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Abstract 

Elevating buildings above grade is an increasingly-

common design approach to address risks of costal and 

riverine flooding. While elevating buildings improves 
resistance to flood waters and potentially debris damage, 

other implications are less well-understood, including the 

influence of unique thermal and moisture conditions in 
the space between the ground and the underside of the 

elevated building—the so-called sixth facade. Unlike 

conventional basements, crawlspaces, or slabs-on-grade 
that respond to soil moisture through the installation of a 

vapor barrier, exposed, elevated floors contend with 

unique hygrothermal conditions, linked-to but distinct-
from both the soil and the ambient air. 

Uncontrolled moisture has significant energy 

consequences, can foster mold and fungi growth, and 

contributes to deterioration of building materials through 
rot and corrosion. To better understand conditions at the 

sixth facade, this study compares the conditions of the 

sixth facade to those of the interior and exterior ambient 
air of the same elevated building during the 

condensation-risk period of a year. Temperature and 

relative humidity were recorded inside, under, and 
adjacent-to the building at sub-hourly intervals for eleven 

months, to enable calculations of condensation risk. 

While extensive prior literature considers condensation in 
wall and roof assemblies and vented versus unvented 

crawlspaces; little data or guidance is available about the 

frequency of condensation risk on the underside of 
elevated buildings. The growing awareness and effort to 

improve building resilience at the residential scale 

demands a greater understanding of conditions at the 
sixth façade to guide design.  

 

Background 

Risks of water in Buildings 

Water has long been understood as the enemy of 
building durability. Since wood is hygroscopic, the 

moisture content of the wood increases with relative 

humidity; even when not directly exposed to precipitation 
or ground water. Wood moisture content must remain 

below 19% to prevent rot, and below 16% to prevent 

mold.1 The fiber saturation point of wood is between 27% 
and 30% for most species, and if wood remains above 

this threshold for a prolonged period decay occurs.2  

Excessive moisture can also affect the structural integrity 

of wood-framed buildings.3 Moisture, oxygen and 
temperature, along with an adequate food source, are the 

main factors for mold and fungi growth in buildings, and 

since  the presence of spores can never be adequately 
controlled, the moisture conditions in which they thrive 

must be managed. Water condensing on surfaces 

creates conditions conducive to mold growth, and if water 
diffuses into the grain of cellular materials like wood it can 

support fungal growth.4  Molds and fungi can have 

consequences on the health and well-being of building 
inhabitants, and the integrity of building materials. 

Practically speaking, the occurrence of these biological 

activities and material decay are best controlled by 
controlling moisture and temperature through building 

systems to avoid moisture accumulation. 

Vapor Drive and Condensation 

Water vapor generally moves from the warmer to the 
colder side of building assemblies, from the wetter to 
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drier; and from higher air pressure to low; as a result, 

vapor diffusion depends on the combined differences in 
temperature, humidity, and pressure usually described as 

vapor pressure. Moisture can condense within 

assemblies if the hygrothermal conditions reach 
saturation and dew-point temperature, so vapor diffusion 

is a greater problem in colder climates, where significant 

vapor drives can be coupled with large temperature 
gradients. The design of vapor retarders to restrict the 

diffusion of water vapor in assemblies depend on 

seasonal temperature shifts and the heating and cooling 

of a building. Thus climate, plus the location and type of 
vapor retarder affects the amount of moisture 

accumulation and mold growth. 

Vertical Wall Assemblies  

There has been significant research in recent years 

focusing on the effect of moisture on the building 

envelope of wood framed buildings, particularly on the 
effect of moisture within vertical walls. Many empirical 

studies compare humidity, temperature and moisture 

transfer measured in various wall assemblies under real 
world conditions.5 For greater control of variance, some 

experiments test the hygro-thermal performance of wall 

assemblies in controlled laboratory environments,6 while 
others seek a compromise by designing and constructing 

test-bed buildings  with specific component and assembly 

performance that operate under ambient conditions.7 
These studies describe the effects of materials and 

assemblies on heat and vapor transfer, with data 

including temperature and relative humidity at different 
points in the wall, under various indoor and outdoor 

conditions.8 While this prior work describes the effect of 

moisture on the building envelope and defines research 

methods, vertical walls and horizontal floors are subject 
to significantly different exterior conditions and internal 

flows.  

Crawlspace Conditions  

Fewer studies have considered conditions in elevated 
crawl spaces, focusing on the management of moisture, 

ventilation requirements, ground moisture evaporation, 

and the use of ground cover in crawlspaces.9 One study 
compared conditions (air change, relative humidity, 

temperature, pressure variation) of a mechanically 

ventilated to a naturally ventilated crawl space in 
Finland.10  A subsequent experiment focused on the 

effect of ground moisture evaporation on the moisture of 

a crawlspace 0.9 meter in height and 1 meter below 

ground level.11 In this experiment, Kurnitski found that a 
crawlspace with relative humidity levels over 80-85% for 

“several weeks or months” can result in mold growth.12 

Similar periods of elevated moisture have been found to 
occur in crawl spaces when ground moisture evaporation 

raises the relative humidity of the space.13  

Adding ground cover in the crawlspace, coupled with a 
low air change rate or natural ventilation, has proven 

effective in controlling the moisture of crawlspaces. 

Ground covers prevent evaporation from the ground, as 
the studies show a clear correlation between relative 

humidity of ground surface and moisture evaporation 

rate. Higher ventilation rates may lower relative humidity 
which can in turn prompt greater evaporation rates. 

Ventilation may also reduce air temperature and thus 

potentially increase relative humidity.   Seasonal and 
daily weather changes significantly affect the moisture 

conditions of crawlspaces. Dry, winter air removes 

absolute moisture from the crawlspace; however, colder 
ventilation air decreases the temperature of the 

crawlspace and increases the relative humidity. Summer 

air is warmer and more humid than the crawlspace air, so 

ventilation increases temperature and decreases the 
relative humidity of the crawlspace. The studies did not 

find high relative humidity levels in summer, and only 

short condensation peaks were detected.14 Together 
these results emphasize the need to characterize 

conditions under elevated buildings seasonally.  
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Elevated Floor Assemblies 

Given that it is not exposed to precipitation, condensation 
is an important source of moisture at the sixth facade. In 

older buildings without floor insulation, the floor framing 

generally remains above the dew point temperature of 
the crawl space, preventing condensation.15 Adding 

insulation can reduce surface temperatures below dew 

point, resulting in condensation on the insulation and 
exposed floor framing. Cantilever floors with a similar 

exposure to exterior conditions address the problem by 

sealing exposed joists with a foam barrier.16 

As ground moisture evaporation is a primary moisture 
source under the building, many authors recommend the 

use of polyethylene sheeting as a vapor barrier between 

the ground and crawlspace.17 Additional steps for 
reducing moisture in crawlspaces include effective site 

drainage and providing a minimum of 8-inches vertical 

clearance.18 These recommendations have been proven 
for crawlspaces, but not for an open, sixth-façade 

condition.  

Building regulations in flood zones require elevating 
buildings above average flood levels. The FEMA 

Advisory Base Flood Elevation guidelines require new 

homes built in post-Katrina New Orleans to be elevated a 
minimum of five feet above grade on raised pier or raft 

slab foundations but note that flood waters may reach 

higher levels. FEMA further requires the use of moisture 
resistant materials such as fiber cement protection board 

over insulation, and a 2-inch foil-faced polyisocyanurate 

to act as vapor control layer. To address concerns of 
moisture accumulation in floors with these new insulation 

requirements, the guidelines require insulation to be on 

the exterior and be removable to assist in drying if 

vapor/water enters cavity.19 

The organization Project Home Again (PHA), replaces 

homes that were badly damaged or destroyed from 

Katrina and developed a system of building assemblies 

to prevent flooding and moisture damage. PHA Phase 1 

houses are elevated at 3-feet above grade on a block 
foundation. The 3-foot space is vented and surrounded 

by latticework to allow flood waters to pass underneath. 

Floor framing is insulated with 2-inches of high-density 
spray foam underneath CDX subflooring. Spray foam has 

a low vapor permeability, keeps the subfloor warm to 

minimize condensation, it can also dry quickly in the 
event of moisture intrusion.20 In some cases, as with the 

PHA homes, enclosed or partially-enclosed crawlspaces 

are permitted in flood zones, if they include flood 

openings not more than one foot above grade to allow 
water ingress. Ventilation openings do not generally 

satisfy these flood requirements.21 Because the FEMA 

regulations focus on the threat of flooding, they do not 
address the less-dramatic effects of ongoing moisture 

damage, although they may create these conditions. 

Method 

The test building for this study is a wood-framed 

residential building on the Tug Hill Plateau in north-

western New York, climate Region 5A. The building 
measures approximately 24’ x 36’. The structure is 

elevated on wood piers above the ground, which slopes 

slightly such that grade level is approximately two feet 
below the finished floor at the south end, and 

approximately three feet at the north end. The walls and 

floor are insulated with friction-fit fiberglass batts between 
studs and joists. The first floor is finished with vinyl tile 

adhered to an OSB base on a plywood subfloor. The floor 

insulation is protected with an asphalt impregnated 
particle board attached between (not below) the joists, 

which does not provide a continuous air- or vapor seal. 

The soil under the building is uncovered, the spaces 

between the piers are open to the air, and surrounding 
site is a grass lawn.  

Data were collected using Onset Hobo datalogging 

sensors. Type MX2301 temperature and relative humidity 
sensors were placed centrally in the first and second 
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floors. Type MX2302 sensors (which have the sensors in 

an external probe to facilitate placement in awkward 
locations) were installed in the attic and at the sixth 

façade, in both cases in the center of the building and the 

vertical midpoint of the space. Both the MX2302 and MX 
2301 have an accuracy of +/- 0.2ºC and +/- 2.5% relative 

humidity and can download data via Bluetooth once 

installed. To measure ambient exterior conditions, an 
Onset U23-002 housed in a light-colored solar radiation 

shield was mounted five feet above the ground on a pole 

north of the house above low grass. This sensor has an 

accuracy of +/- 0.21ºC. Additionally, Onset UA-002-64 
pendant dataloggers with an accuracy of +/- 0.53ºC, were 

placed under the eaves on the north, south, east and 

west facades of the house to record radiation and air 
temperature for each orientation. Figure 1 diagrams the 

locations and placement of the sensors. 

 

Fig. 1. Sensor placement diagram, section cut east/west. 

 
The study was conducted over winter, the period with 

highest condensation risk, recording data from August 5, 

2017 through June 27, 2018. The sensors logged 
temperature and relative humidity at 15-minute intervals. 

At the end of the study period, data values were read out 

and the sensors left in place for further study. 

Results 

Industry standards suggest risk of condensation on 
surfaces whenever relative humidity of the air exceeds 

80%.22  Of course, whether or not condensation will occur 

on any particular surface depends on the temperatures of 
the surface, and the presence of water vapor (by 

infiltration or diffusion), all tied to specific assemblies as 

well as environmental conditions. However, the 80% RH 
benchmark was used as the threshold for this analysis, 

because it is based on measurements of surrounding air 

temperature and humidity, rather than the temperatures 

and moisture content of possible condensing surfaces in 
the floor assembly. 

 

Over the study period, ambient relative humidity 
consistently enters and remains in the condensation risk 

zone, as shown in Figure 2. However, the trend line for 

the outdoor data stays within the risk zone for almost the 
entire year, with less variance in the hourly data between 

the months of December and February corresponding 

with the lowest air temperatures. 
 

At the sixth façade, there is a clear trend of an increasing 

relative humidity for the below-building air during the 
winter months; between December and March the 

conditions at the sixth façade remain in the risk zone and 

then decrease in the warmer months. When compared to 
the sixth façade, the first-floor interior conditions maintain 

a low relative humidity. The temperature mirrors the sixth 

façade and outdoor temperatures as the house remains 
unconditioned throughout the year, aside from several 

weekends when it is inhabited, these weekends can be 

seen in the spikes in November.  

Discussion 

A risk index was developed to identify times when the 

relative humidity of the sixth facade was greater than 80% 

and the relative humidity of the outdoors was less than 
80%, indicating times of unusually high moisture below 



MICROCLIMATES AT THE SIXTH FACADE 

 
 

the building while excluding times that might have overall 

high RH, for example when it rains. Parameters were set 
by the accuracy of the sensors (+/- 2.5% RH) with a 

conditional statement: if the difference of the sixth facade 

and 80% was greater than the absolute value of 2.5, and 
the difference of the outdoors and 80% was less than the 

absolute value of 2.5. Data that fit between these 

parameters was compared with the difference of the 
relative humidity of the sixth façade and 80% relative 

humidity divided by the difference of 80% relative 

humidity and the relative humidity of the outdoors, as 

shown in the Risk Index Equation. During 520 out of 
7,824 hours (6.6% or 22 out of 326 days) the relative 

humidity of the sixth façade was higher than that of the 

outdoors. The risk index ratio described below quantifies 
these hours of condensation risk. 

Figure 3 depicts the trend lines in comparison to the risk 

index and condensation risk zone. The index peaks at the 
times when the trend of the sixth façade is greater than 

that of the outdoor relative humidity.  

Risk Index Equation 

𝑟" = 𝑆𝑖𝑥𝑡ℎ	𝐹𝑎𝑐𝑎𝑑𝑒	𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 

𝑟6 = 𝑂𝑢𝑡𝑑𝑜𝑜𝑟	𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 

𝐼𝑓	𝑟" > 80	𝑎𝑛𝑑	𝑟6 < 80,	 

𝑎𝑛𝑑	𝑖𝑓	𝑟" − 80 > |2.5|	𝑎𝑛𝑑	80 − 𝑟6 > |2.5|	, 

	𝑡ℎ𝑒𝑛	𝑅𝑖𝑠𝑘	H6IJKI"LMN6I =
(𝑟" − 80)
(80− 𝑟6)

 

    
Fig. 2. Annual hourly of Relative Humidity and Temperature
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Fig. 3. Annual trends versus calculated risk index.

 

Conclusions 

While limited to measurements of temperature and 
humidity of air, this data helps provide a better 

understanding of the microclimates that occur at the sixth 

façade. Understanding that buildings experience (and 
indeed create) multiple surrounding conditions, rather 

than a singular “exterior” supports further study of the 

response of various building assemblies to their specific 
environments. The condensation risk index clearly 

illustrates winter as the risk season even though RH is 

low. This risk is particularly evident when the house is 

heated (although this may also reverse the vapor drive) 

and on the edges of winter, when the temperature is near 

but not quite below freezing. This can be seen in the 
spikes between the end of January and early March.  

Since the test building was unoccupied for most of the 

year, future work includes an analysis of occupied 
buildings to determine the condensation risk and 

moisture accumulation in various locations of floor 

assemblies separating occupied (heated) space with the 
environments below the sixth façade measured here. 

This would necessarily incorporate measurements of the 

specific assemblies, and their materials’ conductivity, 
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permeability, and airtightness relative to the vapor drive 

and exterior conditions. 

 Although well-documented for walls, the effects of 

building-ground radiant exchange and solar radiation on 

vapor drive at the sixth façade are not well studied. 
Similarly, the influence of the dimension between grade 

to the underside of the floor and the effect on ground 

moisture evaporation represent areas for additional work. 
Finally, while not the focus of this study, the experimental 

design included collecting data in the attic, which 

exhibited even greater extremes of relative humidity than 

those on the sixth façade. Comparing this data to the 
second floor and outdoor condition may lead to similar 

conclusions. 
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