Phasal strength in A'ingae classifying subordination

Maksymilian Dąbkowski University of California, Berkeley

1 Introduction

This paper presents and analyzes data from A'ingae (or Cofán, 1so 639-3: con), an understudied and endangered Amazonian isolate. I focus on inflected verbs, subordinated with nominal classifiers, where the patterns of stress and glottalization in subordinate verbs are sensitive to the prior inflection present on the verb. This violates *bracket erasure*, an otherwise robust empirical generalization which states that phonological grammar cannot access morphological information from previous cycles (Kiparsky, 1982).

To account for the subordinator's sensitivity to the morphological structure of the inflected verb, I introduce a family of *phase-indexed faithfulness* constraints. Like McPherson & Heath (2016)'s phase faithfulness, it allows for modeling cases where previous phonological evaluation results in greater faithfulness. The addition of *indexation* keeps track of the previous phase's category, allowing for faithfulness specific to particular phases.

2 Language background

A'ingae (or Cofán, 150 639-3: con) is an Amazonian isolate spoken in northeast Ecuador and southern Colombia. The language is endangered and highly under-resourced. The structure of an A'ingae syllable is (C)V(V)(?); nuclei are maximally diphthongal, and the glottal stop is the only possible coda. (Alternatively, the glottal stop could be analyzed as a feature of the nucleus. I remain agnostic with respect to its structural position.) Generally, sequences of two vowels in A'ingae are tautosyllabic. VV diphthongal nuclei are the only heavy nuclei in the language. In presenting the data, I use the language's practical orthography, with one exception: the glottal stop is transcribed as ?, rather than an apostrophe ('). Two features of the A'ingae orthography are of note. First, \hat{u} represents the high central vowel. Second, postvocalic m and n represent vowel nasality, and consonantal prenasalization if followed by a stop. Thus, postvocalic m and n are not codas. For a full exposition of the A'ingae writing system, see Fischer & Hengeveld (2023). A'ingae is a heavily agglutinating and exclusively suffixing language. Word order is largely free in matrix clauses, but subordinate clauses are strictly verb-final.

This project was supported in part by National Science Foundation 20-538 Linguistics Program's Doctoral Dissertation Research Improvement grant #2314344 for *Doctoral Dissertation Research: Nominal and deverbal morphology in an endangered language*, American Philosophical Society's Lewis and Clark Fund for Exploration and Field Research on *Stress and glottalization across lexical classes in A'ingae (or Cofán; Ecuador)*, and California Language Archive's Oswalt Endangered Language Grants for fieldwork research on *Documenting the A'ingae noun phrase* and the *Form and productivity in A'ingae derivation*.

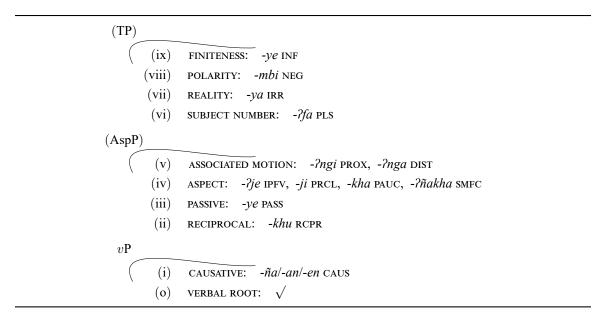
^{*} I would like to wholeheartedly thank members of the Cofán communities whose generosity and assistance have made this research uniquely possible. Thanks in particular to Jorge Criollo and his family for welcoming me to their home, my primary collaborator on this project, Jorge Mendúa, for his insight, patience, and kindness, as well as Hugo Lucitante for support with all matters along the way. I would also like to thank Scott AnderBois, Hannah Sande, Peter Jenks, Ryan Bennett, and the audiences at AMP (Annual Meeting on Phonology) 2023, CILLA X (10th Conference on Indigenous Languages of Latin America), Phorum (Berkeley Phonetics, Phonology, and Psycholinguistics Forum), P-Interest (Stanford University's Phonetics and Phonology Workshop), and UC Berkeley's workshop on *Phonological domains and what conditions them* for their invaluable feedback and helpful discussions.

The evidence for phase-indexed faithfulness, which is the main focus of the paper, comes from patterns of stress assignment and glottalization. A'ingae stress is contrastive (1). The presence of glottalization is contrastive in roots (2a-b) and affixes (2c-d). The position of the glottalization is contrastive in morphologically complex forms (2e-f). Stress is marked with the acute accent () and **boldface**.

(1) Contrastive stress (Dabkowski, 2021) a. **né**pi b. *nepí -ye* c. **á**fa d. a**fá** -ye -ye disappear -INF arrive -INF speak -INF speak -PASS CONTRASTIVE GLOTTALIZATION (Dabkowski, 2024) a. *chá*ndi b. chá?ndi c. *tsá* =ma d. *tsá* -?ma e. *sé*?*je* -*pa* f. **sé**je -?pa be clear be cold cure -ss cure -N ANA =ACC ANA -FRST

All the uncited data were collected by the author between 2022 and 2023, mostly with one 39-year-old male native A'ingae speaker from the community of Dureno, Sucumbíos, Ecuador.

3 The morphophonological patterns


First, I discuss the basics of A'ingae verbal morphology. A'ingae verbs can be inflected with many suffixes affecting stress and glottal stops. Dąbkowski (2024) describes the A'ingae verbal morphosyntax and morphophonology and provides analysis couched in Cophonologies by Phase (Sande et al., 2020). This section summarizes some relevant aspects of Dąbkowski (2024)'s findings, and takes them as a point of departure in order to focus on stress and glottalization in classifier subordination.

There are four phasal domains within an A'ingae verb: vP, AspP, TP, and CP (3). There is phonological, morphological, and syntactic evidence diagnosing each of the domains (Dabkowski, 2024).

Each of the four domains may undergo a separate phonological evaluation. The vP projection contains the verb root and the causative suffix $-\tilde{n}a/-an/-en$ CAUS, if present. AspP (the aspectual projection) contains other voice suffixes, including the reciprocal -khu RCPR and the passive -ye PASS, the aspectual suffixes, including the imperfective -?je IPFV, the preculminative -ji PRCL, the paucal -kha PAUC, and the semelfactive $-?\tilde{n}akha$ SMFC, and the associated motion suffixes: the proximal -?ngi PROX and the distal -?nga DIST. The TP projection contains the plural subject -?fa PLS, the irrealis -ya IRR, the negative -mbi NEG, and the infinite -ye INF. Since the A'ingae clauses discussed in subsection 3.4 are subordinate TPs, the CP layer will be omitted in the upcoming discussion.

A part of the morphological template of the A'ingae verb is given in Table 1. The root is at the bottom; each successive morphological slot is higher up in the table, mimicking the orientation of a syntactic tree. The arcs represent phasal domains which may undergo spell-out, or phonological evaluation. Following Bošković (2016), Dąbkowski (2024) assumes that heads are spelled out together with their complements. I assume that vP always undergoes spell-out. AspP and TP undergo spell-out only if they introduce new phonologically overt material. In the template, the variable spell-out of the AspP and TP phases is represented with parentheses ().

The following glossing abbreviations have been used: 1 = first person, 3 = third person, ACC = accusative, ACC2 = accusative 2, ANA = anaphoric, ANG = angular, CAUS = causative, DAT = dative, DIST = distal, DLM = delimited, DRN = diurnal, DS = different subject, FLAT = flat, FRST = frustrative, HRS = hirsute, IF = conditional, INF = infinitive, IPFV = imperfective, IRR = irrealis, LAT = lateral, LIN = linear, LRG = large, MANN = manner, N = nominalizer, NEG = negative, NN = negative noun, PASS = passive, PAUC = verbal paucal, PL = plural, PLC = place, PLS = plural subject, PRCL = preculminative, PRD = periodic, PROX = proximal, RCPR = reciprocal, RND = round, RPRT = reportative, SHRD = shard, SMFC = semelfactive, sS = same subject.

Table 1: Morphophonological template of the A'ingae verb (partial, adapted from Dabkowski 2024).

3.1 *Verbal roots* In this section, I present a brief overview of the different morphophonological processes seen in the verbal domain. First, let's look at three classes of A'ingae roots: stressless, stressed, and glottalized (Dąbkowski, 2024). Stressless roots have no underlying stress. On the surface, stress is assigned to the penultimate syllable (4-5a-b). Stressed roots have underlying stress on the first syllable and it doesn't shift (4-5c-d). Glottalized roots have a glottal stop in the rime of the penultimate syllable, and all of them also have word-initial stress (4-5e-f). Since all glottalized roots are stressed, we see that the glottal stop triggers stress assignment.

```
STRESSLESS ROOTS
                                       STRESSED ROOTS
                                                                         GLOTTALIZED ROOTS
      a. / afe /
                          / atapa .
                                           / káti
                                                            / áfase /
                                                                         e. / (i?na) /
                                                                                             / (ákhe?)pa /
           áfe]
                            atápa]
                                             káti
                                                             áfase
                                                                             [ (i?na)]
                                                                                               (ákhe?)pa ]
           give
                            breed
                                             cast
                                                              offend
                                                                                               forget
                                                                              cry
(5) ... WITH A SUFFIX
                                       ... WITH A SUFFIX
                                                                         ... WITH A SUFFIX
      a. / afe -ji /
                          / atapa -ji / c.
                                           / káti -ji /
                                                             áfase -ji / e. / (i?na) -ji / f.
                                                                                               (ákhe?)pa -ji /
                                                                                               (ákhe?)pa -ji ]
           afé -ji]
                           atapá -ji ]
                                             káti -ji
                                                              áfase -ji]
                                                                              (i?na) -jin ]
           give -PRCL
                            breed -PRCL
                                             cast -PRCL
                                                              offend -PRCL
                                                                                               forget
                                                                              cry
```

Glottal stops (brief summary) Dąbkowski (2024) proposes that (a) A'ingae footing is trochaic, (b) the glottal stop is a metrical feature and prefers to be located within a foot (and therefore creates metrical structure when possible), and (c) the glottal stop is preferentially right-aligned with its foot, but (d) diphthongs (heavy nuclei) are dispreferred in the right (weak) branch of a trochee, so when the glottalized syllable has a diphthong (or if it is word-initial), it receives stress instead. In other words, stress is assigned to the syllable which contains the second mora to the left of the glottal stop. The pattern is again restated in (6). In (4-5), metrical feet are delimited with parentheses (). In the examples to follow, metrical feet will only be shown if they are constructed due to the presence of a glottal stop.

(6) Metrical phonology of the glottal stop

If the glottal stop is in the coda position of a heavy or a word-initial syllable:

stress the glottalized syllable;

otherwise:

(Dąbkowski, 2024)

stress the syllable preceding the glottalized one.

3.2 *Verbal suffixes* Now, I move on to briefly summarize the morphophonology of A'ingae verbal suffixes. Some of the suffixes can be categorized as recessive, preglottalized, and TP-level suffixes.

Recessive suffixes There are two recessive suffixes: the causative $-\tilde{n}a/-an/-en$ CAUS and the preculminative -ji PRCL. The recessive suffixes retain the stress and glottalization of the base (7d-e). If the base is stressless, the surface form is assigned default penultimate stress (7a-c). Note that the -an and -en allomorphs of the causative CAUS form a diphthong with the preceding vowel. Thus, the surface stress in (7a) falls on the penult.

(7) VARIOUS BASES WITH RECESSIVE SUFFIXES (Dabkowski, 2024) a. / panza -en / b. / phi -ña -ji / c. / atapa -ji / d. / (ákhe?)pa -en / e. / áfase -ji / [**pá**.nza -en] [phi -**ñá** -jin] [ata**pá -**ji] [(**á**khe?)pa -en] [**á**fase -ji] breed -PRCL hunt -CAUS sit -CAUS -PRCL forget -CAUS offend -PRCL

Preglottalized suffixes Preglottalized suffixes include the imperfective -?je IPFV, the semelfactive -?ñakha SMFC, the proximal -?ngi PROX, and the distal -?nga DIST. Preglottalized suffixes delete the stress and glottalization from the base (if any). Moreover, stress is assigned to the syllable which contains the second mora to the left of the glottal stop, in accordance with (6). If the last syllable of the base is light, i. e. a monophthong, stress is assigned one syllable to the left of the glottalized syllable (8a-b). Otherwise, i. e. the root ends in a diphthong, stress is assigned to the glottalized syllable itself (8c-d).

(8) VARIOUS BASES WITH PREGLOTTALIZED SUFFIXES (Dabkowski, 2024) a. / **á**fase -?ñakha / b. / (**sé**?je) -?ngi / c. / fûndûi -?nga / d. / (*ákhe?*)pa -en -?je / $[a(\mathbf{fa}se - ?)\tilde{n}akha]$ [fû(**ndûi** -?nga)] akhe(**pá** -**en** [(**sé**je -?)ngi] -?jen)] offend -SMFC cure -PROX sweep -DIST forget -CAUS -IPFV

TP suffixes Finally, TP suffixes include the plural subject -fa PLS, the irrealis -ya IRR, the negative -mbi NEG, and the infinitival -ye INF. Stress assignment at the TP level is sensitive to the right edge of AspP, the previous projection. AspP contains the root as well as all of the vP and AspP suffixes, if present. In the examples below, AspP is delimited with square brackets []. If AspP is stressless (9), e. g. because it has a stressless root and only recessive suffixes, stress is assigned to the last syllable of AspP.

(9) Stressless bases with TP suffixes (Dąbkowski 2024; author's data)

a. / [atapa] -?fa / b. / [phi -ji] -ya -mbi / c. / [afe -ji] -?fa -ya -mbi / [atapá -?fa] [phi -ji -ya -mbi] [afe -ji -?fa -ya -mbi] breed -PLS give -PRCL -IRR -NEG give -PRCL -PLS -IRR -NEG

Note that although the plural subject suffix -?fa PLS begins with a glottal stop and therefore can be called "preglottalized," it is unlike the AspP preglottalized suffixes in that it does not assign stress two morae to its left. In other words, while in AspP the presence of the initial glottal stop has an effect on stress assignment, within the TP domain preglottalization does not interact with stress at all.

If, on the other hand, AspP is stressed (and glottalized), stress and glottalization are preserved; stress is not reassigned to the last syllable of AspP. AspP may be stressed for one of two reasons: either it contains a stressed (and glottalized) root (10), or stress has been assigned by a preglottalized AspP suffix (11). In either case, the AspP domain has stress by the time of TP affixation and its stress is retained.

(10) STRESSED BASES (WITH STRESSED ROOTS) AND TP SUFFIXES (Dabkowski, 2024) c. / [(*sé?je*) -*ji*] a. / [**ká**ti] -ya -mbi / b. / [(**á**khe?)pa -ji] -?fa -ye / -ye / [(**á**khe?)pa -ji *-ye*] [**ká**ti -ya -mbi] (**sé?**je) -ji *-?fa -ye*] forget cast -IRR -NEG -PRCL -INF -PRCL -PLS -INF

```
(11) Stressed bases (with preglottalized AspP suffixes) and TP suffixes (Dąbkowski, 2024) a. / [(s\acute{e}?je) -?ñakha] -mbi/ b. / [(\acute{a}khe?)pa -?nga] -ye/ c. / [\acute{a}fase -?je] -ya -mbi/ [ (s\acute{e}je -?)\~nakha -mbi ] [ a(kh\acute{e}pa -?)nga -ye ] [ a(f\acute{a}se -?)je -ya -mbi ] cure -SMFC -NEG forget -DIST -INF offend -IPFV -IRR -NEG
```

In short, at TP spell-out, stress is assigned to the right edge of AspP, unless AspP had underlying stress (in which case stress is preserved) or there are no TP suffixes (in which case stress is penultimate). The algorithm which captures the stress assignment patterns in TP is given in (12).

(12) TP STRESS ASSIGNMENT

```
If the base of TP suffixation (i. e. the AspP domain) is stressed (and glottalized): preserve input stress (and glottalization); otherwise:
```

stress the syllable to the left of the first TP affix (i. e. the last syllable of AspP).

In summary, A'ingae suffixes can be grouped into three morphophonological classes: recessive, preglot-talized, and TP suffixes. Recessive suffixes preserve preexisting stress (and glottal stops) if present; they don't assign stress by themselves. Preglottalized suffixes delete preexisting stress and glottalization, and assign stress to the syllable which contains the second to the left of the glottal stops—in accordance with (6). TP suffixes preserve stress (and glottal stops) if present; otherwise, they assign stress to the immediate left of the first TP suffix.

- **3.3** Nouns and nominal classifiers Now, I move on to nouns and nominal classifiers. Stress patterns in A'ingae nouns are similar to those of verbs. A'ingae nouns can be classified as plain or glottalized. Plain (i. e. not glottalized) nouns have penultimate stress (13). In glottalized nouns, the rime of the penult has a glottal stop. If the glottalized noun is disyllabic, stress is assigned to the glottalized syllable (14a). If the glottalized noun is trisyllabic, stress is assigned to the syllable which contains the second mora to the left of the glottal stop (14b-e). Thus, glottalized nouns show the same stress pattern as glottalized verbal roots (4-5e-f) and verbs with preglottalized suffixes (8).
- (13) PLAIN NOUNS

(14) GLOTTALIZED NOUNS

a.
$$(\textit{th\'e?thu})$$
 b. $(\textit{\'uma?})$ ndu c. $(\textit{b\'ansa?})$ mu d. $a(\textit{n\'ae?ma})$ e. $ku(ki\'u?chu)$ tooth macaw balsam hammock mountain cocoa

A'ingae has a rich set of classifying suffixes, which characterize the shape, size, or prominent dimension (be it spatial or temporal) of the referent. This set includes, but is not limited to, the delimited space -khû DLM (15a), flat -je FLAT (15b), periodic -ite PRD (15c), large -jiun LRG (15d), angular -7khu ANG (16a), lateral -?fa LAT (16b), shard -fi?ndi SHRD (16c), hirsute -?si HRS (16d), place -?thi PLC (17a), linear -?ki LIN (17b), round -?chu RND (17c), and diurnal -?ki DRN (17d) classifiers. The A'ingae classifying suffixes are nominalizers that derive nouns from both verbal (15a-b, 16) and nominal roots (15c-d, 17). The semantics of the derived noun is often not fully predictable.

```
(15) Plain classifiers on verbal roots
                                                       AND ON NOMINAL ROOTS
       a. / káti -khû /
                               b. / khûcha -je /
                                                       c. / (ú?ma)
                                                                        -ite /
                                                                               d. / (tá?va) -jiun /
          [ katí -khû ]
                                    khûchá -je
                                                            umá
                                                                        -ite
                                                                                            -jiun
            throw -DLM
                                                            peach palm -PRD
                                    wipe
                                          -FLAT
                                                                                     cotton -LRG
                                  "rag"
                                                           "Feb-Apr season"
                                                                                   "silk-cotton tree"
          "trash can"
(16) GLOTTALIZED CLASSIFIERS ON VERBAL ROOTS
                                                       c. / (fi?thi) -fi?ndi /
       a. / akhûi -?khu /
                               b. / áfase
                                            -?fa /
                                                                                d. / (ákhe?)pa -?si /
           a(khûi -?khu)]
                                    a(fáse -?)fa]
                                                           | fi(thí
                                                                    -fi?)ndi
                                                                                     a(khépa -?)si]
            lever -ANG
                                    criticize -LAT
                                                            kill
                                                                    -SHRD
                                                                                     forget
                                                                                               -HRS
          "lever"
                                  "critical paragraph"
                                                           "knife"
                                                                                   "forgetting plant"
```

One exception is *tenkhén?chu* 'common fly,' where the glottalized syllable is stressed despite being light.

(17) GLOTTALIZED CLASSIFIERS ON NOMINAL ROOTS

```
a. / tsándie -?thi /
                       b. / tsámpi -?ki /
                                               c. / (tsû?tha) -?chu /
                                                                       d. / (úma?)ndu -?ki /
    tsa(ndié -?thi)
                            (tsámpi -?)ki
                                                    (tsûtha -?)chu]
                                                                            u(mándu -?)ki]
                            forest -LIN
    man
             -PLC
                                                    bone
                                                             -RND
                                                                            macaw
                                                                                       -DRN
   "men's place"
                          "forest trail"
                                                  "knee"
                                                                          "macaw day"
```

When attaching to roots, the classifying suffixes delete the stress and glottalization of the base. If the classifier does not have a glottal stop, stress is assigned to the penultimate syllable of the word (15). If the classifier has a glottal stop, stress is assigned to the syllable which contains the second mora to the left of the glottal stop. This means that the glottalized syllable is stressed if heavy (16-17a); otherwise, the syllable to its left receives stress (16-17b-d). The algorithm which captures the stress assignment patterns of the classifying suffixes is given in (18).

- (18) ClassifierStress, or: Clσ
 - 1. Delete base stress and glottalization.
 - 2. If the classifying suffix has a glottal stop:
 follow (6), i. e. stress the syllable with the second mora to the left of the glottal stop;
 otherwise:

stress the penultimate syllable of the word.

In section 4, the ClassifierStress algorithm will be deployed as a constraint violated by non-adherence to the classifier stress pattern, ranked with respect to indexed faithfulness constraints. ClassifierStress is obviously not an atomic constraint, but rather a descriptive gloss over the outcome of an interaction of several constraints regulating the relationship between stress, glottal stops, deletion facts, stress assignment, and foot structure. For an analysis of the components of the ClassifierStress algorithm, see Dąbkowski 2024.

- **3.4** Classifier subordination In this section, I present the core data of the paper which pertain to stress and glottal stops in inflected verbs subordinated with the classifying suffixes. A'ingae many subordinators are realized as suffixes on the main verb of the subordinate clause. A'ingae subordinate clauses are strictly verb-final, e. g. (19). The subordinating suffix is <u>underlined</u>. The subordinate clauses are given in brackets []. The subordinator forms one phonological word with the inflected verb, given in double brackets [].
- (19) CLAUSAL SUBORDINATION

```
[ dûshû=ndekhû tise máma=me [ rúnda -?je -?fa -ya ] -?ni =tsû ]] avûjátshi-ya child=pl (s)he mom=ACC2 wait -IPFV -PLS -IRR -IF.DS = 3 happy-IRR "If the children will be waiting for their mom, she will be happy."
```

Crucially, some of the classifiers introduced in subsection 3.3 can function as clausal subordinators. The classifiers that can do so productively include, among others, the periodic *-ite* PRD and the place *-?thi* PLC classifiers. In its productive subordinating role, the periodic classifier *-ite* PRD introduces temporal adjuncts (20a). The place classifier *-?thi* PLC introduces locative expressions (20b). In the translations, the semantic contribution of the classifier is underlined.

- (20) Classifiers as clausal subordinators:
 - a. PERIODIC (-ITE PRD) SUBORDINATION

 [dûshû=ndekhû tise máma=me [rúnda -?je -?fa -ya] -ite =tsû] avûjátshi-ya child=PL (s)he mom=ACC2 wait -IPFV -PLS -IRR -PRD =3 happy-IRR "When the children will be waiting for their mom, she will be happy."
 - b. PLACE (-?THI PLC) SUBORDINATION

 jayí=ngi [dûshû=ndekhû tíse máma=me [rúnda -?je -?fa -ya] -?thi =nga]

 going=1 child=PL (s)he mom=ACC2 wait -IPFV -PLS -IRR -PLC =DAT

 "I'm going to the place where the children will be waiting for their mom."

- **3.4.1** Periodic subordination Now, I discussed the central patterns of stress and glottalization in verbs subordinated with classifying suffixes. First, consider cases when the periodic classifier *-ite* PRD subordinates a clause whose main verb is a bare (21a-c, 22a,c, 23a-c) or causativized (21d, 22b,d, 23d) root. Since the causative $-\tilde{n}a/-an/-en$ CAUS is the only vP-internal suffix, this class can be identified as ite-subordinations of verbs with vP inflection. In these cases, the output forms are predicted by the CLASSIFIERSTRESS algorithm (18). This is to say, input stress and glottalization (if present) are disregarded and the surface form gets penultimate stress (21-23).
- (21) Stressless verbs with vP inflection + periodic subordinator -*ite* prd

```
a. / pasa -ite / b. / kachai -ite / c. / uphathû -ite / d. / uphathû-an -ite / [ pasá -ite ] [ kachái -te ] [ uphathú -ite ] [ uphathú -ite ] [ uphathi-án -te ] pick -PRD pick -PRD pick-CAUS -PRD
```

(22) Stressed verbs with vP inflection + periodic subordinator -*ite* prd

```
a. / ána -ite / b. / ána-en -ite / c. / áfase -ite / d. / kúndase-an -ite / [ aná -ite ] [ aná-en -te ] [ afasé -ite ] [ kundasi-án -te ] sleep-PRD sleep-CAUS-PRD offend-PRD tell-CAUS-PRD
```

(23) GLOTTALIZED VERBS WITH vP INFLECTION + PERIODIC SUBORDINATOR -ITE PRD

```
a. / (i?ndû) -ite /
                             / (á?mbian) -ite /
                                                  c. / (ánsa?)nge -ite /
                                                                                 (áfu?)puen -ite /
   [ indû
                              ambián
                                                        ansangé
                                                                                 afupuén
             -ite ]
                                          -te]
                                                                    -ite ]
                                                                                             -te
                              have
                                                        be shy
                                                                                 lie
     brew
             -PRD
                                          -PRD
                                                                    -PRD
                                                                                             -PRD
```

When the periodic classifier -ite PRD subordinates a clause whose main verb carries structurally high inflectional morphemes, including aspectual and associated motion AspP suffixes or TP suffixes, the stress and glottalization assigned in the course of the verbal inflection are preserved (24). This is to say, the stress and glottalization are determined by verbal inflectional morphemes according to the rules discussed in subsection 3.2; they are not overridden by the periodic subordinator -ite PRD.

(24) Verbs with high AspP, TP inflection + periodic subordinator -ite prd

```
b. / áfase -?nga /
a. / fetha -?je /
                                                          / (i?ndian) -?fa /
                                                                                  d. / atesû -ya /
                                                                                        ates\hat{\boldsymbol{u}} -ya | -ite /
 / [ (fétha -?)je ] -ite
                                a(fáse -?)nga ] -ite /
                                                            (i?ndian) -?fa | -ite /
    (fétha -?)je -ite]
                                a(fáse -?)nga -ite]
                                                            (i?ndian) -?fa
                                                                            -ite
                                                                                        atesû -ya -ite]
     open -IPFV -PRD
                                offend -DIST
                                                           brew.CAUS -PLS
                                                                                        learn -IRR -PRD
                                                -PRD
                                                                             -PRD
                                  f. / (rú?nda) -?je -?fa /
e. / (ákhe?)pa -mbi
                                                                      g. / panza -?fa ya
    (ákhe?)pa -mbi | -ite /
                                   / [ (rúnda
                                                 -?)je -?fa | -ite /
                                                                          panzá -?fa ya] -ite /
    (ákhe?)pa -mbi -te]
                                       (rúnda
                                                 -?)je -?fa -ite]
                                                                         [ panzá -?fa ya -ite]
     forget
                -NEG
                      -PRD
                                       wait
                                                 -IPFV -PLS
                                                            -PRD
                                                                           hunt -PLS -IRR -PRD
```

Thus, we see that the patterns of stress and glottalization in *ite*-subordinations are sensitive to the morphological structure of the base, violating Kiparsky (1982)'s *bracket erasure*, which states that this structure should be invisible to later phonological operations.

- **3.4.2** Place subordination Now, I discuss the patterns with the place classifier -?thi PLC. When the place classifier -?thi PLC subordinates a vP-inflected verb, input stress and glottalization are deleted. Then stress is assigned to the syllable which contains the second mora to the left of the glottal stop (25-27).
- (25) Stressless verbs with vP inflection + place subordinator -7th1 plc

```
a. / pasa -?thi / b. / kachai -?thi / c. / uphathû -?thi / d. / uphathû-an -?thi / [ (pása -?)thi ] [ ka(chái -?thi) ] [ u(pháthû -?)thi ] [ upha(thi-án -?thi) ] pass -PLC meet -PLC pick -PLC pick-CAUS -PLC
```

(26) Stressed verbs with vP inflection + place subordinator -?tHI plc

(27) GLOTTALIZED VERBS WITH vP INFLECTION + PLACE SUBORDINATOR -?THI PLC

```
a. / (i?ndû) -?thi /
                       b. / (á?mbian) -?thi / c. / (ánsa?)nge -?thi / d. / (áfu?)puen -?thi /
                                                   [ an(sánge
    (indû
            -?)thi ]
                            a(mbián -?thi)]
                                                                -?)thi
                                                                           [ afu(puén -?thi) ]
     brew
                             have
                                                     be shy
                                                                             lie
                                                                                        -PLC
            -PLC
                                        -PLC
                                                                 -PLC
```

Finally, when the place classifier -?thi PLC subordinates a clause whose main verb is inflected for other AspP or TP categories, the stress and glottalization assigned in the course of the verbal inflection are preserved (28). This pattern repeats the one seen in *ite*-subordinations (24).

(28) Verbs with high ASPP, TP inflection + place subordinator -?THI PLC

```
b. / áfase -?nga /
                                                      c. / (i?ndian) -?fa /
                                                                                  d. / atesû -va /
a. / fetha -?je /
                             / [ a(fáse -?)nga ] -?thi / / [ (í?ndian) -?fa ] -?thi / / [
 / [ (fétha -?)je ] -?thi /
                                                                                       atesû -ya] -?thi /
                              [a(\mathbf{fase} - ?)nga - ?thi]
     (fétha -?)je -?thi
                                                          [ (i?ndian) -?fa -?thi]
                                                                                       atesû -ya -?thi]
     open -IPFV -PLC
                                offend -DIST
                                                           brew.CAUS -PLS -PLC
                                                -PLC
e. / (ákhe?)pa -mbi /
                                 f. / (rú?nda) -?je -?fa /
                                                                     g. / panza -?fa ya /
                                                                       / [ panzá -?fa ya ] -?thi /
     (ákhe?)pa -mbi ] -?thi -a / / [ (rúnda -?)je -?fa ] -?thi /
     (\acute{a}khe?)pa - mbi - ?thi - a
                                     [ (rúnda
                                                -?)je -?fa -?thi]
                                                                         [ panzá -?fa ya -?thi ]
     forget
                -NEG -PLC -NN
                                       wait
                                                 -IPFV -PLS -PLC
                                                                          hunt -PLS -IRR -PLC
```

As such, the periodic classifier -ite PRD and the place classifier -?thi PLC pattern alike in that when AspP or TP inflection is present, the stress and glottalization are preserved. If no AspP/TP morphology is present, stress and glottal stops are deleted. The stress is then reassigned according to the ClassifierStress algorithm. The summary of the data is given in (29).

(29) SUMMARY OF CLASSIFIER SUBORDINATION PATTERNS

If AspP or TP morphology is present:

preserve stress and glottalization;

otherwise, follow the ClassifierStress algorithm (18), i. e.:

- 1. delete base stress and glottalization; and
- 2. if the classifying suffix has a glottal stop:

follow (6), i. e. stress the syllable with the second mora to the left of the glottal stop; otherwise:

stress the penultimate syllable of the word.

4 Analysis

To account for the A'ingae facts, I introduce phase-indexed faithfulness constraints, sensitive to the syntactic category of previously spelled-out material. Faithfulness to the output of AspP or TP spell-out is regulated by Maximality_{XP} (30). The functional phases AspP and TP can be conceptualized as "strong." Faithfulness to the output of nP or vP spell-out is regulated by Maximality_{XP} (31). The constraint names capitalize on a preexisting typographic convention, which uses uppercase and lowercase letters to distinguish functional projection heads (X) from lexical categorizing heads (x). The categorizing phases nP and vP can be conceptualized as "weak." The retention of base stress and glottalization only when AspP/TP morphology is present is modeled by ranking ClassifierStress below Maximality_{XP} but above Maximality_{XP} (32).

- (30) Maximality $_{XP}$, or: M_{XP}
 - For every glottal stop and stress which had undergone AspP or TP spell-out in the input, there is a corresponding glottal stop and stress in the output.
- (31) MAXIMALITY_{xP}, or: M_{xP}
 - For every glottal stop and stress that had undergone nP or vP spell-out in the input, there is a corresponding glottal stop and stress in the output.
- (32) Sensitivity to base morphology as phase indexation Maximality_{xP} \rangle ClassifierStress \rangle Maximality_{xP}

First, let's have a look at forms with -ite PRD. I assume that when at least one AspP (33a) or TP (33b) suffix is present, the corresponding phase undergoes spell-out. The high-ranking MAXIMALITYXP ensures faithfulness to the glottal stops and stress spelled out in those phases. As such, the input glottal stops and stress in (33) are preserved.

(33) a.
$$[a(\mathbf{f\acute{a}}se\text{-}?)nga]_{AspP}$$
 -ite: M_{XP} \rangle $Cl\acute{o}$ \rangle M_{xP} b. $[ates\acute{a}\cdot ya]_{TP}$ -ite: M_{XP} \rangle $Cl\acute{o}$ \rangle M_{xP}

i. $a(\mathbf{f\acute{a}}se\text{-}?)ngaite$ (24b) *

ii. $afaseng\acute{a}ite$ *!

ii. $ates\acute{u}yaite$ (24c) *

[offend-DIST]_{AspP} -PRD

[learn-IRR]_{TP} -PRD

I assume that nP(34a) and vP(34b) always undergo spell-out. I. e., those phases are spelled out regardless of whether they introduce any overt functional morphology. Nevertheless, nP/vP faithfulness ranks below CLASSIFIERSTRESS. As a consequence, CLASSIFIERSTRESS overrides input stress and glottalization and assigns stress to the penultimate syllable of the word (34).

The causative -ña/-an/-en CAUS is the only verbalizing suffix in A'ingae. Following Dabkowski (2024), I assume that $-\tilde{n}a/-an/-en$ CAUS is a head of vP. Since faithfulness to the vP spell-out ranks below CLASSIFIER-STRESS, the input stress (and glottal stop) are again overridden (35).

$$(35) \quad \text{a.} \quad [\textbf{\textit{k\'undasi-an}}]_{vP} - ite: \quad M_{XP} \rangle \rangle \quad \text{Cl\'o} \rangle \rangle \quad M_{xP}$$

$$\text{i.} \quad \textbf{\textit{k\'undasiante}} \qquad *! \qquad \text{i.} \quad (\textbf{\textit{\'ufu?}}) puente \qquad *!$$

$$\text{lim} \quad \text{ii.} \quad \textbf{\textit{kundasi\'unte}} \quad (22d) \qquad * \qquad \text{lim} \quad \text{ii.} \quad \textbf{\textit{afupu\'ente}} \quad (23d) \qquad * \qquad \text{[tell-CAUS]}_{vP} - PRD$$

$$\text{[lie]}_{vP} - PRD$$

Note that in (34-35), AspP and TP do not undergo spell-out because there are no overt AspP/TP suffixes. This is not to say that the AspP and TP projections are absent from syntactic structure. Rather, the claim is that they do not undergo phonological evaluation, as a consequence of which the override of input stress and glottalization does not incur violations of MAXIMALITYXP. The assumed syntactic structure for each subordinate verb is the same; the structures for (33a), (33b), (34b), and (35a) are given in (36a), (36b), (36c), and (36d), respectively. What differs among the derivations is how many phonological evaluations there are and when. vP is always spelled out; AspP and TP are spelled out only if they introduce new overt morphology. Instances of spell-out (phonological evaluation) are represented with arcs (

(36) AspP and TP spell-out dependent on the presence of overt morphology
a.
$$/ [[\acute{a}fase]_{vP} - 2nga]_{AspP} - \varnothing]_{TP} -ite / b. / [[[\acute{a}tesû]_{vP} - \varnothing]_{AspP} - ya$$

a.
$$/ [[[\acute{a}fase]_{vP} -?nga]_{AspP} -\varnothing]_{TP} -ite / b$$
. $/ [[[ates\hat{u}]_{vP} -\varnothing]_{AspP} -ya]_{TP} -ite / offend$ offend -DIST -PRD learn -IRR -PRD

c. $/ [[[\acute{a}fase]_{vP} -\varnothing]_{AspP} -\varnothing]_{TP} -ite / d$. $/ [[[\acute{k}\acute{u}ndase -an]_{vP} -\varnothing]_{AspP} -\varnothing]_{TP} -ite / offend$ -PRD tell -CAUS -PRD

When a stressless root is subordinated, we get a "trivial" case: Stress is assigned by CLASSIFIERSTRESS; and since the base is stressless and neither AspP nor TP spell-out has taken place, neither MAXIMALITY constraint incurs any violations (37).

(37)	$[uphath\hat{u}]_{vP}$ -ite:	$M_{XP} \; \rangle\!\rangle$	$Cl\sigma ^{'})\!\rangle$	M_{xP}
i.	uphathûite		*!	
🎏 ii.	upha thûi te (21c)			
iii.	u phá thûite		*!	
	[pick] _{vP} -PRD			

Now, let's look at the place subordinator -?thi PLC. If no AspP/TP morphology is present, stress is assigned to the glottalized syllable if heavy (38a), and to the syllable preceding it otherwise (38b). This follows directly from the ClassifierStress (18).

(38) a.	$[uphathi-an]_{vP}$ -? thi :	M_{XP} \rangle $Cl\sigma$ \rangle \rangle M	хP	b.	$[(\emph{ansa?})nge]_{vP}$ -? thi :	M_{XP} $\rangle\!\rangle$ $\mathrm{Cl}\acute{\sigma}$ $\rangle\!\rangle$ $M_{x\mathrm{P}}$
i.	uphathian?thi	*!		i.	(án sa?)nge?thi	*!
ii. upha(thián?thi) (25d.i)		🎏 ii.	an(sá nge?)thi (27c.i)	*		
[pick-CAUS] _{vP} -PLC				[be shy] $_{v\mathrm{P}}$ -PLC		

Finally, when AspP or TP suffixes are present, AspP/TP undergoes spell-out. The high ranking of MAXIMALITYXP prevents CLASSIFIERSTRESS from overriding stress and glottalization, so base stress (and glottalization) always surface faithfully in and ?thi-subordination (39). In this sense, ?thi-subordinations behave in the same way as ite-subordinations.

(39)
$$[panz\acute{a}-?fa-ya]_{TP}-?thi: M_{XP} \ \ Cl\acute{\sigma} \ \ \ \ \ M_{xP}$$

i. $panz\acute{a}?faya?thi \ (28g)$

ii. $panza(f\acute{a}ya?)thi$

*!

In sum, the ranking of ClassifierStress below Maximality_{XP} but above Maximality_{xP} derives the fact that forms without AspP/TP suffixes receive ClassifierStress while forms with overt AspP/TP morphology surface faithfully.

5 Alternative analyses

In this section, Now, I consider and reject two attempts at a simpler analysis. First, one might consider a homophony analysis, where classifiers are homophonous between their low-attaching (VceP) versions (which override preexisting stress and ?) and high-attaching (TP) versions (which preserve stress and ?). However, this analysis predicts that there should be structural differences between forms where stress and glottalization are deleted and preserved. The prediction appears to be false, since both can e. g. host TP-level adverbs (40).

- (40) TP ADVERBS LICIT REGARDLESS OF OVERT MORPHOLOGY
 - a. jayi=ngi [$d\hat{u}sh\hat{u}=ndekh\hat{u}$ tise $m\acute{a}ma=me$ t $\acute{u}?i$ [$r\acute{u}nda-?je-?fa-ya$] -?thi =nga] going=1 child=PL (s)he mom=ACC2 tomorrow wait -IPFV-PLS-IRR -PLC =DAT
 - "I'm going to the place where the children will be waiting for their mom tomorrow."
 - b. jayí=ngi [dûshú=ndekhû tíse máma=me tayúpi [rúnda] -?thi =nga] going=1 child=PL (s)he mom=ACC2 long ago wait -PLC =DAT "I'm going to the place where the children waited for their mom a long time ago."

Alternatively, to do away with xP/XP-indexation, one could try denying the categorizing heads' phasal status. The analysis presented in section 4 indexes phonological constraints to syntactic category labels in order to distinguish between low-faithfulness phases (nP, vP) and high-faithfulness phases (AspP, TP). An alternative to phase-indexation could deny the phasal status of (nP and) vP (41). This would allow for

dispensing with the mechanism of phase-indexation. Instead, the facts of exceptional faithfulness to AspP and TP spell-out would follow from regular phase faithfulness (McPherson & Heath, 2016).

(41) ASPP AND TP AS ONLY PHASAL PROJECTIONS

a.
$$/ [[[\acute{a}fase]_{vP} -?nga]_{AspP} -\varnothing]_{TP} -ite / b$$
. $/ [[[ates\^{u}]_{vP} -\varnothing]_{AspP} -\varnothing]_{TP} -ite / offend$ offend $-DIST$ $-PRD$ learn $-IRR$ $-PRD$ c. $/ [[[\acute{a}fase]_{vP} -\varnothing]_{AspP} -\varnothing]_{TP} -ite / d$. $/ [[[\acute{k}\acute{u}ndase -an]_{vP} -\varnothing]_{AspP} -\varnothing]_{TP} -ite / offend$ $-PRD$ tell $-CAUS$ $-PRD$

This account is not adopted because it makes incorrect predictions about forms with multiple preglottalized suffixes introduced in the same phase. This is because it incorrectly predicts no phase boundaries between adjacent classifiers. In A'ingae, when two glottal stops are introduced by suffixes in the same phase, stress is assigned with respect to the first one (Dąbkowski, 2024). For example, the imperfective suffix -?je IPFV can be followed by either of the two associated motion suffixes: the proximal -?ngi PROX or the distal -?nga DIST (42). In this configuration, stress is assigned to the syllable which contains the second mora to the left of -?je IPFV.³ The glottal stop of the associated motion suffix is deleted.

However, when the glottal stops are introduced in consecutive phases, the later glottal stop overrides the stress assigned by the previous glottal stop. In words with multiple nominalizing classifiers, stress is cyclically overridden (43). By definition, nominalizers are n heads. Hence, n (and v) are phasal.

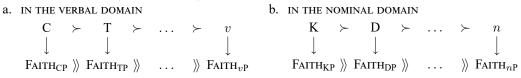
(43) Preglottalized suffixes in two different phases

```
/ khú?pa -?thi /
/ [khúpa?thi]<sub>nP</sub> -?khu /
[ khupáthi?khu]<sub>nP</sub>
excrete -PLC -ANG
```

"lower back"

6 Discussion and conclusions

In this paper, I presented and accounted for the morphophonological patterns seen in verbs subordinated with two classifying suffixes: the periodic *-ite* PRDand the place *-?thi* PLC. The main pattern of note was that the stress of the surface forms depends on the morphological structure of the base of affixation. If the verbal base contains TP or stress-assigning AspP inflection, the stress of the base is preserved. Otherwise, the stress and glottalization of the base are overridden by the classifier. My account captured the pattern by building on McPherson & Heath (2016)'s phase faithfulness and distinguishing between faithfulness to functional or "strong" Asp/TP phases and categorizing or "weak" nP/vP phases.


In A'ingae, the spell-out of higher projections (AsP, TP) blocks stress assignment, but the spell-out of lower projections (vP, nP) does not. I capture the pattern by proposing that faithfulness to the former (Maximality_xP) ranks above stress reassignment (ClassifierStress) but faithfulness to the latter (Maximality_xP) ranks below it (44a). Assuming that Optimality Theoretic constraints may be ranked differently on a language-by-language basis, one predicts that the opposite ranking may obtain (44b). Since prosodic strength generally increases as one goes up the syntactic tree, a language that complies with (44b) is highly unexpected.

When two suffixes that modify the base of affixation are simultaneously present, the rightmost suffix typically overrides the phonological effects triggered by earlier suffixes (i. e. the last suffix has the final word). This generalization is widely recognized in the literature and predicted by a variety of frameworks (Alderete, 1999; Rolle, 2018; Inkelas & Zoll, 2007). The A'ingae pattern contradicts this generalization since stress is assigned with respect to *-ʔje* IPFV, the first preglottalized suffix. For an account, see Dabkowski (2024).

- (44) PREDICTIONS OF FACTORIAL TYPOLOGY (PARTIAL):
 - a. Attested: A'ingae $\text{Maximality}_{XP} \ \rangle \ \text{ClassifierStress} \ \rangle \ \text{Maximality}_{xP}$
 - b. UNATTESTED AND UNEXPECTED
 - *Maximality_{xP} \rangle ClassifierStress \rangle Maximality_{XP}

To address this challenge, one may speculate that the ranking of phase-indexed faithfulness follows from a universal hierarchy of syntactic projections, whereby faithfulness to higher projections must always outrank faithfulness to lower projections (45). Other proposals which posit similar mechanisms include formalizations of the sonority hierarchy, weight hierarchy (Ryan, 2019), McCarthy & Prince (1995)'s root-affix faithfulness metacondition (root Faithfulness) affix Faithfulness), and Zukoff (2023)'s Mirror Alignment Principle, mapping head-internal c-command relations onto a fixed ranking of Alignment constraints.

(45) Universal mappings (hypothesized): Projection Hierarchy \rightarrow faithfulness ranking

References

Alderete, John D. (1999). Morphologically Governed Accent in Optimality Theory. Ph.D. thesis, University of Massachusetts Amherst.

Bošković, Željko (2016). What is sent to spell-out is phases, not phasal complements. Linguistica 56:1, 25-66.

Dąbkowski, Maksymilian (2021). Dominance is non-representational: Evidence from A'ingae verbal stress. *Phonology* 38:4, 611–650.

Dąbkowski, Maksymilian (2024). Two grammars of A'ingae glottalization: A case for Cophonologies by Phase. *Natural Language and Linguistic Theory* 42:2, 437–491.

Fischer, Rafael & Kees Hengeveld (2023). A'ingae (Cofán/Kofán). Epps, Patience & Lev Michael (eds.), Language Isolates I: Aikanã to Kandozi-Shapra, De Gruyter Mouton, Berlin, vol. 1 of Handbooks of Linguistics and Communication Science (HSK), 65–124.

Inkelas, Sharon & Cheryl Zoll (2007). Is grammar dependence real? A comparison between cophonological and indexed constraint approaches to morphologically conditioned phonology. *Linguistics* 45:1, 133–171, URL http://roa.rutgers. edu/. ROA-587.

Kiparsky, Paul (1982). Lexical Morphology and Phonology. *Linguistics in the Morning Calm: Selected papers from SICOL-1981* pp. 3–91.

McCarthy, John J. & Alan Prince (1995). Faithfulness and reduplicative identity. Beckman, Jill N., Laura Walsh Dickey & Suzanne Urbanczyk (eds.), *University of Massachusetts Occasional Papers in Linguistics*, Graduate Linguistic Student Association, Amherst, MA, vol. 18, 249–384.

McPherson, Laura & Jeffrey Heath (2016). Phrasal grammatical tone in the Dogon languages. *Natural Language & Linguistic Theory* 34:2, 593–639.

Rolle, Nicholas (2018). Grammatical Tone: Typology and Theory. Ph.D. thesis, University of California, Berkeley.

Ryan, Kevin M. (2019). *Prosodic Weight: Categories and Continua*. No. 3 in Oxford Studies in Phonology and Phonetics, Oxford University Press.

Sande, Hannah, Peter Jenks & Sharon Inkelas (2020). Cophonologies by Ph(r)ase. *Natural Language & Linguistic Theory* 1–51.

Zukoff, Sam (2023). The Mirror Alignment Principle: Morpheme ordering at the morphosyntax-phonology interface. Natural Language & Linguistic Theory 41:1, 399–458.