in-browser emulation is a middle ground between the specific, “bare
metal” materiality of a given machine executing its own machine code, and the
nebulous, dematerialized mass of cloud compute. Highly structured, recursively
contained, iterated – these adjectives describe the infrastructures of our
contemporary apps, too.56 Amazon Web Services, social media platforms, food
delivery apps, VPNs, dating sites are afforded by “virtual machines.”57 Emulation is a
subspecies of virtualization, the key technique behind the cloud. Despite seeming like
an eccentric combination of technologies, then, it in fact is the rule and not the
exception of computational culture.

How, finally, does this all connect with the methodological questions I raised
in this article’s opening sections on the range of approaches for engaging the media
infrastructures that condition our world? Clearly, I have not eschewed either the
critical reading of Parks, nor the cartographic diagramming of Crawford. I have,
however, tried to present an avenue to these practices sensitive to the embodied and
mediated position from which we make either kind of observation. Likewise, I suspect
my website-facing approach might be unsatisfying to object-oriented scholars, both
in the vein of Huhtamo’s technocultural topoi and Ernst’s radical operationalism. I
certainly do not want to suggest that emulation obviates the need for engagement
with historical artefacts. But part of the materiality that we must engage as scholars
of media has to do with the arrangement and orchestration of individual machines in
broader sequence. This is where going “hands-on” with the internet emulations can
be instructive.

Nor can clicking through these hobbyist projects supplant the
experimentation with alternative technical imaginaries by Emerson and the Media
Archaeology Lab’s “Other Networks.” As quirky as these emulations can be, they fall

56 See my “On Bare Metal: Recovering Virtualization” (forthcoming.)
57 Matthew Portnoy, Virtualization Essentials, (Hoboken: Wiley, 2023,) xv.

28

squarely in line with a kind of developer ethos and at times unquestioning acceptance
of the teleological view of “software eating the world.” By framing the projects in a
spirit of experimentation and alternative possibilities, though, I hope to frame fissures
in this teleology. As inventive and efficient as the latest “over the wire” approaches
are, of course, they still sit atop the kind of network infrastructure that we would do
well to observe on a 5G walk with the Critical Infrastructure Lab.

So, I end with a call for a pluralist, embodied study of media infrastructure:
let it be observed by the eye, framed by the brain, manipulated by the hand, and
clicked with the finger.

Figure 18 – Wikimedia image "The Apple Mouse," showing designs from 1984 to 2005. CC BY-SA 2.0.

29

Bibliography

Acker, Ameila. “Emulation Practices for Software Preservation in Libraries,
Archives, and Museums.” Journal of the Association for Information Science and
Technology 72, no. 9 (September 2019): 1148–1160. https://doi.org/10.1002/pra2.279.

Ankerson, Megan. Dot-com Design: The Rise of a Usable, Social, Commercial Web. New
York: New York University Press, 2018.

Bellard, Fabrice. “JSLinux – Technical Notes.” https://bellard.org/jslinux/tech.html.

Brown, Bill. “Thing Theory.” Critical Inquiry 28, no. 1 (Autumn 2001): 1–22.

Crawford, Kate. The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial
Intelligence. New Haven: Yale University Press, 2021.

Ernst, Wolfgang. Digital Memory and the Archive. Minneapolis: University of
Minnesota Press, 2012.

Ernst, Wolfgang. Chronopoetics: The Temporal Being and Operativity of Technological
Media. Translated by Anthony Enns. New York: Rowman & Littlefield, 2016.

Friend, James. “Porting the Basilisk II Classic Macintosh Emulator to the Browser.”
November 16, 2017. https://jamesfriend.com.au/basilisk-ii-classic-mac-emulator-in-
the-browser.

Friend, James. “Porting the PCE Emulator to the Browser.” April 11, 2017.
https://jamesfriend.com.au/porting-pce-emulator-browser

Friend, James. “Why Port Emulators to the Browser?” October 18, 2013.
https://jamesfriend.com.au/why-port-emulators-browser.

Gaboury, Jacob. Image Objects: An Archaeology of Computer Graphics. Cambridge, MA:
MIT Press, 2021.

Garrett, Jesse James. “Ajax: a New Approach to Web Applications.” adaptive path
blog. Archived version accessed via
http://web.archive.org/web/20050222032831/http://www.adaptivepath.com/publica
tions/essays/archives/000385.php

Haas, Andreas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, Michael Holman, JF Bastien. “Bringing
the Web up to Speed with WebAssembly.” PLDI 2017: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
https://doi.org/10.1145/3062341.3062363.

30

Hinkelmann, Franziska. “JavaScript Engines—How Do They Even?” Presentation at
JSConf EU 2017. https://youtu.be/p-iiEDtpy6I.

Huhtamo, Erkki. Illusions in Motion: Media Archaeology of the Moving Panorama and
Related Spectacles. Cambridge, MA: MIT Press, 2013.

Ippolito, Jon. “Emulation.” In Debugging Game History: A Critical Lexicon. Edited by
Henry Lowood and Raiford Guins. Cambridge, MA: MIT Press, 2016.

Jain, Shashank Mohan. WebAssembly for Cloud: A Basic Guide for Wasm-Based Cloud
Apps. New York: Apress, 2022.

Kemper, Jakko. “Deep Time and Microtime: Anthropocene Temporalities and
Silicon Valley’s Longtermist Scope.” Theory, Culture & Society (2024).
https://doi.org/10.1177/02632764241240662.

Kittler, Friedrich. “Es gibt keine Software.” Draculas Vermächtnis: Technische Schriften.
Lepizig: Reclam Verlag, 1993.

Kroeker, Kirk L. “Toward Native Web Execution.” Communications of the ACM 52, no.
7 (July 2009) 16-17. https://doi.org/10.1145/1538788.1538795.

Lantinga, Sam. “SDL: Making Linux Fun.” IBM developerWorks. September 1, 1999.
Accessed on February 22, 2024 via web.archive.org
http://web.archive.org/web/20030511174315/http://www-
106.ibm.com/developerworks/library/l-making-linux-fun.

Lewis, Michael. The New New Thing: A Silicon Valley Story. New York: Norton, 1999.

Mackenzie, Adrian. “Java™: The Practical Virtuality of Internet Programming.” New
Media & Society 8, no. 3 (2006): 441-465. https://doi.org/10.1177/1461444806061954.

Mattern, Shannon. Code and Clay, Data and Dirt: Five Thousand Years of Urban Media.
Minneapolis: University of Minnesota Press, 2017.

Nooney, Laine. The Apple II Age: How the Computer Became Personal. Chicago:
University of Chicago Press, 2023.

Paglen, Trevor. “Invisible Images (Your Pictures Are Looking at You).” The New
Inquiry, December 8, 2016. https://thenewinquiry.com/invisible-images-your-
pictures-are-looking-at-you.

Parikka, Jussi. A Geology of Media. Minneapolis: University of Minnesota Press, 2015.

Parisi, David. Archaeologies of Touch: Interfacing with Haptics from Electricity to
Computing. Minneapolis: University of Minnesota Press, 2018.

31

Parisi, David, Mark Paterson, and Jason Edward Archer. “Haptic Media Studies.”
New Media & Society 19, no. 10 (October 2017): 1513–1522.

Parks, Lisa. “‘Stuff You Can Kick’: Toward a Theory of Media Infrastructures.” In
Between Humanities and the Digital, edited by Patrik Svensson and David Theo
Golberg, 355–373. Cambridge, MA: MIT Press, 2015.

Parks, Lisa, and Nicole Starosielski, eds. Signal Traffic: Critical Studies of Media
Infrastructures. Urbana: University of Illinois Press, 2015.

Parparita, Mihai. “Infinite Mac: An Instant-Booting Quadra in Your Browser.”
persistent.info (blog), March 31, 2022. https://blog.persistent.info/2022/03/blog-
post.html.

Plotnick, Rachel. “Force, Flatness, and Touch without Feeling: Thinking Historically
about Haptics and Buttons.” New Media & Society 19, no. 10 (October 2017): 1632–
1652. https://doi.org/10.1177/1461444817717510.

Pogue, David. “OS 8 and Why It’s Great.” Macworld 14, no. 12 (December 1997).

Rinehart, Richard and Jon Ippolito. Re-collection: Art, New Media, and Social Memory.
Cambridge, MA: MIT Press, 2014.

Scott, Jason. “JavaScript Hero: Change Computer History Forever.” ASCII (blog).
October 28, 2011. http://ascii.textfiles.com/archives/3375.

Scott, Jason. “Microcomputer Software Lives Again, This Time in Your Browser.”
(blog), Internet Archive, October 25, 2013.
https://blog.archive.org/2013/10/25/microcomputer-software-lives-again-this-time-
in-your-browser.

Scott, Jason. “A Quarter In, A Quarter-Million Out: 10 Years of Emulation at
Internet Archive.” Internet Archive Blog, September 20, 2023.
https://blog.archive.org/2023/09/20/a-quarter-in-a-quarter-million-out-10-years-of-
emulation-at-internet-archive.

Steiglitz, Kyle. The Discrete Charm of the Machine: Why the World Became Digital.
Princeton: Princeton University Press, 2019.

Stine, Kyle. “Critical Hardware: The Circuit of Image and Data.” Critical Inquiry 45
(Spring 2019): 762-786.

Wershler, Darren, Lori Emerson, and Jussi Parikka. The Lab Book: Situated Practices in
Media Studies. Minneapolis: University of Minnesota, 2022.

32

Wirfs-Brock, Allen and Brendan Eich. “JavaScript: The First 20 Years.” Proceedings of
the ACM on Programming Languages 4, issue HOPL, article 77 (June 2020): 1-189.
https://doi.org/10.1145/3386327.

Zakai, Alon. “Emscripten: An LLVM-to-JavaScript Compiler.” Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems,
Languages and Applications Companion, 301-312. New York: ACM, 2011.
https://doi.org/10.1145/2048147.2048224.

Zakai, Alon. “The History of WebAssembly.” YouTube video. Published December
3, 2020. https://youtu.be/XuZt1OCCQTg.

