

# Updating Materials and Methods of Construction Pedagogy for Digital Natives

## A Critical Adaptation from Textbooks Tests and Essays to Digitally Fabricated Physical Materials Systems Models, Discursive Video Blogs, and Gamified Computational Simulation

Angus Eade

*University Of Kentucky, School of Architecture*

### Abstract

Charged with the responsibility of imparting essential knowledge of the materials, techniques, and processes involved in shaping the built environment, Materials and Methods of Construction courses have long been a standard component of the National Architectural Accrediting Board's [NAAB] core curricula guidelines. Punctuated by accelerating techno-cultural change, the recent timeframe has required a rapid sequence of course adaptations at the University of Kentucky, spurred initially by a nearly complete inaccessibility to physical learning spaces instigated by the COVID-19 pandemic and quarantine. As these immediate disruptions demanded pedagogical improvisation, a second less visible, and potentially more profound transformation was taking shape: the emergence of AI-enabled learning systems and alternate pathways to professional licensure. This study chronicles and analyzes two major adaptations to the course's delivery between 2018 and 2025 and proposes a speculative third version that responds directly to this emerging shift, positioning architectural pedagogy in critical relation to recent

developments in AI enabled learning platforms and professional credentialing reform.

First, this study looks at a pre-COVID era adaptation to the course that emphasized the development of student intuition of construction materials and methods through hands on physical prototyping and experimentation. In pursuit of the second redesign of the course, a 'silver lining' of the pandemic quarantine was identified and acted upon: the resultant imperative to fast track course adaptations to online formats which the instructor took as an opportunity to redesign the course to more substantially engage contemporary undergraduate college students ['digital-natives'] who too often have conflicted attentions between traditional school work and passive internet media consumption, tendencies which were further exacerbated by the isolating conditions of the quarantine and the loss of informal person to person discourse that occurs in and around classroom instruction.<sup>1</sup> This transition to a Video-Blog based pedagogy created space to test new modalities of

communication and collaboration that departed from conventional lecture and test instruction, and moved toward a more participatory, media rich student centered format.

Finally, this study proposes a third speculative version of the course as a polemic provocation and call to action in response to the accelerated development of AI-enabled adaptive learning systems, alternate credentialing, and new National Council of Architectural Registration Board [NCARB] pathways to licensure that do not require a NAAB-accredited degree. Rather than resisting these forces or accepting them uncritically, this third version engages them directly, rethinking foundational instruction in building technology through the lens of immersive simulation and real-time adaptive feedback. This third speculative adaptation integrates AI enabled gamified learning modules that combine computational simulation workflows including Finite Element Analysis [for evaluating structural performance under loads], Topology Optimization [for reducing material while maintaining strength] and Computational Fluid Dynamics [for visualizing airflow and environmental behavior] — set within an immersive virtual environment while also foregrounding the need to preserve the tactile, collaborative, and discursive aspects that remain essential to architectural education.

### **Materials and Methods of Construction: Lectures and Pedagogy**

Foundational concepts, shared by all three versions of the course have been continuously developed through a theoretical framework that integrates research on neuro-synthesis, embodied cognition<sup>2</sup>, experiential learning<sup>3</sup>, and Material Driven Design [MDD]<sup>4</sup>, with the objective of bolstering skill development as well as the long-term

retention of applicable knowledge.<sup>5 6</sup> These foundational concepts inform the design of introductory lectures, assignments, and student deliverables, supporting extensive comprehension of essential construction material systems including: metals, glass, masonry, concrete, wood, and composites.

Lectures for each material begin at the macro scale, with a diachronic material historiography presenting a comparative analysis of similar spatial-structural and building envelope types as they change over time spurred by advancing material science and engineering. These include the evolution of post and beam construction through progressive modulations from wood and stone to steel, shifting through ever increasing structural capacity corresponding to strength to weight ratio optimizations, as well as the evolution of enclosure systems related to thermal, acoustic, luminance, energy harvesting, and light transmission performance. These transformations are illustrated through a wide range of building precedents correlated to contemporary developments in digital fabrication, manufacturing, robotics, automation, and computational simulation. Transitioning to micro scales, lectures depict cellular structures in the case of wood, and molecular structures in the case of glass [as examples] underscoring the 'super-heroic' qualities inherent within each material characterized as intrinsically linked *capacities* and *vulnerabilities*. For example, regarding wood, attention is directed to the fibrous, glucose rich cellular structures from which the *capacities* of resilience and structural integrity emerge simultaneous to *vulnerabilities* to insect damage, decay, and flammability; regarding glass, attention is directed to the irregular tetrahedral structures from which optical *capacities* and *vulnerabilities* to brittleness emerge.

By unpacking the intrinsic *capacities* and *vulnerabilities* of each subsequent material category: wood, masonry, concrete, metals, glass, and composites, students are provided with essential insights into each material's potential in fabrication, manufacturing, and construction that originates at the microscopic level and extends to the human and ecological dimensions of the built environment. Lectures then pivot to initiate instruction on regulatory frameworks concerning life safety, contractual obligations, and specification imperatives, with attention on applications in various building contexts demonstrating a wide range of practical applications that traverse scales, complexities, assemblies, construction processes, and costs, prompting discussions that critically engage a comprehensive range of opportunities and challenges that traverse budget scales from modest to extravagant.

**Course Adaptation 1: Emphasis on Digitally Fabricated Physical Materials Systems Simulation Models**

In this version of the course, students were assigned two primary deliverables. At mid-term, they completed a written take home examination, the last vestige of the traditional class format, after which they were assigned a final prototyping project consisting of three progressive iterations. To assess students' proficiency in retaining and applying course concepts, the midterm exam consisted of context specific design briefs focused on various relationships of weathering and climate, material selection, structural systems, building envelope design, and mediating client and regulatory requirements.

After the midterm, students began the prototyping project, working in teams of two over a five-week duration. During that time, they created three iterations with each successive version assessed against a scoring matrix providing feedback throughout the process. The prototyping project emphasized the development of

students' embodied intuition of material *capacities* and *vulnerabilities* through visceral tangibility. Students iterated through a series of scaled physical prototypes, conceived of potential schematics for both horizontal space defining structures as well as vertically oriented building envelope systems.

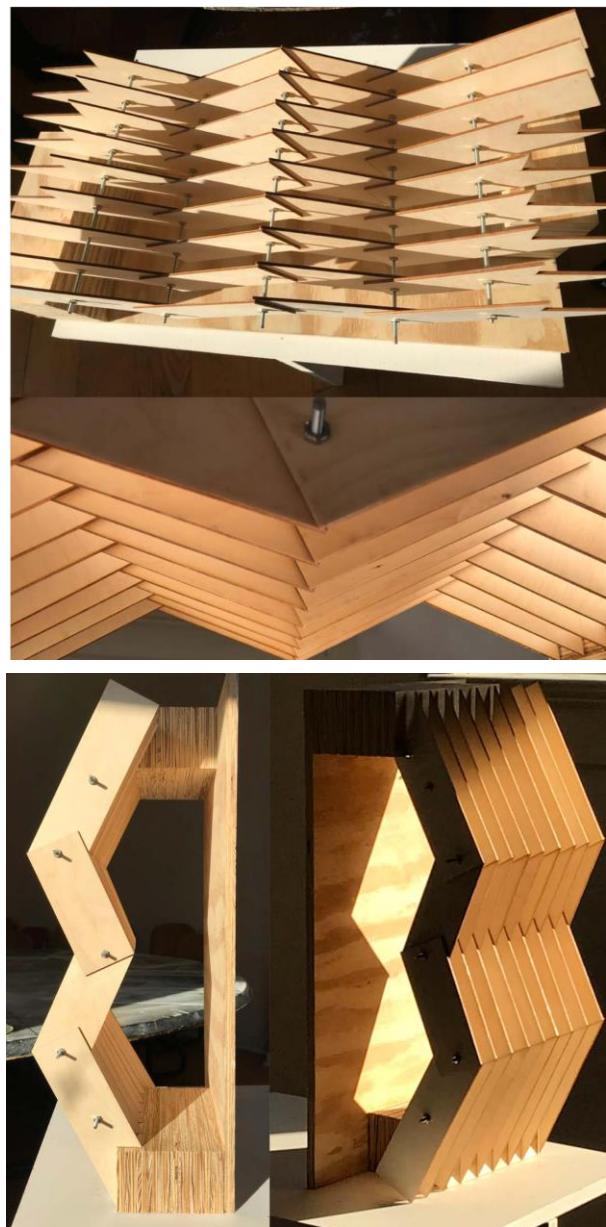



Fig. 1. Student Prototype: Threaded Rods, Bass Wood, potential schematics for horizontal space-defining structures as well as vertically oriented building envelope systems

The prototyping project's instruction was initiated with an introduction lecture that featured a range of built precedents for reference and inspiration. These included Felix Candela's Bacardi Bottling Plant, Foreign Office Architects' Yokohama Port Terminal, Kazuhiro Kujima's Noda Pavilion, and Alvaro Siza's Portuguese Pavilion, each corresponding to the four *Spanning Structure Types* from which students were prompted to select from to initiate the prototyping process. The assignment tasked student to combine off the shelf and digitally fabricated materials & components and to assemble them without the use of adhesives, relying on mechanical connections for stability with components based on real world dimensional constraints. This aspect emphasized prototypes as '*simulations*' rather than '*representations*', which was a significant departure from the methods students were accustomed to in studio, where physical architectural modeling tends to rely on 3d printed models representing whole buildings, or parts thereof, or using chip board, bass wood and acrylic glued together without consideration of tectonic joinery or reference to real world economies of means.



Fig. 2. Student Prototype: Threaded Rods, 3D Printed Frames, Wood, and Acrylic Spanning Structure

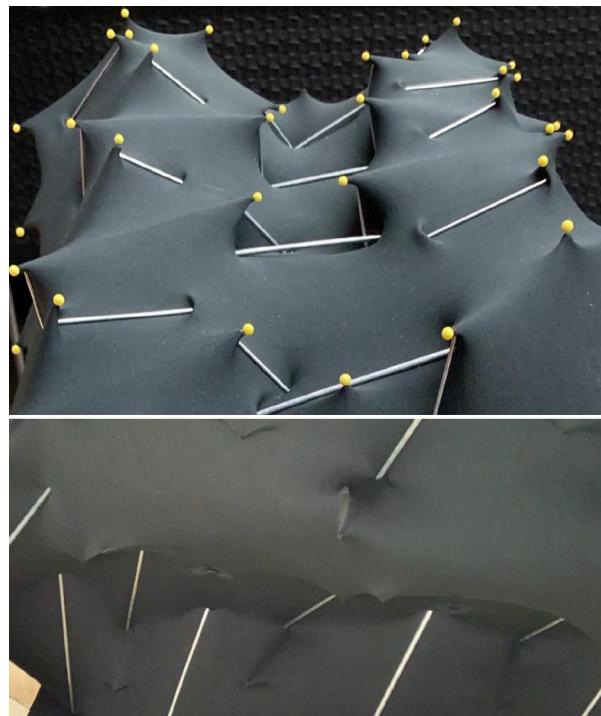



Fig. 3. Student Prototype: Lycra and Aluminum Rods Tensegrity Spanning Structure

To begin their prototyping process, students were prompted to select one of four *Spanning Structure Types*—corresponding to the precedents presented in the assignment introduction lecture, combined with selections of *Envelope Materials* and *Linear Reinforcement/Connector Materials*. The *Spanning Structure Type* categories, derived from the precedents, included Catenary Convex, Catenary Concave, Pleated/Folded, and Tensegrity. Students' *Envelope Material* choices included acrylic, basswood, metal sheets, and high-tension stretch fabric, each contributing to the overall system through distinct material and structural properties.

*Reinforcement/Connector* options, which included steel piano wire, metal tubes and threaded rods, washers, spacers, and nuts, played a fundamental role in the structural stability and mechanical connectivity of their prototypes. Students were also encouraged to create

their own custom reinforcement and connector elements with digitally fabricated techniques, including laser cutting and 3d printing.

#### Course Adaptation 1: Evaluating Student Outcomes

The disparity between the poor results of the take-home midterm examination and the final physical prototyping project was striking. Midterm outcomes were assessed as being ineffective in evaluating student comprehension of course topics, while the subsequent prototyping project showed a pattern of refinement and success. Results of the take-home midterm examination pointed to a problematic trend: nearly half the class received failing grades due to inadvertent plagiarism and poorly written responses, which in many cases were illegible with written answers combining similar 'googled' copy-pasted text.

The evaluation framework for the prototyping project, grounded in embodied cognition and Material Driven Design [MDD] based pedagogical methods, emphasized the iterative development, reflective critique, and situated analysis of student work. Patterns of improvement were identified through student peer reviews, instructor feedback, and student-generated documentation, including annotated diagrams and photo sequences. Prototypes were evaluated at the culmination of each successive iteration using a scoring matrix based on four assessment criteria: *Structural Integrity*, *Joinery Effectiveness*, *Material Suitability*, and *Component Composition*.

Highlights from the evaluation process revealed recurring relationships between the criteria pair *Structural Integrity* and *Joinery Effectiveness* across a wide range of strategies, corroborating the qualitative observations made during the prototyping process, particularly the many "ah-ha" moments when adjustments to reinforcements and connector choices were observed to

reduce deflection and increase overall stability, particularly how each component, when aligned and connected more precisely to one another, contributed to the cumulative stability of the entire spanning system. Adjustments made throughout the process included aligning component frame edges, swapping one connector for another, and, in some cases, creating custom 3D-printed and laser cut elements, combined with modifying tolerances so that parts fit together with greater precision.



Fig. 4. Student Prototypes: Lycra and Nylon Wire Tensegrity Spanning Structure

Students' sequential modifications to their prototype's spanning components regarding scale, thickness, mass, elasticity, and stiffness throughout the process yielded progressively improving results in terms of load path distribution and deflection mitigation, as students observed tangible improvements in structural performance when they replaced one type of stretch fabric in favor of another with more elasticity, or changed piano wire gauges and metal rod dimensions and materials from steel to aluminum. Some even repurposed guitar-string tuners to simulate post tensioning components, producing even greater structural stability and spatial effects.

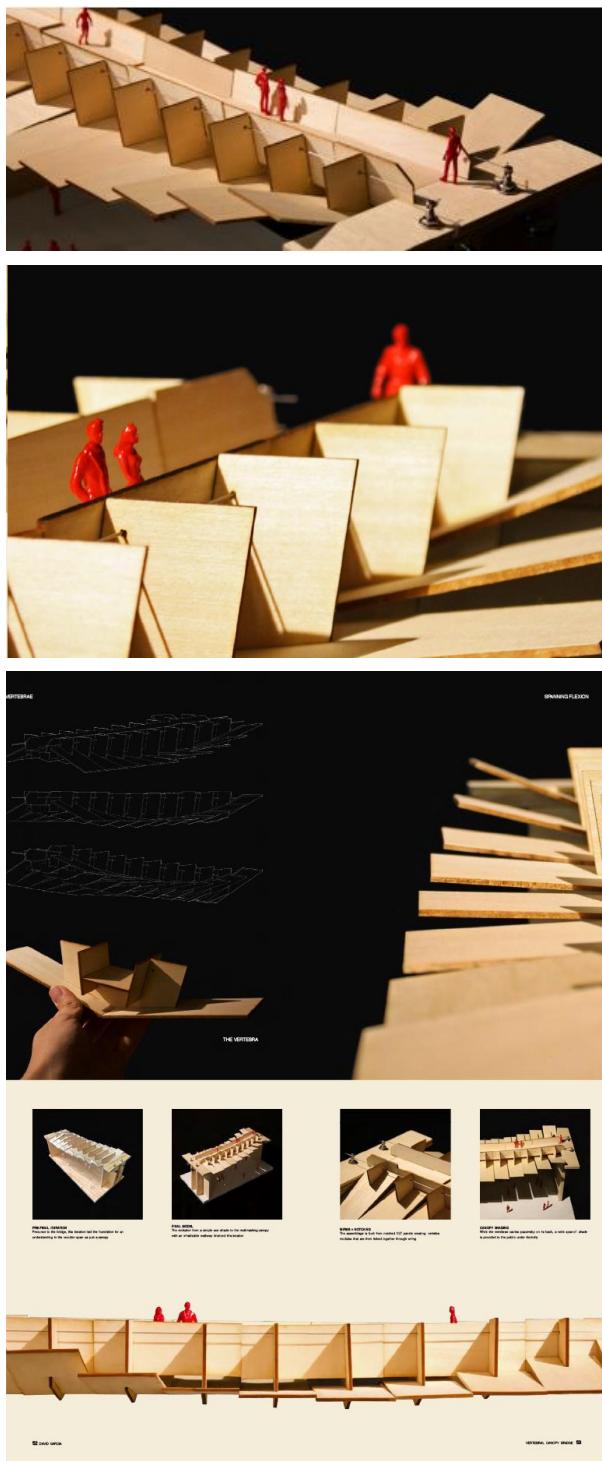



Fig. 5. Student Prototype: Post Tensioning System Using Guitar Tuners

In summary, the initial spanning structure materials systems choices functioned as a prototype-origin from which students iteratively refined performance across *Structural Integrity, Joinery Effectiveness, Material Suitability, and Component Composition*. In essence, students 'parented' their chosen material system through each consecutive iteration, achieving progressive tectonic, structural, and aesthetic refinements through testing and modifying. This recursive prototyping process, in which material properties and relationships were explored through physical interaction, manipulation, and trial and error, afforded students the ability to enact the latent capacities of their selections through making rather than through abstraction, aligning with aspects of embodied cognition theories that posit cognition is not simply the domain of the mind, but rather it emerges from sensorimotor interaction.<sup>7</sup> Furthermore, empirical studies corroborate that hands-on learning results in deeper conceptual comprehension, increased retention, and extended problem-solving abilities when compared to traditional lecture based instruction, rote memorization, and recitation.<sup>8 9</sup>

#### Course Adaptation 2: CoVid Era Discursive Video-Blogs

In this version of the course, following the presentation of introductory lectures on each building material, teams of two students take two weeks to produce a ten to fifteen-minute discursive YouTube styled Video-Blog that demonstrates a synthesis of foundational course concepts. Video-Blog assignments task students with finding, discussing, and presenting relevant building precedents and research trajectories for each material classification by introducing three essential prompts relative to each subsequent material classification.<sup>10</sup>

*1. What are the inherent vulnerabilities and capacities of the material, and how do architects redress the former while simultaneously exploiting the latter?*

How does contending with these intrinsically linked *vulnerabilities* and *capacities* lead to spatial, structural, constructional, experiential, and aesthetic effects?

*2. Which contemporary architectures actively leverage vulnerabilities and capacities as primary drivers of design?*

This prompt includes finding and analyzing a contemporary building precedent across scales: from site concept and client context to material systems assemblies, component manufacturing, and construction methods, including the delivery of factory-produced elements, site staging, and the mobilization of building instruments, machines, and labor.

*3. What are the promising lines of research inquiry for each material?*

With this prompt, the instructor asks students to begin with a thought experiment: 'If you were to research and develop the material and its corollary methods, which aspects offer significant promise, both in terms of offering new opportunities and surfacing new problematics; which emerging technologies: additive manufacturing, robotics, automated integrations in construction, artificial intelligence, and material science will significantly impact the built and natural environments? Which research trajectories hold latent potential for extending economies of scale, longevity, resilience, design for disassembly, and material reuse and recycling?'

**Course Adaptation 2: Evaluating Student Outcomes**

Evaluation criteria for student Video-Blogs prioritize depth of investigation, clarity and rigor of presentation, and quality of group discussions regarding the prompts for the assignment. An emphasis on factually correct, extemporaneous discussion and depth of inquiry is central to the evaluation criteria for Video-Blogs; thus students are prompted to engage with course concepts through a series of iterative team research driven work sessions to the extent of being able to discuss them naturally, in their own voices, and in real time. Research on interactive learning supports this approach, showing that students learn more effectively when they engage in spontaneous dialogue with peers as opposed to simply listening to lectures, reading material, or delivering rehearsed presentations.<sup>11</sup> These real-time conversations allow students to test ideas, respond to one another, and collaboratively build understanding, resulting in deeper and more durable learning.

In the latest iteration of the post-COVID Video-Blog based course, testing has been strategically reintroduced to quantify student learning outcomes. It is worth clarifying here that this form of testing is not intended to be a return to a 'teach to the test' model. Rather, testing has been reintroduced as a pre- and post-survey method to assess the learning power and efficacy of student Video-Blog production. The pre-survey doubled as both a diagnostic tool to measure students' knowledge before Video-Blog production as well as the Video-Blog assignment prompt itself, converting the Video-Blog's assignment prompts into a series of questions. After completing the final Video-Blog, students took a post-Video-Blog production survey. The pre-and post-surveys were identical in scope to accurately calibrate student learning progression through the production of their

Video-Blogs. IBM's Statistical Package for the Social Sciences [SPSS] was implemented to measure the efficacy of student Video-Blogs as a pedagogic instrument, comparing pre- and post- Video-Blog production survey scores.

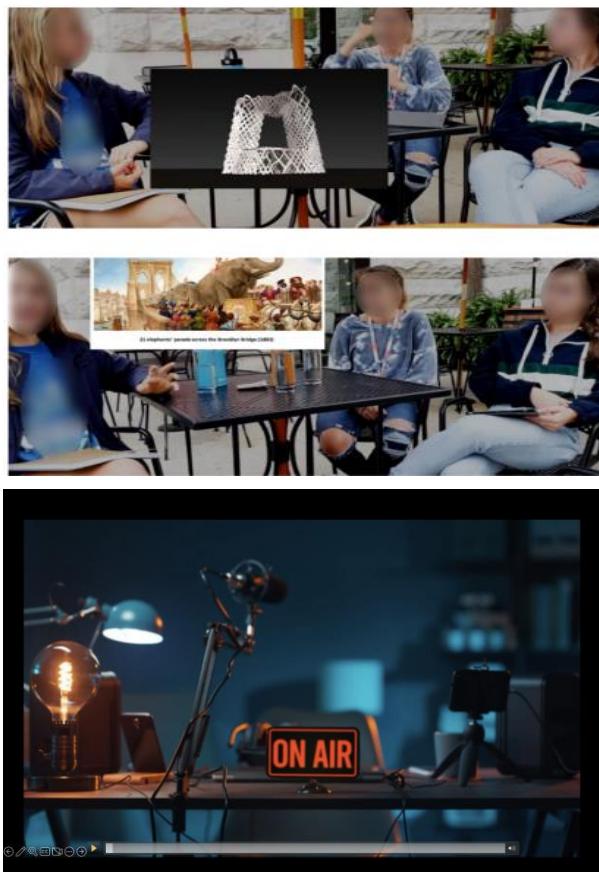



Fig. 6. Student Created Video-Blogs

Analysis using IBM's SPSS to conduct paired t-tests demonstrates a substantial improvement in student learning outcomes. The pre-survey mean score was [43.22], while the post-survey mean score increased to [72.83], indicating a [29.61] point enhancement. The paired t-test yielded a result of  $t = -15.659$ ,  $p < 0.001$ , which indicates that the observed improvement is

statistically significant and highly unlikely to be due to chance.<sup>12</sup>

To assess the magnitude of this effect, Cohen's  $d = 2.30$  and Hedges' correction = 2.270 were calculated. These values far exceed the conventional threshold of 0.8 used to denote a large effect size, confirming that the Video-Blog assignment had a substantial and widespread impact on student learning across the class.<sup>13</sup>

Furthermore, the correlation between pre- and post-survey scores was [ $r = 0.758$ ,  $p < 0.001$ ], indicating a strong positive linear relationship. This suggests that students who began with higher baseline knowledge improved, and those who began with lower scores also made significant gains.<sup>14</sup> In summary, students at all levels, including those who initially scored above and below the mean benefited significantly from the discursive Video-Blog assignment, as confirmed by multiple forms of statistical analysis.

### A Bigger Disruption Unfolds

While architectural educators and students were still contending with the pedagogic disorientation imposed by the COVID-19 pandemic, adapting coursework to virtual formats and compensating for the absence of physical materials and social learning spaces, a second disruption was unfolding in the background. The rapid emergence of AI-enabled learning systems did not occur in the aftermath of the pandemic, but rather concurrently, evolving largely unnoticed as institutional energies were directed toward emergency adaptations. In retrospect, it is evident that the urgency of the immediate crisis overshadowed the significance of this systemic transformation, one that may result in broader and more lasting changes to curricula, certification systems, and

institutional roles than the pandemic induced shift to remote learning.<sup>15</sup>

Between 2020 and 2023, adaptive learning platforms such as Squirrel AI, Century Tech, and Carnegie Learning began implementing large-scale instructional models capable of real-time feedback, performance prediction, and dynamic curriculum modulation. In parallel, generative AI systems including OpenAI's GPT series, Google's PaLM, and Anthropic's Claude were integrated into tutoring, code-generation, and simulation environments. While these developments accelerated during pandemic-era school closures, their significance was largely peripheral to architectural pedagogy, which remained focused on temporary workarounds and post-crisis recoveries.

Institutional attention to the immediate pedagogical challenges posed by the COVID-19 pandemic left little room to engage with the deeper, systemic shifts emerging through AI-driven educational technologies. What were initially seen as supplemental tutoring platforms have now matured into a decentralized and expanding ecosystem of AI-enhanced systems capable of delivering interactive, customized, and increasingly immersive learning experiences.<sup>16</sup>

This emergence has begun to intersect with a broader reconfiguration of professional validation, evidenced by the National Council of Architectural Registration Boards' endorsement of licensure pathways that bypass the traditional NAAB-accredited degree. The recent development of AI adaptive learning systems aligns closely with this shift, supporting decentralized, competency-based pathways to practice. The result is a period of institutional uncertainty in which both the

mechanisms of learning and the frameworks of credentialing are changing significantly.

AI-enabled adaptive learning systems and video game-like modes for learning are beginning to challenge the way higher education is provisioned, and at the same time, the architectural profession has advanced toward new procedures for licensure that offer alternative pathways that compete with traditional NAAB-accredited degree programs.<sup>17</sup> Furthermore, competency-based learning systems, including Google Career Certificates, Coursera, and edX, provide affordable training pathways suggesting that the role universities play as the primary provider of higher education may become contested and require significant adaptation.<sup>18</sup>

The National Council of Architectural Registration Boards [NCARB] has also observed this evolution, noting that 17 U.S. jurisdictions now provide licensure pathways without needing a NAAB-accredited degree.<sup>19</sup> The near-term future may not be entirely characterized by the commoditization of degrees and their role as the primary means of validating education, but with their potential obsolescence. These developments pose urgent questions about architectural pedagogy. If students can obtain specialized, affordable AI-enabled training, will they veer away from the traditional university degree system? How can universities adapt as AI-augmented training systems begin to produce desirable credentials that contend with traditional degrees? How can universities remain relevant in this rapidly changing environment?

### Course Adaptation 3: AI enabled gamified Materials Systems Learning Modules

This speculative third version of Materials and Methods of Construction, conceived and presented as a polemic, coincides with this accelerating emergence of AI-enabled adaptive learning systems, gamification, alternate credentialing, and new pathways to licensure.<sup>20 21</sup>

What follows is a critical design proposition for a gamified learning model that explores how immersive, AI-augmented simulations might be critically integrated into architectural education without abandoning its embodied, collaborative, and materially rooted ethos.

Borrowing from and extending familiar design software interfaces, 'gamified simulation learning modules' in this speculative version would incorporate users' ability to create and dynamically manipulate architectural assemblies in real-time while drawing from video game-like interfaces by integrating aspects of environmental immersion, Dynamic Difficulty Adjustment [DDA], Non-Player Characters [NPCs], and Experience Points [XP]. AI-enabled systems continuously adapt to individual learners providing real time, personalized guidance, performance analysis, and evolving challenges based on student behavior. This transforms the learning environment from a fixed simulation into a dynamic, co-evolving system that responds to each student's ability and trajectory.<sup>22</sup>

#### Gamified "Core" Materials Systems Module

In this module, students would level up through a range of simulated building contexts from basic to advanced; from abstract contexts without the imperatives of designing for natural disasters and difficult sites, to those

with multilayered contingent volatiles, including seismic, fire, wind, and weather force events. Ground interfacing elements would integrate Computational Fluid Dynamics [CFD] in the gamified module to address thermal bridging, condensation, and waterproofing issues. Interacting with Non-Player-Characters [NPCs] representing clients and consultants would challenge students while they are 'leveling up' with scenarios that introduce progressively more complex scenarios. Leveling up would leverage Dynamic Difficulty Adjustment [DDA] via adaptive algorithms that continuously assess each student's knowledge and performance in real-time, making sure that lessons are neither too easy nor too challenging to maintain optimal flow states for cognitive development. The leveling up process would be further incentivized Experience Points [XP], video game-like rewards systems, that are earned with each successive accomplishment.<sup>23 24</sup>

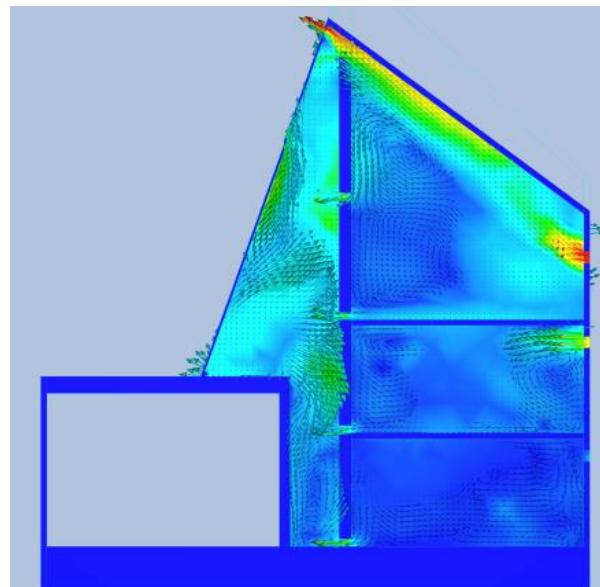
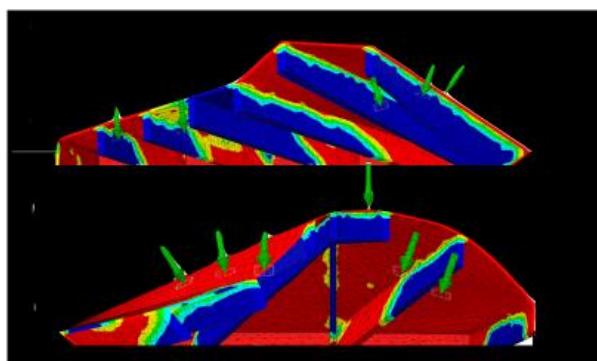




Fig. 7. Computational Fluid Dynamics: Trombe Wall House Showing Passive Ventilation

### **Gamified Shell" Material System Module**

Building upon their accomplishment in the "Core" Material Systems module, the Shell Material Systems Module would focus on the essentials of building envelopes: exterior interfacing elements including walls, windows, doors, skylights, and roofs: emphasizing the design and optimization of passive and active systems for thermal, luminance, and acoustic performance. Students would engage in real time CFD simulations to depict the thermal and ventilation effects of various apertured and layered building envelopes as they adjust them within the gamified interface, which would provide immediate feedback in the form of user-friendly graphic data analytics combined with virtual depictions. These would feature time-lapse and walkthrough motion graphics of each design iteration rendered with CFD temperature maps, sun-study graphics, and acoustic simulations that can be toggled on and off throughout the training process. NPCs representing sustainability, acoustic, and lighting consultants would guide students through the leveling-up process, beginning with the basics regarding conventional practices for layered assemblies including cladding, rain screens, vapor barriers, fire protection, insulation, structural framing, finishes, and doors and windows.



*Fig. 8. Topology Optimization Showing Material That Can Be Removed in Blue*

### **Integrated Core and Shell Module, Leveling Up, Experience Points Tokens, and Passports**

Proceeding to the Integrated Core and Shell Module, 'leveling-up' would combine "Core" and "Shell" Material Systems Modules while leveraging Dynamic Difficulty Adjustment [DDA]. For each new competency level achieved, students would earn Experience Points [XP] that can be accumulated and used to purchase physical design tools and materials, redeemable at local suppliers. XP's would also convert to "Passports" for journeys to more complex and rewarding design environments and problem sets, inspiring students to take on progressively more challenging scenarios and contexts, including extreme climates and urban pressures. In turn, the leveling-up process would present new scenarios and problematics in volatile and dynamic conditions, i.e., seismic-volcanic conditions in Japan, arctic and extreme topographic conditions in Alaska, dense megacity conditions in Central and South America, and arid sand-swept desert conditions in the southwestern United States. For each successive design journey, new NPC introductions and relationships would be developed and folded into the 'game,' including those representing advanced building technology consultants, roboticists, construction automation experts, and material and data scientists.<sup>25 26</sup>

### **Conclusion**

Across the three iterations of the course examined in this study: pre-COVID physical prototyping, pandemic-era discursive video-blogging, and speculative AI-enabled gamified simulation, a trajectory of pedagogical adaptation becomes visible: one that responds not only to disruption but to the changing landscape of how students learn, how professionals are credentialed, and how institutions stay relevant. Each version represents a

different dimension of architectural education: tactile and intuitive learning through making, reflective discourse and digital fluency, and immersive technological integration through simulation and adaptive AI.

The convergence of AI, alternative credentialing, and new pathways for licensure foreshadow a potentially existential disruption in architectural education. These shifts reflect a deeper paradigmatic cultural reconfiguration of how knowledge is accessed and validated. With the speculative third version of the course, the study concludes by advocating for active alignment with these emerging forces by integrating AI-enabled adaptive learning systems and driving them forward with critical foresight, rather than passively relying on incremental adoption or, even worse, looking away.

The third version, while speculative, serves as a deliberate provocation and call to action. The NCARB's endorsement of non-accredited pathways to licensure signals a broader questioning of traditional educational hierarchies and invites institutions to either proactively evolve or risk obsolescence. Likewise, the emergence of competency-based AI enabled learning models, which prioritize demonstrable skills over credit hours, reflects a shift from degrees as proxies for ability to systems that assess actual performance.

If accredited university-based architecture programs fail to engage with these emerging learning technologies, they may risk relinquishing their agency as the primary source of knowledge acquisition. The core question becomes: what unique value can the university offer in an age of AI-augmented, self-paced, and modular learning platforms? This study concludes by advocating for an alternative trajectory, one that embraces the integration of gamified experiential learning within academia while preserving the sensorially and socially rich qualities of design schools' fabrication labs, pin-up and gallery

spaces, and lecture halls. Universities remain essential not because they deliver content, but because they cultivate critical thinking, community, judgment, and the capacity for architectural synthesis within real world constraints.

Furthermore, adaptations which implement AI enabled gamified learning tools must not come at the expense of real human interaction and material experimentation, as the cultivation of students' intuition and collaborative problem solving through hands on experiential learning cannot be fully simulated in virtual space. The goal is not replacement, but augmentation: to build hybrid pedagogical ecologies where simulation and materiality enrich one another through developing coursework that is multimodal and adaptive, reflecting the complexity of contemporary architectural practice itself. Physical experiential learning and discourse remain imperative as long as we remain rooted in a 'bricks-and-mortar' reality.

Even in the face of dematerialized content and increasingly virtualized design tools, architectural education must retain a fundamental material and social grounding. While the slow to adapt nature of university bureaucracies may continue to persist, an environment of rapidly advancing forces suggests that higher education may be blindsided if it does not actively engage through a critical alignment and deliberate adaptation. Moving forward, the imperative for architectural education, particularly with respect to building technology pedagogies, is to not abandon tactile engagement but to critically and proactively integrate emerging pedagogic technologies in ways that augment, rather than outmode the corporeal richness of embodied learning experiences. It is only by doing so that architecture education can meet the demands of a rapidly changing profession while remaining true to its essential disciplinary ethos.

**Notes:**

1 Aristovnik, Aleksander, et al. "Impacts of the COVID-19 Pandemic on Life of Higher Education Students: A Global Perspective." *Sustainability* 12, no. 20 (2020): 8438. <https://doi.org/10.3390/su12208438>

2 Panagiotis Kosmas and Eleni A. Ioannou, "Embodied Cognition and Its Implications in Education: An Overview of Recent Literature," *International Journal of Learning, Teaching and Educational Research* 17, no. 5 (2018): 1-14. (researchgate.net)

3 Hanne De Jaegher and Ezequiel Di Paolo, "Participatory Sense-Making: An Enactive Approach to Social Cognition," *Phenomenology and the Cognitive Sciences* 6, no. 4 (2007): 485-507.

4 Elvin Karana et al., "Material Driven Design (MDD): A Method to Design for Material Experiences," *International Journal of Design* 9, no. 2 (2015): 35-54. ([ijdesign.org](http://ijdesign.org))

5 Francisco J. Varela, Evan Thompson, and Eleanor Rosch, *The Embodied Mind: Cognitive Science and Human Experience* (Cambridge, MA: MIT Press, 1991).

6 Alva Noë, *Action in Perception* (Cambridge, MA: MIT Press, 2004).

7 Lawrence W. Barsalou, "Grounded Cognition," *Annual Review of Psychology* 59 (2008): 617–645. <https://doi.org/10.1146/annurev.psych.59.103006.093639>

8 Ibwari Caroline Dike, Mkpoikanke Sunday Otu, and Adannia Amalachukwu Dike, "Effect of Hands-On Instructional Approach on Pupils' Achievement and Retention in Cultural and Creative Arts," *International Journal of Professional Business Review* 8, no. 12 (2023): 1–12. <https://doi.org/10.26668/businessreview/2023.v8i12.4207>

9 Tessema, T.G., Tessema, M.T., & Tefera, Z. "Realist Hands-On Learning Approach and Its Contributions to Learners' Conceptual Understanding and Problem-Solving Skills in Solid Geometry." *Pedagogical Research* 9, no. 1 (2023): em0186. <https://doi.org/10.29333/pr/14096>

10 Hassan, Ragia H. "Educational Vlogs: A Systematic Review." *SAGE Open* 13, no. 1 (2023): 21582440231152403. <https://doi.org/10.1177/21582440231152403>

11 Michelene T. H. Chi, "Active-Constructive-Interactive: A Conceptual Framework for Differentiating Learning Activities," *Topics in Cognitive Science* 1, no. 1 (2009): 73–105, <https://doi.org/10.1111/j.1756-8765.2008.01005.x>.

12 Andy Field, *Discovering Statistics Using IBM SPSS Statistics*, 5th ed. (London: SAGE Publications, 2018), <https://uk.sagepub.com/en-gb/eur/discovering-statistics-using-ibm-spss-statistics/book257672>.

13 Robert Coe, *It's the Effect Size, Stupid: What Effect Size Is and Why It Is Important* (2002), <https://www.cem.org/attachments/ebe/ESguide.pdf>.

14 Neil J. Salkind, *Statistics for People Who (Think They) Hate Statistics*, 7th ed. (Thousand Oaks, CA: SAGE Publications, 2022), <https://us.sagepub.com/en-us/nam/statistics-for-people-who-think-they-hate-statistics/book274211>.

15 Yujie Huang et al., "Enhancing Architectural Education through Artificial Intelligence," *Buildings* 14, no. 6 (2024): 1613, <https://www.mdpi.com/2075-5309/14/6/1613>.

16 Krishna Kumari R. and Snehalatha M., "AI and OpenAI in Education: Unveiling the Future of Learning and Teaching," in *Enhancing Higher Education and Research With OpenAI Models* (IGI Global, 2024), 176–205. <https://doi.org/10.4018/979-8-3693-1666-5.ch008>

17 "AI-enabled Adaptive Learning and the Future of Education," *Infosys BPM*, accessed February 4, 2025, <https://www.infosysbpmp.com/blogs/education-technology-services/the-future-of-education-how-ai-and-adaptive-learning-are-shaping-the-classrooms-of-the-future.html>

18 "How Alternative Credentials are Shaping Modern Education," *Higher Ed Today*, January 12, 2024, <https://www.higheredtoday.org/2024/01/12/how-alternative-credentials-are-shaping-modern-education/>

19 "Education Alternatives," *National Council of Architectural Registration Boards (NCARB)*, accessed February 4, 2025, <https://www.ncarb.org/earn-a-degree/study-architecture/accredited-programs/education-alternatives>

20 "The Rise of Competency-Based Education," *Inside Higher Ed*, 2014. <https://www.insidehighered.com/sites/default/files/2023-08/IHE%20Rise%20of%20Competency-Based%20Education%20booklet.pdf>

21 "Competency-Based Education Network (C-BEN)," *KnowledgeWorks*, accessed February 4, 2025, <https://knowledgeworks.org/resources/c-ben-competency-based-k-12-higher-education/>

22 Manoharan, Ashok, and Spurthi Nagulapally. "Adaptive Gamification Algorithms for Personalized Learning Experiences in Educational Platforms." *International Research Journal of Modernization in Engineering, Technology and Science* 6, no. 3 (2024): 219–225. <https://doi.org/10.56726/IRJMETS49966>

23 "How Gamification Can Transform Architecture Education." *ArchDaily*, accessed February 4, 2025. <https://www.archdaily.com/984231/how-gamification-can-transform-architecture-education>

24 Pastushenko, Olena. "Gamification in Assignments: Using Dynamic Difficulty Adjustment and Learning Analytics to Enhance Education." *Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers*, 2019. <https://doi.org/10.1145/3341215.3356335>

25 "Gamification in Learning: How to Use Experience Points (XP)." *Growth Engineering* accessed February 4, 2025. <https://www.growthengineering.co.uk/gamification-experience-points/>

26 "Gamification as a Pedagogical Innovation in Architectural Education," *IGI Global*, accessed February 4, 2025. <https://www.igi-global.com/viewtitle.aspx?TitleId=364655>