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1 Introduction

Tonal downstep has been defined as a contrastive drop in pitch from a preceding tone (Leben, 2014).
A slightly more inclusive definition describes downstep as a pitch drop that cannot be explained by pitch
declination (Connell, 2011). Our focus in this paper is specifically on a pitch drop in a high tone (H) that
is triggered by a preceding low tone (L). This type of pattern has variably been treated as either phonetic
in nature or as phonological in nature. For example, downstep of this type has been modelled with phonetic
implementation rules (e.g., Liberman & Pierrehumbert, 1984); it has also been modelled as feature spreading,
a phonological process (e.g., Snider, 1998). In this paper, we propose an account that incorporates insights
from both phonological and phonetic treatments of downstep. We arrive at this account by considering the
general neural mechanisms that underlie action selection and control, and considering downstep through this
lens. Situated within the broader perspective of action selection and control, we see downstep as a natural
consequence of rapid transitions between goals on the same metric dimension (here, pitch).

We formalize our neural-based account of downstep in Dynamic Field Theory (DFT) (Schöner &
Spencer, 2016). DFT describes changes in the state of activation over time within a dynamic neural field
(DNF). DNFs are sensitive to continuous metric dimensions, such as pitch. Activation peaks within a field
give rise to discrete percepts and actions. DFT has been applied to both non-categorical language behavior
– such as trace effects in speech errors (Stern et al., 2022), phonetic accommodation (Kirkham et al., 2025),
hyperarticulation due to lexical competitors (Stern & Shaw, 2023), gradient sound change (Shaw & Tang,
2023; Gafos & Kirov, 2009) – as well as categorical alternations (Shaw, 2025). Here we consider tonal
downstep, a phenomenon that has aspects of both.

Although formalized using a general approach to cognition grounded in neural processing, our model
does not abandon key insights from previous accounts. We make crucial use of the proposal, from
phonological theory, that register spreading is important for downstep, while at the same time, similarly
to phonetic accounts, derive continuous changes in pitch over time.

There are three crucial ingredients to our account of downstep in an HLH sequence: (1) the insight that
downstep involves the combination of low (l) register with H tone (as in Snider (1998)), 2) the representation
of tone targets within the continuous dimension of pitch, which draws on the representational structure of a
DNF 3) an assumption that activation peaks in a DNF are inhibited upon successful completion of an action
(pitch target). Such inhibition of activation following successful target achievement aids rapid transitions
between targets. This mechanism may be crucial for languages that specify sequences of distinct pitch targets
within a short temporal span, such as on consecutive tone bearing units, i.e., a typical lexical tone language.

A primary contribution of this paper is the illustration of how phonological patterns can be derived from
the interaction between the cognitive mechanisms involved in the selection of action plans, and the control of
action over time. This approach is original in that–rather than abstracting away from time–it relies on a neural
process model with states that change over time on the appropriate (millisecond) timescale for phonological
cognition.

* Thank you to the audience at AMP 2024 (Rutgers University), and the members of the DYNAMICS group
(Linguistics department, Yale University), for their comments and suggestions.
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The rest of the paper is structured as follows: first, we will go over some data from Snider (1998) and
discuss his register-based analysis of downstep in Bimomba; second, we will provide an overview of DFT,
the framewwork for our model architecture, and present some simulations. We end with a short discussion of
the results and directions for future work.

2 Background

2.1 Downstep in Bimboa (Snider 1998) Although there are language-specific variations in downstep,
we focus here on the pattern in Bimoba, a Gur language of the Niger-Congo family spoken in Northern
Ghana. There are some phonetic data published for this pattern. Figure 1 is based on the measurements
reported in Snider (1998: pp. 87-89). The f0 values correspond to the Bimoba examples in 1 and 2 (Snider,
1998: p. 86). The reported measurements are single values of f0 for each syllable.

The comparison in pitch between an utterance with all H tones vs. one with an intervening L shows
us that the L causes a lowering of subsequent Hs that is far beyond that caused by normal declination over
the utterance (Snider, 1998). Note that this lowering results in a tone that is still phonologically an H, even
though it is phonetically closer to an L.

Figure 1: f0 contour of HH HH HH vs. HH LH H utterances.

(1) gbátúk
bushbaby

mı́rı́
cut.PRES

gbátúk
bushbaby

‘bushbaby is cutting a bushbaby’

(2) gbátúk
bushbaby

gòt
look.at.PAST

↓gbátúk
bushbaby

’bushbaby looked at a bushbaby’

Snider (1998) accounts for downstep via a model that proposes a ‘register tier’ in the phonological
representation. This register tier combines with the ’tone tier’ to give the final tonal specification for each
mora. Following Snider’s notation, we use “l” and “h” for low and high register and L and H for low and
high tone. Downstep, then, is the combination of a low (l) register feature with a H tone (as compared to a H
tone with high (h) register) – giving us a tone output that is phonologically still an H, due to the tonal tier, but
phonetically lower than the non-downstepped counterparts, due to the register tier. This is illustrated by the
schema in Figure 2, reproduced from Snider (1998: p. 95). The Figure shows the low register (l) is spread
across two tone nodes, while the second high register (h) is delinked from the final tone node.
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Figure 2: Snider (1998)’s characterization of downstep (p. 95).

Snider (1998)’s phonological analysis receives some converging evidence from facts about the Mid tones
in Bimoba: 1) The observation that downstepped H tones are phonetically close to Mid tones in the language,
and 2) The observation that while Mid tones downstep High tones, Low tones do not downstep Mids (p.
96). To account for these facts, Snider proposes that both the Mid and the High tones in Bimoba have the
characterization in Figure 2. Since Mids already have a low register feature in their representation, they are
ineligible to be downstepped by preceding Low tones. For the same reason, however, they can downstep
subsequent Highs.

As we will outline in §3, we use Snider’s insight that it is the low register feature, which spreads from
Low/Mid tones, that is responsible for downstep, while at the same time, connecting this intuition to a
continuous representation of pitch.

2.2 Dynamics of action control As mentioned in §1, discrete cognitive events emerge in DFT via the
evolution of activation within neural fields (DNF) sensitive to particular continuous dimensions.

Activation in a DNF evolves over time according to equation 3 (Schöner & Spencer, 2016). u̇(x, t)
represents the change in activation over a particular location in the field (particular value of the dimension
the field is defined over; x) at a particular moment in time, t. Change in activation is related to the current
activation, u, defining a point attractor system at each field location. Under the influence of inputs (s, the
term in green, modeled as Gaussian distributions), interactions between the neurons in the field (the term in
purple), and the history of activation (i.e., the state of the field before the inputs are added), activation across
the field can stabilize, with some field locations above threshold (> zero), representing a cognitive decision
or detection of percept. In our case, the above threshold activation peak represents selection (a “decision”) of
a pitch target.

(3) τ u̇(x, t) = −u(x, t) + h+ s(x, t) +
∫
k(x− x′)g(u(x′, t))dx′ + qξ(x, t)

Pitch targets selected by the DNF are fed to the articulatory dynamics, which we model via the linear
second order dynamical system in equation 4. This dynamical system precisely characterizes a physical
mass on a spring, and has been applied to the dynamics of a wide range of speech movements (Saltzman &
Munhall, 1989), including pitch control (Gao, 2008). In this model, T is the target, x represents the current
state (pitch value), and k is the stiffness parameter, which dictates the speed at which the system evolves
towards the target state, m is mass and b is damping. In our simulations, we fixed the values of the control
parameters to ensure critical damping: m is 1; b is 4; k is 4. The only remaining parameter is T, which is set to
the location of above threshold activation peak in the DNF. While the articulatory dynamics in 4 is sufficient
for our purposes–it specifies a point attractor, driving pitch to the selected pitch target over time–the precise
details of the pitch contours, which we do not have access to for Bimoba, may be better captured by other
dynamical systems. See, for example, Iskarous et al. (2024), who model pitch trajectories in English pitch
accents, Stern & Shaw (2024), who propose an articulatory dynamics with fewer parameters than the mass
spring, and Flemming & Cho (2017) who optimize over competing pitch targets in their model of Mandarin
contour tones. For our purposes, what matters is that the equation evolves towards the target, T , which comes
from the location in the DNF where a stable, above threshold, activation peak has formed. Thus, our system
incorporates a dynamics for pitch target selection (equation 3) and a dynamics for pitch control (equation 4)
over time.

(4) mẍ+ bẋ+ k(x− T ) = 0

The two dynamical systems interact to produce phonological patterns, in our case, tonal downstep. At
each timestep, if there is a stable, above threshold peak in the pitch field (activation > 0), the target of the
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gesture dynamics, T , is set to the location of that peak, i.e., the field location with maximum activation. If
there is no above threshold peak, the dynamics evolve towards a neutral value, T = 150Hz. Over time, the
rise and fall of activation peaks over different locations in the DNF condition transitions between different
pitch targets. Our system makes crucial use of the interaction between the current state of pitch production,
at a moment in time, and the dynamics of pitch target selection. In our model, this is achieved via a condition
of satisfaction mechanism (CoS) (Schöner, 2020), which triggers the neural dynamics to progress to the next
target only when the current target has been successfully achieved. This allows the successful sequencing of
pitch targets.

In the next section, we detail our CoS mechanism, after a discussion of approaches to serial order
sequencing via CoS within DFT more generally.

2.3 Serial order sequencing in DFT The basic picture that we are pursuing for downstep is one in
which the neural dynamics selects a target for the gesture dynamics and senses through perception when the
target has been achieved, triggering a transition in the neural dynamics that leads to the next target. Within
the DFT literature, this type of sensing mechanisms is referred to as a Condition of Satisfaction (CoS). CoS
in DFT has been implemented via an architecture that includes a combination of DNFs and dynamics nodes
representing three crucial aspects of action: 1) Ordinal position in a sequence, 2) Target (often referred to
as ‘Intention’) selection, 3) Perceptual input (Sandamirskaya, 2016; Sandamirskaya & Schoner, 2008). The
target (or ‘intention’) is an internal representation of the action to be completed. When the target matches the
actual perceptual input (for example, when the intention to look for a color matches visual input of that color
(Sandamirskaya & Schoner, 2008)), it satisfies the CoS, through activation of a CoS node/field, indicating
that the action has been successfully completed. This CoS can then inhibit the current action, leading to a
transition to the next action.1

Like this general approach in DFT, we rely on a CoS system in our model of downstep to achieve
sequential pitch targets. We implement the inhibition of completed actions via an inhibitory input into the
field. Once the field stabilizes at a particular value, the gesture control dynamics evolves towards this value,
as described previously. When the current pitch value (x) in equation 4 is close to the value in the field
(within 3 Hz), the CoS system is activated. After an interval of time (80ms in the simulations below), chosen
to represent the self-perception of pitch, an inhibitory input is added at the location of the stabilized peak in
the pitch field, along with the input to the DNF for the next tone target. This achieves rapid transition from
the current tone target to the next one.

In the next section, we report model parameters and three simulations. The simulations demonstrate how
the components of our model lead to downstep, under certain parameter values.

3 DFT Model of downstep

Our model is based on three crucial ingredients: independent representations for tone and register, the
representation of tone and register as distributions over continuous values, and the inhibition of completed
pitch targets. The model parameters are listed in Table 1. The first four parameters are related to inputs to
the DNF associated with phonological categories (first three) and inhibition following CoS (fourth). These
inputs to the DNF take a Gaussian shape, with a center, p, and width, w. There are H & L tone inputs and
a low (l) register input, all excitatory (with positive values). The last input (fourth row in the table) drives
the CoS system described previously. The center of this input, p, is always at the location of the current
above-threshold activation peak (the target). It functions to flatten an existing activation peak (overcoming
hysteresis) enabling rapid transition to the next pitch target (activation peak in another location in the DNF).
The remaining parameters specify properties of the DNF itself, including, the rate of activation change
over time, τ , resting level (the point attractor when there are no inputs), h, DNF noise, q, and within-field
interactions. The within-field parameters, local excitation (strength: cexc, width: σexc), local inhibition
(strength: cinh, width: σinh), and global inhibition (strength: cglob), are set so that together they enable
selection dynamics. That is, when one part of the field crosses the activation threshold, an activation peak

1 The full mechanism of inhibition leading to a transition to the next state in DFT involves an interaction between ordinal
nodes, encoding sequence position, and memory nodes, which excite the next action in the sequence. Nodes in DFT have
the same dynamics as fields, but are not defined over a continuous dimension, and are equivalent to a single location
within a field. For a tutorial on serial order sequencing in DFT see Sandamirskaya (2016).
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will be stabilized within the field.

Parameter Description Value
pHtone(w) Center of input (width) 180(5)
pLtone(w) Center of input (width) 120(5)

plregister(w) Center of input (width) 140(10)
pinhibition(w) Center of input (width) At stabilized peaks(5)

τ Evolution rate 20
h Resting level -5
β Sigmoid slope 4

cexc Excitation strength 20
cinh Inhibition strength 5
cglob Global inhibition 0.9
σexc Excitation width 5
σinh Inhibition width 25
q Noise 1.5

Table 1: Model parameters.

Using the parameters described above, we simulate downstep in an HLH sequence. Note, we assume
that there is low (l) register input, which quantitatively is higher and wider than the L tone input. Given the
dynamics of the DNF, in equation 3, the field will settle to the resting activation level, h, in the absence of
inputs. The H tone input, the first in the HLH sequence, will cause an activation peak to form, providing
a target to the gesture dynamics and raising pitch in the direction of the target. When the CoS is met, the
location of the activation peak will be inhibited, the H tone input removed, and the L tone and low register
(l) inputs introduced. The same cycle of events occurs when an activation peak forms at the low pitch end of
the DNF, except that the low register (l) input is not removed once the final H input is added. That is, in this
system, CoS removes tone inputs (L, H) but not register inputs. A register input, introduced by the L tone
+ l register combination, remains in the field even after CoS for the L tone. This mechanisms effectively
captures the intuition of low register spreading (Snider, 1998). Note that our implementation does not make
use of a high register (h), which may not be necessary for Bimoba, given the three tone (L,M,H) system.

The next section will be divided into 3 different parts. In order to show that both inhibition of completed
tones and l register perseverance (into the second H in an HLH sequence) is needed, we will simulate an HLH
tone sequence under 3 conditions: 1. Without inhibition after target achievement. 2. Without low (l) register
perseverance, and finally, 3. With both of the above.

4 Model Simulations

For each of the simulations below, the figure on the left describes the state of the neural field over the
course of the HLH sequence. The pitch dimension is on the x-axis, the y-axis is time (each timestep can be
interpreted as 1 ms), and the z-axis is the activation. The figure on the right is the result of the articulatory
dynamics, driven by the varying pitch targets from the DNF.

4.1 No inhibition of L target. Figure 3 demonstrates that if there is no inhibition of the completed
targets, we do not see downstep. In the neural dynamics (left), we see an activation peak at the high end of
the field, corresponding to the first H tone. In the pitch contour (right), we see that the pitch starts at 150
Hz and then rises, once an activation peak forms at the high pitch end of the DNF. Following this first high
peak, an activation peak forms at the low end of the DNF, driven by the combination of the L tone and l
register inputs. This causes a drop in pitch (right; around 200ms). Even after the L tone input is removed,
via CoS, and the second H input is added to the field, we do not see an above-threshold activation peak at the
high end of the field. The arrow labeled H2 in the neural dynamics (left) shows a below-threshold increase
in activation. The strength of the input is the same as for the first H, but the state of the field at the time
of the second H input is different, owing to global inhibition (a component of the interaction kernal), so the
consequence is only a below-threshold increase in activation. The high end of the field is inhibited (due to
global inhibition during the low pitch activation peak) and the low pitch end of the field remains active, due
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to the persistence of the l register (and the absence of inhibition). Under these conditions, without inhibiting
the field following target achievement (CoS), to work against hysteresis, we see that pitch slowly moves to
higher values. This is due to a transition from the L tone input dominating the location of the activation peak
to the l register (once the L tone input is removed). Note that the second H tone input does not influence the
location of the activation peak under these conditions.

(a) Activation over time. (b) Pitch over time.

Figure 3: Activation and pitch over time for an HLH sequence simulated without inhibition of L target.

4.1.1 No perseverance of L register. Figure 4 demonstrates that if l register is turned off along with L
tone (after the HL in HLH), the last H surfaces at exactly the same value as the first one – i.e., there is no
downstep. Note that, here, we incorporate inhibition of completed targets, unlike the previous simulation.

(a) Activation over time. (b) Pitch over time.

Figure 4: Activation and pitch over time for an HLH sequence simulated without perseverance of l register.

With these two simulations, we have demonstrated that without either l register perseverance or L target
inhibition, the second H is not downstepped. The next simulation incorporates both of these aspects.

4.1.2 Downstepped H: L register perseverance and L tone target inhibition. With both the
persistence of l register past the L tone and the inhibition of the L target following CoS, we see that the
field stabilizes at a downstepped location. While there is still an H input at the non-downstepped location,
the overall activation at lower ends of the fields results in a lower H realization (↓ H).
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(a) Activation over time. (b) Pitch over time.

Figure 5: Activation and pitch over time for an HLH sequence with l register, and target inhibition.

With these 3 simulations taken together, we conclude that l register perseverance into the second H, and
pitch target inhibition are both crucial ingredients to achieving a downstepped H.

5 Discussion

In this paper, we presented a dynamic neural field model of downstep, based on data from the Gur
language, Bimoba, analyzed by Snider (1998) in the framework of Register Tier Theory. We demonstrated
that downstep can be derived via the evolution of activation in a continuous neural field defined over
pitch values, and that such a model highlights three necessary components for achieving downstep: (1)
The perseverance of low (l) register into the second H of an HLH sequence (see simulation 2), (2) The
representation of tone and register as distributions over continuous values, and (3) The inhibition of the
DNF after successful achievement of a tone target in order to facilitate a rapid transition to the next target
(see negative evidence in simulation 1). Here, rapid is important. Given enough time, we may get to a
downstepped value even without inhibition–but, in language production, speakers do not have the luxury of
‘enough time’. Compare the pitch track in Figure 3 to the one in Figure 6 below. Figure 6 shows the pitch
contour simulated from the exact same parameters as simulation 2 (§4.1), except that we have doubled the
time of the simulation, allowing 1200ms instead of 600ms. Given the additional time, we can see that pitch
does eventually reach the value of a downstepped H even without inhibition. This slow timecourse of pitch
evolution is not tenable for a typical lexical tone language, which specifies contrastive tones on consecutive
tone-bearing units (although it may be sufficient for languages with only sparse specification of tone).

Figure 6: Pitch over time of an HLH sequence without target inhibition, and with extra time.

Our model also makes an important empirical prediction–since downstep relies on the presence of l
register and the inhibition of the second tone target (the L target), we do not need the first H in the HLH
in order for the second to be downstepped. Whether this is indeed the case in Bimoba is not evident in the
data presented in Snider (1998) and thus requires new empirical work for confirmation. Additionally, we
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departed from Snider (1998) in not proposing a high (h) register. Our system derives downstep with the tonal
inventory of L tone, H tone, l register, which may have some independent cross-linguistic motivation (c.f.
Lionnet, 2022).

Our model demonstrates the potential to derive phonological patterns from cognitive mechanisms that
interact over the time scale appropriate for speech production. While we see this as a promising direction for
future research integrating phonology with cognitive neuroscience, there are some limitations of the current
model. Generally, in downstep, each L in a sequence is described as “setting a new pitch ceiling” such that
subsequent Hs are realized at lower and lower pitch values–leading to pitch stepping (Connell, 2011). We
have not extended the model to capture this phenomenon. In its current form, our model of HLH predicts that
in a longer sequence, with multiple Ls (e.g., HLHLH), the second and third Hs will be produced at a similar
pitch value. Thus, while we are optimistic about the general approach, future work is needed to extend
the model, including exploration of a wider range of possibilities for integrating insights from atemporal
phonological theory and dynamical approaches to phonological cognition.
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